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A B S T R A C T   

Guided tissue regeneration (GTR) has been widely used in the periodontal treatment of intrabony and furcation 
defects for nearly four decades. The treatment outcomes have shown effectiveness in reducing pocket depth, 
improving attachment gain and bone filling in periodontal tissue. Although applying GTR could reconstruct the 
periodontal tissue, the surgical indications are relatively narrow, and some complications and race ethic prob-
lems bring new challenges. Therefore, it is challenging to achieve a consensus concerning the clinical benefits of 
GTR. With the appearance of stem cell-based regenerative medicine, mesenchymal stem/stromal cells (MSCs) 
have been considered a promising cell resource for periodontal regeneration. In this review, we highlight pre-
clinical and clinical periodontal regeneration using MSCs derived from distinct origins, including non- 
odontogenic and odontogenic tissues and induced pluripotent stem cells, and discuss the transplantation pro-
cedures, therapeutic mechanisms, and concerns to evaluate the effectiveness of MSCs.   

1. Introduction 

Periodontal disease, as one of the non-communicable diseases, has 
been considered a global public health problem, with a high prevalence 
of up to 50% worldwide [1] and an estimated 1.1 billion severe peri-
odontitis globally in 2019 [2]. With the invasion of periodontal patho-
gens, the accompanied production of cytokines results in soft and hard 
tissue degradation. Initial non-surgical periodontal therapy could con-
trol periodontal inflammation, including scaling, root planing, and oral 
hygiene instruction. Non-surgical periodontal treatment can reverse the 
periodontitis to a stable stage. However, in some cases, even after the 
inflammation is controlled by eliminating or decreasing subgingival 
biofilm, the persistence of deep pockets or furcation involvement in-
dicates periodontal surgery [3]. 

Periodontal regenerative technologies have been applied to improve 

the short- and long-term clinical outcomes of periodontally compro-
mised teeth. However, the authentic reconstruction of periodontal tis-
sues is still a severe challenge. Starting in the last century, Langer et al. 
first proposed tissue engineering as a concept technique in the regen-
eration of lost tissues [4], and the concept of periodontal guided tissue 
regeneration (GTR) was promoted [5]. The basic idea of GTR is to 
improve the function of the associated cells and regulate the local 
microenvironment to facilitate regeneration. As the crucial component 
of the periodontium complex, the periodontal ligament (PDL) maintains 
the homeostasis of all periodontal tissues. Therefore, the aim of the GTR 
is the reformation of bone-PDL-cementum complex [6]. GTR has suc-
cessfully succeeded in clinical practice by applying biomaterials and 
biological agents. However, the most frequently encountered compli-
cations include the collapse of the barrier membrane and soft tissue 
dehiscence, resulting in bacterial invasion and infection, and subsequent 
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loss of the bone graft, leading to impaired regenerative outcomes. Be-
sides, the surgical procedure results in hemorrhage, hematoma, and 
pain. Sometimes it takes a long time to recover, which is unfriendly to 
certain patients with dental anxiety. In addition, the potential of disease 
transmission and ethical concerns caused by applications of allogeneic 
and xenogeneic bone substitutes should be considered. However, the 
occurrence is infrequent, and limited cases are documented [7]. 

The undifferentiated mesenchymal cells in PDL are believed to 
differentiate into cementoblasts, osteoblasts, and fibroblasts. The in-
vestigations to regenerate periodontal tissues by stem cell trans-
plantation have been wildly conducted over decades. Given the 
capacities of self-renewal, multipotentiality [8], immunomodulation, 
and tissue regeneration [9], mesenchymal stem/stromal cells (MSCs) are 
considered promising cell resources for cell-based regenerative medi-
cine. This review highlights the different cell origins to generate MSCs 
and the MSC applications in preclinical and clinical research. It discusses 
the therapeutic mechanisms and concerns to evaluate the effectiveness 
of MSCs. 

2. MSCs for periodontal regeneration 

2.1. MSCs derived from non-odontogenic tissues 

MSCs refer to a population with characteristics of secreting trophic 
factors [10], promoting angiogenesis [11,12] and homing to inflamed or 
injured tissues [13], including fibroblasts, myofibroblasts, and even a 
small amount of stem/progenitor cells [14]. Given the capacity for 
self-renewal and multipotentiality, stroma cells derived from bone 
marrow were first described as stem cells [15]. Plastic adherence, 
expression of CD73, CD90, and CD105, lacking expression of CD11b, 
CD14, CD19, CD34, CD45, CD79a, HLA-DR, and capabilities to differ-
entiate into adipocyte, chondrocyte, and osteoblast in vitro have been 
formulated as minimal criteria to define MSCs [16]. Notably, the 
markers to identify MSCs are occasionally variable in case of species 
differences, tissue sources, and culture conditions and even continuously 
evolving as our knowledge accumulates [8,14]. 

In humans, MSCs can be isolated from multiple tissue resources, 
including bone marrow (BMMSCs) [17,18], adipose tissue (ADMSCs) 
[19,20], umbilical cord tissue (UCMSCs) [21], placenta [22,23], um-
bilical cord blood [24], peripheral blood [25,26], and skin [27]. The first 

two are the most frequently researched [28]. Hundreds of millions of 
MSCs can be yielded within a few weeks [18,29], making the autologous 
MSCs applicable in clinical therapy. However, many preclinical and a 
portion of clinical trials are utilizing allogeneic MSCs (www.clinicalt 
rials.gov). One of the considerations may account for the declining 
number and overall fitness of MSCs obtained from donors with age [30]. 
Notwithstanding, the proprietary concerns are nonnegligible when 
determining allogeneic or autologous MSCs, or even distinct tissue re-
sources [9]. Since 2012, MSCs have been conditionally approved in 
Canada, New Zealand, and Japan to treat children with graft versus host 
disease (GvHD) [9]. Besides, in 2018, the European Commission 
approved a marketing authorization for an MSC product (Alofisel) 
derived from the fat tissue to treat complex anal fistulas in adults with 
Crohn’s disease [31,32]. 

Although there is not yet an MSC product approved in the clinic for 
periodontal disease, the preclinical and clinical studies showed that the 
transplantation of BMMSCs could improve periodontal regeneration. In 
a previously published review, Iwasaki et al. [33] extensively summa-
rized the early preclinical studies of BMMSCs for cell-based periodontal 
regeneration. Herein we would like to supplement some preclinical 
studies in recent 5-year applying BMMSCs (Table 1). Collectively, the 
BMMSCs are likely to ameliorate periodontitis by regenerating 
periodontium-like tissues, including PDL fibers, cementum, and alveolar 
bone [34–36]. For clinic trials (Table 2), transplantation of UCMSCs 
with scaffolds and growth factor indicated clinic improvements and 
improved radiographic bone fill (RBF) on intrabony defects [37]. 
Transplantation of adipose tissue-derived multi-lineage progenitor cells 
(ADMPCs) with fibrin gel promoted probing depth (PD) reduction, 
clinical attachment level (CAL), and radiographic bone fill (RBF) [38]. 
However, The BMMSCs with autologous fibrin/platelet lysate (aFPL) 
showed no significant clinical or RBF improvement compared with the 
controls [39]. Thus, more sophisticated clinical trials should be carried 
out to convince the capability of non-odontogenic MSCs on periodontal 
regeneration. 

2.2. MSCs derived from odontogenic tissues 

MSC-like cells have been isolated from a variety of human dental 
tissues, including dental pulp [40], exfoliated deciduous teeth [41], 
periodontal ligament [42], apical papilla [43,44], dental follicle [45] 

Table 1 
BMMSCs in preclinical periodontal regeneration.  

Author/ 
year 

Animal/ 
sample 
size 

Cell source/ 
morphology 

Carrier/ 
Scaffold 

Test Control Duration Outcome measures Results Regenerated 
tissues 

Zhang 
et al. 
2018  
[162] 

Rat Allogenic/ 
pellet- 
suspension 

HyStem- 
HP 
hydrogel 

ASA- 
BMMSCs 
with HP 
hydrogel 

ASA-hydrogel, 
BMMSCs- 
hydrogel 

3 weeks Histomorphometry, 
IHC, µCT 

ASA-BMMSCs 
reduced 
inflammatory 
infiltration and 
alveolar bone loss 

/ 

Vaquette 
et al. 
2019  
[35] 

Sheep Autologous/ 
cell sheet 

Biphasic 
scaffold 

BMMSCs 
sheet on the 
biphasic 
scaffold 

empty scaffold, 
GCs, PDLCs 

5, 10 
weeks 

Histomorphometry, 
µCT 

Multiphasic construct 
with BMMSCs and 
PDLCs promote 
periodontal 
regeneration 

Alveolar bone, 
cementum, PDL 

Costa et al. 
2022  
[36] 

Rat Allogenic/ 
pellet- 
suspension 

/ BMMSCs in 
PBS 

Defects left to 
spontaneously 
heal, BMAC in 
PBS 

30 days Histomorphometry, 
µCT 

BMMSCs promote 
early bone formation 
and maturation 

Cementum-like 
tissue with new 
insertion of 
fibers 

Jung et al. 
2022  
[34] 

Rat Allogenic / 
pellet- 
suspension 

/ BMP7- 
eBMSCs 

eBMSC, hPDLSC 8 weeks µCT Transplantation of 
BMP7-eBMSCs is a 
feasible for 
periodontal 
regeneration 

Alveolar bone, 
PDL 

ASA: Acetylsalicylic acid; µCT: Micro-computed tomography; IHC: Immunohistochemistry; BMMSCs: Bone marrow mesenchymal stem/stromal cells; GCs: Gingival 
cells; PDLCs: Periodontal ligament cells; PDL: Periodontal ligament; PBS: Phosphate buffered saline; BMAC: Bone marrow aspirate concentrate; BMP: Bone 
morphogenetic protein; BMP7-eBMSCs: BMP-7-expressing engineered BMMSCs. 
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and gingiva [46]. Compared with classic BMMSCs, dental tissue-derived 
stem/progenitor cells (DSCs) are supposed to be similar to neural crest 
cells due to ectomesenchyme origin [47]. DSCs can differentiate into 
osteogenic, adipogenic, and neurogenic lineages, with more tendency to 
odontogenic development rather than osteogenic one [48]. Thus, DSCs 
are widely investigated in tissue regeneration in dentistry (Tables 3 and 
4). 

Pulp tissue-derived dental pulp stem cells (DPSCs) can differentiate 
into multilineages, including odontoblast-like cells, adipocytes, neuro-
cytes [49], osteoblasts [50], chondrogenic and myogenic cells [51], and 
endotheliocytes [52]. It was indicated that the complex of DPSCs and 
Bio-Oss could improve the regeneration of periodontal tissues in a dog 
periodontitis model [53]. Likewise, Hu et al. found in a swine peri-
odontitis model that cell sheet and local injection of human DPSCs 
clinically promoted periodontal tissue healing; moreover, the former 
improved bone regeneration more than the latter [54]. In an early 
clinical study, Li et al. found that DPSCs with β-tricalcium phosphate 
(β-TCP) had both clinical and radiographic improvements in treating 
introbony defects [55]. Aimetti et al. performed a case series study that 
transplantation of DPSCs with collagen sponge improved complete 
pocket closure and RBF [56]. In a randomized controlled trial (RCT), 
DPSCs seeded onto collagen sponge significantly benefited PD reduc-
tion, CAL gain, and bone defect fill [57]. 

Stem cells from human exfoliated deciduous teeth (SHEDs) have a 
higher proliferation rate than BMMSCs and DPSCs and possess capacities 
of osteogenic, adipogenic, neurogenic [58], myogenic, chondrogenic 
[59] and odontogenic [58,60] differentiation. Local injection of SHEDs 
repressed periodontal tissue inflammation and promoted periodontal 
bone regeneration in a rat periodontitis model [61]. Besides, trans-
plantation of SHEDs with treated dentin matrix (TDM) yielded PDL 
fiber, blood vessels, and alveolar bone [60]. There are no allogeneic 
clinical applications for periodontal regeneration using SHEDs. No 
autologous SHED application was reported after the donor had suffered 
from periodontitis since the SHEDs were established in 2003 [41]. 

Periodontal ligament stem cells (PDLSCs), expressing cementoblastic 
and osteoblastic markers, exhibit classic potentiality of osteogenic, 
adipogenic, and chondrogenic differentiation [62–64]. Furthermore, 
PDLSCs can be differentiated into cementoblast-like and 
collagen-generating cells [65]. In an alveolar bone dehiscence dog 
model, PDLSCs-seeded biphasic calcium phosphate (BCP) enhanced new 
bone formation and regenerated PDL-like collagen fibers with a location 
between cementum and bone [66,67]. In a swine periodontitis model, 
PDLSCs or SHEDs with hydroxyapatite (HA)/TCP reduced PD, gingival 

recession (GR), and attachment level (AL) as well as inducing bone 
regeneration [68]. Although a single-arm clinical study conducted by 
Iwata et al. showed that PDLSC sheets with β-TCP improved PD reduc-
tion, CAL, and radiographic bone height (RBH) [69], Chen et al. in an 
earlier RCT indicated that there was no statistical difference for the 
improvement of RBH between PDLSC sheets with Bio-oss and Bio-oss 
alone[70]. 

Stem cells from apical papilla (SCAPs) derive from the apical soft 
tissue of developing permanent teeth, having the capability to differ-
entiate into odontoblast, osteoblast, and adipocytes with a higher pro-
liferation rate than DPSCs [43,44]. Li et al. reported in a swine 
periodontitis model that local injection of SCAPs restored periodontal 
tissues by regenerating Sharpey’s fibers, PDL, cementum, and alveolar 
bone [71]. The same group also disclosed that SFRP2-expressing SCAPs 
increased clinical improvements and more tissue regeneration using the 
same swine model [72]. Up to now, the clinical application using SCAPs 
has still not been reported. 

Dental follicle stem cells (DFSCs), derived from tissues surrounding 
the unerupted tooth germ, express multiple makers, including Nestin, 
Notch-1, collagen type I, bone sialoprotein (NS), and osteocalcin (OCN) 
[45]. Osteogenic alkaline phosphatase activity and cementoblastic 
markers of DFSCs could be initiated by enamel matrix derivatives 
(EMD), BMP-2, and BMP-7 [73]. It was indicated in none-periodontitis 
animal models that DFSC sheets generated periodontal tissue-like 
structures [74,75]. DFSCs with treated dentin matrix particles 
(TDMPs) improved the regeneration of periodontal-like tissues in a dog 
model with periodontal intrabony defects [76]. Recently, a 
parallel-group, prospective, randomized, controlled human multi-center 
clinical study is being performed to evaluate the safety and efficacy of 
allogeneic DFSCs in treating periodontal bone defects 
(ChiCTR2100054134). 

Gingiva-derived mesenchymal stem cells (GMSCs), with classic 
multipotentiality and unique capabilities of higher proliferation, the 
propensity to differentiate into neural cell lineages, have been used in 
many preclinical models of human disorders, including inflammatory 
and autoimmune diseases, skin diseases, and peripheral nerve injuries 
[77]. El-Sayed et al. established a swine periodontitis model and found 
that GMSCs loaded on the deproteinized bovine cancellous bone (DBCB) 
or collagen showed reduced reductions of PD, GR, and increased CAL, 
histological attachment level (HAL) [78]. In a mouse periodontitis 
model, systematically delivered GMSCs increased bone height by hom-
ing to the periodontitis site to regenerate bone and PDL [79]. The 
conditioned medium (CM) of GMSCs promoted periodontal defect 

Table 2 
Non-odontogenic MSCs in clinical periodontal regeneration.  

Author/ year RCT Sample size Cell source/ 
morphology 

Carrier/ 
Scaffold 

Test Control Duration Outcome 
measures 

Results 

Dhote et al. 
2015 [37] 

Yes 14 patients, 
24 
infrabony 
defects 

Allogenic, 
UCMSCs 

β-TCP and 
rh-PDGF-BB 

UCMSCs 
cultured on 
β-TCP 
combined with 
rh-PDGF-BB 

OFD 6 
months 

PI, PBI, PPD, R- 
CAL, DD, LBG 

MSC on β-TCP with rh- 
PDGF-BB promoted 
CAL, PPD reduction, 
RBF and LBG 

Apatzidou 
et al. 2021 
[39] 

Yes 27 patients 
in 3 groups 

Autologous, 
BMMSCs (alveolar 
bone marrow) 

Collagen 
scaffold 
enriched 
with aFPL 

BMMSCs 
seeded on 
collagen 
scaffold 
enriched with 
aFPL 

MAFS, 
collagen 
scaffold 
enriched with 
aFPL devoid of 
BMMSCs 

12 
months 

Clinical/ 
radiographical 
assessment 

Similar clinic 
improvements among 
groups were found; RBF 
was not obvious using 
BMMSCs with aFPL 

Takedachi 
et al. 2022 
[38] 

No 
Single- 
arm 

12 patients Autologous, 
adipose tissue- 
derived multi- 
lineage progenitor 
cells (ADMPCs) 

Fibrin gel ADMPCs 
mixed with 
fibrin gel 

NA 9 
months 

PPD, CAL, 
radiographical 
assessment 

PPD reduction, CAL 
gain; new alveolar born 
formation 

RCT: Randomized controlled trial; UCMSCs: Umbilical cord-derived mesenchymal stem/stromal cells; TCP: Tricalcium phosphate, rh-PDGF: Recombinant human 
platelet-derived growth factor; OFD: Open flap debridement; PI: Plaque index; PBI: Papillary bleeding index; PPD: Probing pocket depth; R-CAL: Relative clinical 
attachment level; DD: Defect depth, LBG: Linear bone growth; RBF: Radiographic bone fill; BMMSCs: Bone marrow mesenchymal stem/stromal cells; aFPL: autologous 
fibrin/platelet lysate; MAFS: Minimal access flap surgery; ADMPCs: adipose tissue-derived multi-lineage progenitor cells; NA: Not available. 
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regeneration by activating host osteogenesis and inflammatory modu-
lation[80]. Although one randomized and double-blind trial 
(NCT03638154) enrolled 20 patients with intrabony periodontal defects 
to evaluate the regenerative potential of GMSCs with β-TCP, being 
labeled as completed, no results were posted or published. 

2.3. MSCs derived from induced pluripotent stem cells (iPSCs) 

There are apparent disadvantages of MSCs that should be concerned, 
including inevitable invasive procedures for isolation, the limited 
amount in the single donor site, age-, tissue- and donor-associated 

heterogeneity, and finite proliferative capability[81–84]. Additionally, 
MSCs are more likely to be senescent during cell culture [85,86]. 
Moreover, the massive consumption of time and money for autologous 
MSCs and host immune rejection caused by allogenic MSCs hinder 
MSC-derived cell therapy. 

iPSCs can be generated from adult somatic cells by exogenously 
delivering distinct combinations of transcription factors, including 
Oct3/4, Sox2, Klf4, c-Myc, Nanog, and Lin28 [87–89]. With fewer 
ethical issues and no signs of replicative senescence, iPSCs exhibit 
infinite expansion capability without attenuated proliferation, loss of 
differentiation capability, or telomere attrition [90,91]. However, the 

Table 3 
Odontogenic tissue derived stem cells in preclinical periodontal regeneration.  

Author/ 
year 

Animals, 
sample size 

Cell source/ 
morphology 

Carrier/ 
Scaffold 

Test Control Duration Outcome measures Results Regenerated 
tissues 

Khorsand 
et al. 
2013  
[191] 

Mongrel 
dogs, 10 

Autologous, 
DPSCs 

Bio-Oss DPSCs+Bio-oss Bio-oss 8 weeks Histomorphometry DPSCs and Bio-Oss 
improved 
regeneration of 
periodontal tissues. 

Cementum, 
bone, and PDL 

Hu et al. 
2016  
[192] 

Miniature 
pigs, 12 

Xenogenic， 
hDPSCs 

NA hDPSCs cell 
injection /sheet 
implanatation 

NA 12 weeks probing depth, 
attachment loss, µCT 

hDPSCS cell injection 
/sheet 
transplantation 
significantly 
regenerated 
periodontal bone in 
swine 

Bone 

Fu et al. 
2014  
[193] 

Miniature 
pigs, 6 

Allogeneic, 
SHEDs and 
PDLSCs 

HA/TCP SHEDs+HA/ 
TCP, PDLSCs 
+HA/TCP 

HA/TCP 12 weeks PD, GR, AL, µCT, 
Histomorphometry 

SHEDs and PDLSCs 
reduced PD, GR, and 
AL and induced hard 
tissue regeneration 

Bone, 
cementum, 
and PDL 

Gao et al. 
2018  
[154] 

Sprague 
Dawley rat, 
28 

Xenogenic, 
hSHEDs 
(survive 7 
days) 

NA SHED injection Normal 
saline 
injection 

5 weeks Histomorphometry, 
µCT 

Multi-dose SHED 
injection reduced 
inflammatory 
response and 
promoted bone 
regeneration 

Bone 

Yang et al. 
2019  
[194] 

Sprague 
Dawley rat, 
9 

Xenogenic, cell 
sheets of 
hSHEDs and 
hDFSCs 

TDM TDM wrapped 
with SHEDs or 
DFCSs 

TDM 8 weeks Histomorphometry SHEDs or DFCSs with 
TDM regenerated 
periodontal tissues 

blood vessels, 
PDL, bone 

Yang et al. 
2019  
[76] 

Beagle dog, 
4 

Xenogenic, cell 
sheets of 
hDFSCs 

TDMP or 
HA/β-TCP 

hDFSCs with 
TDMPs or HA/ 
β-TCP 

TDMP or 
HA/β-TCP 

8 weeks Histomorphometry, 
µCT 

DFSCs with TDMP 
improved 
regeneration of 
periodontal-like 
tissues 

Cementum- 
lilke tissue, 
bone 

Shi et al. 
2018  
[67] 

Beagle dog, 
6 

Xenogenic, 
hPDLSCs 

improved 
BCP 

PDLSCs seeded 
on BCP 

OFD 4,8,12 
weeks 

Histomorphometry, 
µCT 

PDLSCs seeded on 
BCP enhanced new 
bone formation and 
PDL-like collagen 
fibers 

Bone and PDL 

Li et al. 
2018  
[71] 

Miniature 
pigs 

Xenogenic, 
hSCAPs from 
extracted 
wisdom teeth 

NA SCAP injection Normal 
saline 
injection 

12 weeks PD, GR, AL, 
histomorphometry, 
µCT 

SCAPs restored 
periodontal tissue 
defect 

Sharpey’s 
fibers, PDL, 
cementum, 
Bone 

El-Sayed 
et al. 
2012  
[195] 

Miniature 
pigs 

Autologous, 
GMSCs 

DBCB, 
collagen 

GMSCs loaded 
on DBCB/ 
collagen 

DBCB, 
collagen, 
SRP, 
untreated 

12 weeks CAL, PD, GR, RDV, 
HAL, JE, CTA 

GMSCs loaded on 
scaffolds showed 
higher ΔCAL, ΔPD, 
ΔGR, HAL and lower 
JE and CTA 

Bone, 
cementum, 
PDL 

Sun et al. 
2018  
[79] 

Mouse Xenogenic, 
GMSCs from 
human 

NA GMSCs 
suspends in a- 
MEM 

a-MEM 1, 2, 4 
weeks 

Histomorphometry GMSCs increased 
bone height by 
homing to the 
periodontitis site 

Bone, PDL 

Qiu et al. 
2020  
[80] 

Rat Xenogenic, 
GMSCs from 
human 

Collagen CM of GMSCs, 
PDLSCs/GFs 
loaded with 
collagen 

Collagen 1, 2, 4 
weeks 

Histomorphometry CMSC- and PDLC-CM 
regenerated 
periodontal defects 

Cementum- 
like tissue, 
bone, PDL 

(h)DPSCs: (human) Pulp tissue-derived dental pulp stem cells; PDL: Periodontal ligament; µCT: Micro computed tomography; SHEDs: Stem cells from human exfoliated 
deciduous teeth; PDLSCs: Periodontal ligament stem cells, HA/TCP: Hydroxyapatite/Tricalcium phosphate; DFSCs: Dental follicle cells; PD: Probing depth; GR: 
Gingival recession; AL: Attachment loss; TDM(P): Treated dentin matrix (particle); BCP: Biphasic calcium phosphate; OFD: Open flap debridement; SCAP: Stem cells 
from apical papilla; GMSCs: Gingiva-derived mesenchymal stem cells; DBCB: Deproteinized bovine cancellous bone; SRP: Scaling and root planing; RDV: Radiographic 
defect volume; HAL: Histological attachment level; JE: Junctional epithelium length; CTA: Connective tissue adhesion; CAL: Clinical attachment level; CM: Condi-
tioned medium; GFs: Gingival fibroblast; NA: Not available. 
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infinite expansion of iPSCs is a double-edged sword, which may cause 
tumors after transplantation if undifferentiated and/or immature cells 
remain, reprogramming factors activate, or genetic mutations occur 
during in vitro expansion [92]. Strategies to reduce the tumorigenicity 
risk of iPSCs include substituting oncogenic reprogramming factors and 
differentiating iPSCs into lineage-specific progenitor cells before 
regenerative transplantation [93]. Zhao et al. reported that MSCs 
derived from transgene-free iPSCs (iMSCs) were readily scalable and 
underwent senescence, but did not form teratomas after long-term cul-
ture [94]. In addition, iMSCs had less potential to promote 
tumor-associated phenotypes than BMMSCs. Thus, alternative iMSCs 
have been a growing scientific interest to overcome the limitations of 
conventional MSCs. 

2.3.1. Methodologies to produce iMSCs 
Dupuis and Oltra well-reviewed and classified original approaches to 

generate iMSCs into five categories: MSC switch, embryoid body (EB) 
formation, specific differentiation, pathway inhibitor, and platelet lysate 
[95]. The MSC switch technique mainly depends on the spontaneous 
MSC conversion by using dishes with coatings and switching the iPSC 
culture medium to the one containing specific compounds with or 
without prior flow cytometry cell sorting (FACS) [96–99]. EB formation 
technique briefly consists of steps dissociating iPSC colonies, formation 
of EBs, and induction using MSC-specific medium[100–102]. For spe-
cific differentiation techniques, the progenitors obtained from iPSCs are 
further induced into mesenchymal cells. These intermediate lineages 
consist of pro-mesoderm[103], paraxial mesoderm [104], lateral plate 
mesoderm [105], neuroepithelium [106], and neural crest cells (NCCs) 
[107,108]. Pathway inhibitor technique overlaps the above-described 
methods and induces iPSCs into MSCs by adding small molecular in-
hibitors, including TGF-β inhibitor SB-431542 [109,110], GSK-3 inhib-
itor CHIR, and p38 MAPK inhibitor SB-203580 [103]. The platelet lysate 
technique aims to produce iMSCs without animal-derived components 
(xeno-free), for example, fetal bovine serum (FBS), by using human 
platelet lysate to increase the safety in accordance with Good 
Manufacturing Practice (GMP) guidelines [111–113]. 

To generate GMP-compatible iMSCs, we recently developed a thor-
ough xeno-free and more efficient technique[114]. Briefly, iPSCs are 
maintained with Stemfit AK03N medium in iMatrix (laminin-511 E8 
fragment)-coated dishes. NCCs are induced from iPSCs with Stemfit 
Basic03 medium supplemented with SB and CHIR in iMatrix-coated 
dishes for 10 days. CD271high NCCs are enriched and expanded to pas-
sage number 4 in NCC expansion media containing SB and EGF, and 
FGF2 on fibronectin-coated dishes to proceed to MSC induction with 
PRIME-XV MSC Expansion XSFM medium. These xeno-free-induced 
MSCs (XF-iMSCs) are substantially similar in MSC marker expression, 
multipotentiality, and global gene expression profiles compared to 
BMMSCs, ADMSCs, and UCMSCs. The in vivo results suggest that 
XF-iMSCs could promote skull bone and muscle regeneration. Addi-
tionally, we recently found that Brequinar, one inhibitor of dihydroor-
otate dehydrogenase, could be used to eliminate undifferentiated iPSCs 
without affecting iMSCs on survival, three-lineage differentiation ca-
pacity, and gene expression, which benefits the purification of iMSCs 
and iMSC-based cell therapy [115]. 

2.3.2. Application of iMSCs in periodontal regeneration 
Hynes et al. first transplanted the human iMSCs into periodontal 

defects in a rat fenestration model. They found that iMSCs treated with 
clotting factors significantly promoted the generation of PDL-like tissues 
and newly formed mineralized tissues [116]. They also generated mouse 
iPSC-MSC-like cells (miMSCs) and confirmed that systematically or 
locally delivered miMSCs inhibited inflammation and reduced alveolar 
bone loss in two periodontitis mouse models [117]. A pilot study in rats 
established experiment periodontitis by ligature and Porphyromonas 
gingivalis, and implied that intravenous and topical administration of 
iMSCs or TNFα-stimulated gene-6 (TSG-6) expressing iMSCs decreased 
the level of inflammation cytokines, IL-1β and TNF-a, and inhibited 
alveolar bone resorption [118]. Yin et al. revealed that recombinant 
human growth/differentiation factor-5 (rhGDF-5) enhanced the differ-
entiation of iMSCs into osteogenic, fibrogenic, and cementogenic line-
ages. And the iMSCs with rhGDF-5 encapsulated in hyaluronic acid 
dramatically promoted specific differentiation into periodontal cells 

Table 4 
Odontogenic tissue derived stem cells in clinical periodontal regeneration.  

Author/year RCT Sample size Cell source/ 
morphology 

Scaffold Test Control Duration Outcome measures Results 

Li et al. 
2016  
[196] 

No, 
Case 

2 patients, 
introbony 
defects 

Autologous, DPSCs 
from inflammatory 
dental pulp tissues 

β-TCP DPSCs 
loaded on 
β-TCP 

NA 1, 3, 9 
months 

Dental plaque, 
sulcus bleeding 
index, GR, PD, 
furcation lesion, 
mobility 

DPSC has both clinic 
and radiographic 
improvements 

Aimetti 
et al. 
2018 [56] 

No, 
Case 
Series 

11 patients, 11 
introbony 
defects 

Autologous, DPSCs 
from tooth requiring 
extraction for 
impaction or 
malpositioning 

collagen 
sponge 

DPSCs 
loaded on 
collagen 
sponge 

NA 6, 12 
months 

FMPS, FMBS, PD, 
CAL, REC, INFRA, 
periapical 
standardized 
radiographs 

DPSCs improved 
complete pocket closure 
and RBF 

Ferrarotti 
et al. 
2018  
[197] 

Yes 29 patients, 29 
introbony 
defects 

Autologous, DPSCs 
from one vital tooth 
requiring extraction 

collagen 
sponge 

DPSCs 
seeded onto 
collagen 
sponge 

collagen 
sponge 

6, 12 
months 

FMPS, FMBS, PD, 
CAL, REC, INTRA, 
IBD 

DPSCs significantly 
improved PD, CAL, 
bone defect fill 

Chen et al. 
2016 [70] 

Yes 29 patients, 41 
teeth with 
periodontitis 

Autologous, PDLSC 
sheets from third 
molars 

Bio-oss GTR and 
PDLSC 
sheets with 
Bio-oss 

GTR with 
Bio-oss 

3, 6, 12 
months 

Alveolar bone 
height, CAL, PD, GR 

Each group exerted 
improvement for 
alveolar bone height; no 
statistical difference for 
the two groups 

Iwata et al. 
2018 [69] 

No, 
single- 
arm 

10 patients Autologous, PDLSC 
sheets from wisdom 
teeth 

β-TCP PDLSC 
sheets 
withβ-TCP 

NA 3, 6 
months 

Safety, GI, PI, PD, 
BOP, CAL, 
radiographic bone 
height (CBCT) 

PDLSC sheets with 
β-TCP improved PD 
reduction, CAL gain and 
radiographic bone 
height 

RCT: Randomized controlled trial; DPSCs: Pulp tissue-derived dental pulp stem cells; β-TCP: beta tricalcium phosphate; GR: Gingival recession; PD: Probing depth; 
FMPS: Full-mouth plaque score; FMBS: Full-mouth bleeding score; PD: Probing depth; CAL: Clinical attachment level; REC: Gingival recession; INTRA: Intrasurgical 
intrabony defect depth; RBF: Radiographic bone fill; IBD: Intrabony defect depth; PDLSCs: Periodontal ligament stem cells; GTR: Guided tissue regeneration; GI: 
Gingival index; PI: Plaque index; BOP: Bleeding on probing; CBCT: Cone beam computed tomography; NA: Not available. 
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after subcutaneous implantation to athymic nude mice [119] (Table 5). 
Although a phase I study has convinced the safety and efficacy of iMSC 
in acute steroid-resistant GvHD [105], the clinical application for peri-
odontal regeneration using iMSCs has not been reported yet. 

3. Transplantation procedures 

Transplantation procedures grafting the cells into the defect area are 
also critical to induce successful periodontal tissue regeneration. In 
general, administering a single-cell suspension into the defect tissue 
poses challenges due to the difficulties in ensuring cell adhesion. This 
often results in low cell survival and the diffusion of cells into unin-
tended tissues. Thus, utilizing biomaterials as reliable cell carriers has 
become a common practice [120]. More specifically, various scientific 
endeavors have aimed to establish ideal scaffolds with biocompatibility, 
biodegradability, and low immunogenicity. Besides, recent advance-
ments in the field have led to the development of scaffold-free cell 
transplantation procedures. These innovative methods offer an optimal 
cellular microenvironment and minimize disruption to the host’s phys-
iological and metabolic processes. This fosters the functionality of both 
the grafted and host cells, thereby facilitating periodontal tissue 
regeneration. The following section will overview scaffold materials and 
scaffold-free cell transplantation procedures. Besides, future perspec-
tives on transplantation procedures will be discussed. 

3.1. Scaffold materials 

There are several different types of scaffold materials, each with their 
distinct biological properties. For example, natural biomaterials, 
collagen and chitosan, exhibit excellent biocompatibility and low 
immunogenicity [121]. Besides, chitosan possesses osteoinductive and 
anti-inflammatory properties, potentially beneficial for bone or peri-
odontal tissue formation [122]. 

In contrast, among the artificial scaffold, bioceramics, including such 
as HA, β-TCP, and carbonate apatite, that have been employed for cur-
rent periodontal tissue regenerative therapy [123], have attracted 

attention as the MSCs carrier material. These bioceramic scaffolds offer 
substantial mechanical stability, outstanding osteoconductive capac-
ities, and biocompatibility, which can support new alveolar bone for-
mation by MSCs. 

Besides, synthetic polyester-based polymers, including polylactic 
acid, polyglycolic acid poly (lactic-co-glycolic acid) (PLGA), poly 
(ethylene glycol) (PEG), and polycaprolactone (PCL), possess unique 
advantages as MSCs grafting materials. For instance, the biodegradation 
rates and mechanical stability can be easily tuned, and their straight-
forward manufacturing process makes them well-suited for cost- 
effective mass production, a critical factor for clinical applications 
[121]. 

Aside from biocompatibility and biodegradability, researchers have 
sought to enhance the biomedical activity of the materials by intro-
ducing beneficial chemicals or cytokines or by modifying their surface 
structure using electrospinning technologies to amplify the MSC func-
tion to induce robust periodontal tissue regeneration. The natural 
biopolymer chitosan can encapsulate various drugs, functioning as a 
local drug delivery system to facilitate periodontal tissue regeneration 
[124]. Thus, the transplantation of MSCs with those drug-loaded chi-
tosan will show the additive or synergistic tissue regenerative effect. It 
has been reported that the surface of electrospun scaffolds, composed of 
well-aligned nanofibers, can enhance PDLSC proliferation [125]. 
Incorporation of the aligned PCL-PEG nanofibers into the porous chi-
tosan scaffold can increase collagen fiber formation in PDL space [126]. 
Furthermore, as the other scaffold materials, chitosan, bioceramics, or 
polymers, are also applied to this electrospun nanofiber matrix to 
regulate its biological properties [127,128], novel promising scaffolds 
will be developed for the MSCs transplantation procedures in the near 
future. 

3.2. Scaffold-free procedures 

Even though ideal scaffold materials that exert favorable bioactivity 
are becoming established, those should remain a “foreign substance” to 
the organisms. When MSCs are grafted with such artificial scaffolds, 

Table 5 
iMSCs in preclinical periodontal regeneration.  

Author/ 
year 

Animal/ 
sample 
size 

Cell source/ 
morphology 

Carrier 
/Scaffold 

Test Control Duration Outcome measures Results Regenerated 
tissues 

Hynes 
et al. 
2013  
[116] 

Rat Xenogenic, human 
foreskin–derived 
iPSC-MSCs 

/ iMSC treated with 
fibrinogen and 
thrombin 

Clotting factors 
only or 
untreated 

2 weeks Histomor-phometric 
analysis 

iMSCs promoted 
generation of 
PDL-like tissues 
and newly 
formed 
mineralized 
tissues 

PDL-like 
tissues, bone- 
like tissues 

Hynes 
et al. 
2018  
[117] 

Mouse Allogenic, tail-tip 
fibroblasts from 
NOD/Lt mice 
derived iPSC-MSCs 

Sponge Tail vein or 
subcutaneous 
injection of iMSCs 

Tail vein or 
subcutaneous 
injection of 
PBS 

7 weeks Histomorphometric 
analysis, µCT 

iMSC inhibited 
inflammation 
and reduced 
alveolar bone 
loss in a 
periodontitis 
mouse model 

/ 

Yang 
et al. 
2014  
[118] 

Rat, 30 Allogenic, rat 
embryonic 
fibroblasts derived 
iPSC-MSCs 

Matrigel 
for 
topical 
injection 

Systemic or 
topical injection 
of iMSCs or TSG- 
6/iMSCs 

Healthy 
control and 
untreated 
periodontitis 

3 
months 

Histomorphometric 
analysis, µCT, 

iMSCs or TSG-6/ 
iMSCs inhibited 
inflammation 
and alveolar 
bone absorption 

/ 

Yin et al. 
2017  
[119] 

Athymic 
nude 
mice, 12 

Xenogenic, human 
peripheral blood 
mononuclear cells 
derived iPSC-MSCs 

Hydrogel iMSCs+rhGDF-5 
+hydrogel, 
iMSCs+hydrogel 

rhGDF-5 
+hydrogel 

6 weeks Immunohistological 
staining 

iMSCs with 
rhGDF-5 
promoted 
periodontal 
specific 
differentiation 

/ 

iPSC: induced pluripotent stem cells; iMSC: iPSC-derived mesenchymal stem/stromal cells; PDL: Periodontal dental ligament; PBS: Phosphate buffered saline; µCT: 
Micro computed tomography; TSG: Tumor necrosis factor alpha-stimulated gene; rhGDF: Recombinant human growth/differentiation factor. 
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both the grafted and host cells need to not only form the new tissue but 
also metabolize such artificial materials to induce successful periodontal 
tissue regeneration. This metabolization process, non-existent in the 
natural healing process of the human body, could potentially burden the 
cells, leading to delayed tissue regeneration. To circumvent this issue, 
scaffold-free cell transplantation procedures using cell aggregates have 
been thoroughly explored. Notably, among the cell aggregate culture 
techniques, cell sheets produced with temperature-responsive intelli-
gent polymer cell culture dishes have been well-tested in this field. These 
intact cell sheets, solely comprised of cells and extracellular matrix 
proteins (ECM), might better mimic physiological and cellular behaviors 
in the graft area than using artificial scaffolds. Indeed, subcutaneous 
transplantation of human PDLSCs sheets into immunodeficient mice 
formed ectopic periodontal tissue-like structures, including a cementum 
layer [129]. Excellent pre-clinical and clinical trials by Iwata et al. 
demonstrated that cell sheet technology could graft the PDLSCs onto a 
denuded tooth root surface without artificial scaffolds to induce suc-
cessful periodontal tissue regeneration [130]. Nevertheless, their study 
design filled the bone defects with the artificial bioceramic β-TCP, sug-
gesting that a single thin layer of the cell sheet may be insufficient for 
severe defect sites. Consequently, numerous attempts have been made to 
enlarge the cell sheet. Recent advancements in culture technology now 
allow for the production of multiple-layered cell sheets containing 
different cell types, such as MSCs and vascular endothelial cells 
[131–133]. However, current strategies of periodontal tissue regenera-
tion by cell sheets often still involve combining bone graft materials. 

To achieve fully scaffold-free MSCs transplantation procedures, 
clumps of MSCs/ECM complexes (C-MSCs), which consist of cells and 
self-produced ECM proteins, have been generated [134]. 
Three-dimensional (3D) C-MSCs, cell aggregates about 1 mm in diam-
eter, can be grafted into bone defects without artificial scaffolds to 
induce rapid bone regeneration, outperforming MSC transplantation 
procedures using a collagen sponge as a scaffold. Besides, the implan-
tation of multiple numbers of C-MSCs into inflamed furcation defects in 
beagle dogs led to successful periodontal tissue regeneration [135], 
whereas MSC implantation using β-TCP caused ankylosis, suggesting a 
disturbance in periodontal tissue metabolism [136]. Taken together, 
scaffold-free C-MSCs transplantation therapy can avoid the issues asso-
ciated with the artificial materials’ metabolism and offer the ideal 
cellular microenvironment, composed of intact ECM proteins, for the 
grafted MSCs. This could then induce appropriate cellular differentia-
tion and subsequent periodontal tissue regeneration. This novel 
scaffold-free cell therapy will need a further clinical trial to demonstrate 
its effectiveness and safety. 

3.3. 3D printing technologies 

As described above, despite the progress in developing ideal scaffold 
materials, cell sheets, or C-MSCs, larger defects in clinical settings 
remain a significant challenge. 3D printing technologies could provide 
tailor-made scaffold materials for irregularly shaped, severe periodontal 
defects. As early as 2014, the application of a 3D-printed scaffold as a 
dental stem cell carrier for periodontal tissue regenerative therapy was 
reported [137]. Besides, in 2015, the first clinical trial utilizing a 
3D-printed PCL scaffold containing cytokines was conducted [138]. 
Subsequent studies have demonstrated the beneficial properties of 
3D-printed scaffolds generated from PCL and PLGA for PDLSCs [139]. 

Moreover, advancements in material techniques have led to the 
emergence of “3D bio-printing”, which allows PDLSCs to be mixed into 
bioink and positioned in specific locations within the printed tissue. This 
process mimics the precision of periodontal tissue structure details [140, 
141]. Remarkably, an artificial scaffold materials-free “3D bio-printing” 
approach has been recently established. A bio-3D printer can generate 
large, centimeter-sized tissue using cell aggregates, including cell 
spheroids or C-MSCs [142–144]. For example, a centimeter-sized human 
3D nerve conduit was created from approximately 500 C-iMSCs using a 

bio-3D printer, successfully inducing peripheral nerve regeneration 
[145]. 

Applying these technologies, bio-3D grafts suitable for severe, com-
plex periodontal tissue defects could be developed, demonstrating 
promising tissue regeneration capabilities. Although using a bio-3D 
printer remains nascent, 3D bio-printing could become a reliable and 
indispensable tool in cell transplantation procedures with further 
development and refinement. 

4. Concerns on MSCs 

Clinical trials on MSCs, being different from animal experiments, are 
rarely possible to evaluate the effect of periodontal regeneration at the 
histological or molecular level. Instead, it relies on clinical periodontal 
and radiological examination to assess the effectiveness objectively. 
Many clinical trials with different clinical settings have convinced the 
safety profile of MSCs in academia and industry. However, there is still 
no generally accepted consensus to proceed with standardized MSC cell 
therapy that is predictable, reproducible, and therapeutically efficient 
[146]. As a result, MSCs have just been conditionally approved in a few 
countries. Herein, we attempt to summarize the current concerns on 
MSCs for clinical application. 

4.1. Effective mechanisms 

It is widely accepted that transplanted MSCs exert therapeutic 
functions by three primary rationales: living cell expansion and multi-
lineage differentiation, interactions with host cells and release of para-
crine factors and exosomes, efferocytosis of apoptotic MSCs and immune 
cells and subsequent functional polarization of phagocytic cells [146]. 

4.1.1. Delivery and differentiation after transplantation 
The regenerative phenomena were widely described in preclinical 

studies that MSCs promote the regeneration of host periodontal tissues 
via histomorphometry and µCT analysis [34,35,67,76,80]. To track 
transplanted MSCs, it is feasible to label culture-expanded MSCs before 
transplantation. The labeling techniques include radioactive labeling, 
labeling with fluorescent dyes, transfection with reporter genes, or 
donor cell-specific DNA microsatellites [147–150]. 

Sun et al. reported that systemically injected human GFP+ GMSCs 
homed to the periodontal injury sites of mice and survived for at least 4 
weeks, which promoted periodontal regeneration [79]. Yu et al. sys-
temically delivered EGFP-labeled rat BMMSCs via intra-bone marrow 
transplantation into lethally irradiated rats with periodontal defects. 
They found that EGFP+ cells were localized in the newly formed bone, 
PDL, and cementum. Immunohistochemical staining confirmed osteo-
blast differentiation, implying the direct differentiation capability of 
BMMSCs into osteoblasts by homing to the host inflammatory or injured 
sites [151]. However, it was indicated that a majority of transfusional 
MSCs are trapped in the pulmonary vasculature and subsequently 
eliminated by the circulatory system [148,152]. The number of 
engrafted MSCs at wound site by systemic administration is consistently 
low [153]. Therefore, the perspective that systemically injected MSCs 
home and function at sites of injury and inflammation is still far from 
being clarified. 

Concerning periodontal regeneration, MSCs are more likely to be 
transplanted in situ alone or with biomaterials. Gao et al. transduced 
GFP and luciferase reporters into human SHEDs before topical injection 
in rat periodontal defect [154]. In vivo bioluminescence imaging 
demonstrated that the xenogenic SHEDs survived for approximately 
seven days in rat periodontal tissue with little tissue diffusion. Yang et al. 
transplanted GFP+ rat-BMMSCs into rat periodontal defect and found 
GFP+ and osteocalcin (a specific marker of mature bone) colocalized in 
partial areas of newly formed bone, cementum and PDL, which sug-
gested MSCs directly differentiated into host tissues [155]. By labeling 
with PKH26 fluorescent cell linker to C-MSCs, the newly formed 
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periodontal tissues, including cementum, PDL, and alveolar bone, pri-
marily originated from the grafted cells [156]. The transplantation of 
human iMSCs into cranial bone-defect and muscle-injured mice was 
tracked through immunohistochemical staining by using 
anti-human-specific vimentin (h-Vimentin) and anti-human-specific 
lamin A/C (h-lamin A/C) antibodies [114]. Most areas of regenerated 
bone were lack of expression of h-Vimentin. Similarly, the regenerated 
MYH-4 (a mature muscle fiber maker)-positive muscle cells did not 
co-stain with h-lamin A/C. 

The contradictions or differences among finite studies may account 
for distinct donors, cell origins, culture methodologies, animal models, 
etc. More standardized and sophisticated investigations should be 
complemented to convince the effectiveness of systemic and topical 
delivery and the substantial differentiation of transplanted MSCs into 
host cells. 

4.1.2. Paracrine and immunomodulation 
Accumulating evidence has uncovered that MSCs drive tissue 

regeneration by releasing trophic factors that are anti-apoptotic, anti- 
scarring, angiogenic, and mitotic instead of differentiation into the cells 
of the host [157]. Recently, we found that topically transplanted 
XF-iMSCs promote the regeneration of bone and skeletal muscle via 
paracrine factors rather than differentiation into the host cells [114]. 
Costa et al. reported that the level of osteopontin, osteocalcin, and 
sclerostin was increased after treatment with BMMSCs in rats with 
fenestration defects [36]. Qiu et al. indirectly illustrated the MSC 
paracrine effects on osteogenic differentiation of host bone progenitor 
cells in periodontal defects using the conditioned medium of GMSCs and 
PDLSCs [80]. Extracellular vesicles (EV), including exosomes and 
microvesicles, are known as regulators of the paracrine effects in tissue 
repair and immunomodulation [158,159]. 

Through EVs, MSCs exert immunomodulation in several ways, 
including secretion of anti-inflammatory cytokines, M2 polarization, 
formation of immature dendritic cells (DCs), activation of regulatory T 
cells (Tregs), and suppression of effector T and B cells [146]. Chew et al. 
reported that MSC exosomes carried by collagen sponge promoted 
periodontal regeneration in an immunocompetent rat model with peri-
odontal defect [160]. Nakao et al. illustrated that GMSC-derived exo-
somes decreased periodontal bone resorption and the number of 
osteoclasts, and the inhibitory effects were enhanced by pre-treatment 
with TNF-a [161]. Lei et al. demonstrated that PDLSC-derived exo-
somes loaded on Matrigel or β-TCP resulted in more bone formation in 
rats with alveolar bone defect around the first molar. 

The injection of BMMSCs pretreated with ASA reduced the level of 
TNF-α and IL-17 in gingiva-mucosal tissues of rats with periodontitis 
[162]. DPSCs exert immunomodulatory functions by inhibiting the 
proliferation of peripheral blood mononuclear cells (PBMCs) [163], 
suppressing T cell proliferation, reducing IL-17, and activating Tregs 
differentiation [164,165]. DFSCs infected with periodontitis-associated 
Prevotella intermedia and Tannerella forsythia, maintained their stem 
cell functionality and reduced tissue and bone degradation by inhibiting 
chemotaxis, phagocytic activity, and neutrophil extracellular traps 
(NET) formation of phagocytic polymorphonuclear leukocytes (PMNs) 
[166]. Topical injection of SHEDs repressed periodontal tissue inflam-
mation in a rat periodontitis model, resulting from the induction of M2 
macrophage polarization [61]. Both healthy and inflamed PDLSCs 
inhibited the proliferation of PBMCs, and the former suppressed asso-
ciated cytokines, including IL-2, TNF-a, and IFN-γ [167]. Meanwhile, an 
STRO-1+ CD146+ subpopulation of PDLSCs inhibited T cell proliferation 
by decreasing non-classical major histocompatibility complex (MHC) 
glycoprotein CD1b on DCs [168]. 

Although the MSC-derived exosomes may pave the way for cell-free 
periodontal regeneration involving stem cells, the MSC secretome varies 
significantly due to different study settings. As a result, the MSC-EVs do 
not consistently reproduce the immunomodulatory functions as the 
parental MSCs do [158,169]. 

4.1.3. Efferocytosis 
Although MSCs can be well-expanded in vitro for many passages, the 

survival time of transplanted MSCs in vivo differs from one week to a 
few months due to distinct donor sites, application scenarios for vari-
eties of diseases, and animal models (immunocompromised or immu-
nocompetent) [79,155,170,171]. The process of MSC apoptosis and 
phagocytosis by resident macrophages is called efferocytosis [172], 
implying MSCs may evoke a non-specific immune suppressive effect via 
phagocytosis derived from the host reticuloendothelial system [9]. 
Moreover, the immunosuppressive effect occurs irrespective of MSC 
viability and histocompatibility [146,173]. Efferocytosis may explain 
the commonalities and contradictions among research that attempted to 
elucidate the MSC immunomodulation on the mechanisms of action. 

4.2. Safety 

4.2.1. Heterogeneity 
Culture-expanded MSCs include a heterogeneous population of cells 

with distinct phenotypes and functional properties in terms of pluripo-
tency, self-renewal, and gene expression profile, which account for in-
ternal and external factors, such as donor site, isolation technique, 
culture protocols, passage number, microenvironment, epigenetics 
[174–176]. Considering heterogeneity, it is suggested to characterize 
odontogenic MSC subpopulations with specific markers to address the 
distinct biological activities of regenerative therapy [177]. The iMSCs, 
derived from a single iPSC clone, are considered to hold lower hetero-
geneity [178], probably resulting from the gene expression patterns 
related to rejuvenation during expansion epigenetic and chromatin 
remodeling [174]. 

It is not well known how heterogeneity affects the therapeutic 
evaluation of MSCs between animals and humans in different diseases. 
Thus, it is indispensable to develop techniques to identify, decrease and 
control heterogeneity and deeply clarify the efficacy of both iMSCs and 
the primary MSCs. 

4.2.2. Immunocompatibility 
According to the literature summarized in the Tables, although 

allogenic and xenogenic MSCs were widely used in preclinical peri-
odontal regeneration, most clinical trials used autologous MSCs. It 
comes to the problem of immune rejection. As above-described, MSCs 
mainly exert the preclinical or clinical values via the non-stem/ 
progenitor cell capabilities by producing extracellular vesicles, cyto-
kines, and growth factors that inhibit immune response. Thus, MSCs 
were assumed as immune privileged without MHC matching. Allogenic 
MSCs were applied in clinical trials to treat multiple diseases, including 
GvHD, lupus, bone fracture, heart failure, Crohn’s disease, and stroke 
[179]. For the pharmaceutical industry, allogenic MSC means 
one-size-fits-all and can be provided as an off-the-shelf product. The two 
approved MSC products to treat GvHD [9] and complex anal fistulas in 
adults with Crohn’s disease [180] were respectively derived from allo-
genic bone marrow and adipose tissue. 

However, the results from many preclinical and clinical studies make 
the academic community doubt the immune-privileged status of MSCs. 
Through labeling techniques, most of the human MSCs in mice with 
severe combined immunodeficiency, mouse MSCs in syngeneic mice, 
and rat MSCs in allogenic rats died within 48 h after systemic infusion 
[181–183]. Similar results were observed in the tissue autopsy of 18 
patients who received infusions of HLA-mismatched or haploidentical 
MSCs within one year before their death [184]. Only one patient who 
was severely ill at the time of MSC infusion (7 days before death) showed 
high levels of MSC donor DNA at levels > 1/1000 cells in multiple or-
gans, including bone marrow, intestine, lung, and spleen. In reverse, no 
signs of ectopic tissue formation or malignant tumors derived from MSCs 
were found, which suggested a “hit and run” mechanism of MSCs instead 
of sustained engraftment and possibly reduced the long-term risks of 
MSC-based therapy [184]. It was revealed that allogenic MSCs-treated 
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mice were involved in more CD4 + , CD122 + , CD44 + , and CD62low T 
cells, indicating that MSCs induce rejection via an immune memory 
[185]. Besides, human MSCs enhanced innate immune responses; thus, 
macrophage and neutrophil infiltration to the injection sites were 
observed in mice and rats [186,187]. 

To extend the MSC persistence, immune rejection can be overcome 
by modifying the host or donor MSCs. Unfortunately, the fact that 
immunosuppressant drugs taken by the host enhance or interfere with 
the immunosuppressive properties of MSCs is not clear [175]. iPSCs 
from HLA homozygous donors are considered to cover most HLA hap-
lotypes. However, it is time-consuming and expensive to recruit rare 
donors [188,189]. Xu et al. generated HLA-pseudo-homozygous and 
HLA-C-retained iPSC via genome-editing approaches that could evade T 
cell and NK cell [190], which may be a promising cell resource to obtain 
iMSC with improved immune compatibility. 

5. Concluding remarks and future perspectives 

The rapid development of regenerative medicine, represented by 
stem cells, has opened a new chapter for periodontal treatments. Many 
preclinical and clinical studies have demonstrated the safety and clinical 
effectiveness of MSCs in inflammatory diseases, revealing the broad 
prospects of MSCs in the regeneration of periodontal disease. However, 

many problems should be solved, and the clinical application of MSCs 
still has a long way to go, such as quickly obtaining the mass-produced 
MSCs and the long-term storage of MSCs. The current technology cannot 
meet the demand for large-scale production of MSCs after they are 
launched on the market, and there is heterogeneity in MSCs from 
different individuals, which means the MSCs cannot obtain a unified 
quality standard even under the same conditions. iMSCs are likely to 
overcome some of these shortcomings. Cell transplantation procedures 
play a significant role in successful periodontal tissue regeneration. 
These factors pose challenges to evaluating the clinical efficacy of MSCs. 
More important, the interaction with the host and the effective mecha-
nism and immune injection of MSCs should be further elucidated to 
realize the approved clinical application in periodontal regeneration. . 
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Fig. 1. Potential periodontal regeneration using MSCs derived from multiple cell resources with various mechanisms and distinct Transplantation procedures. iPSCs, 
induced pluripotent stem cells; MSCs, mesenchymal stem/stromal cells; IL, Interleukin; M2, macrophage differentiation M2; C-MSCs, clumps of MSCs/ 
ECM complexes. 
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