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Truncating variants in specific exons of Fibrosin-like protein 1 (FBRSL1) were recently
reported to cause a novel malformation and intellectual disability syndrome. The clinical
spectrum includes microcephaly, facial dysmorphism, cleft palate, skin creases, skeletal
anomalies and contractures, postnatal growth retardation, global developmental delay as
well as respiratory problems, hearing impairment and heart defects. The function of
FBRSL1 is largely unknown, but pathogenic variants in the FBRSL1 paralog Autism
Susceptibility Candidate 2 (AUTS2) are causative for an intellectual disability syndromewith
microcephaly (AUTS2 syndrome). Some patients with AUTS2 syndrome also show
additional symptoms like heart defects and contractures overlapping with the
phenotype presented by patients with FBRSL1 mutations. For AUTS2, a dual function,
depending on different isoforms, was described and suggested for FBRSL1. Both, nuclear
FBRSL1 and AUTS2 are components of the Polycomb subcomplexes PRC1.3 and
PRC1.5. These complexes have essential roles in developmental processes, cellular
differentiation and proliferation by regulating gene expression via histone modification.
In addition, cytoplasmic AUTS2 controls neural development, neuronal migration and
neurite extension by regulating the cytoskeleton. Here, we review recent data on FBRSL1
in respect to previously published data on AUTS2 to gain further insights into its molecular
function, its role in development as well as its impact on human genetics.
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FBRSL1 VARIANTS CAUSE A NOVEL DISABILITY SYNDROME
WITH AN OVERLAPPING PHENOTYPE TO AUTS2 SYNDROME

Recently, we identified truncating variants in the FBRSL1 gene in three unrelated children with an
unknown malformation syndrome (Ufartes et al., 2020). The patients presented with respiratory
insufficiency and feeding difficulties in the neonatal period. During infancy, intellectual disability, no
active speech, postnatal microcephaly, growth retardation and contractures became apparent. In
addition, two of the three patients showed cleft palate and heart defects (one with atrial septal defect
and persistent ductus arteriosus, one with atrial septal defect and ventricular septal defect). In one
patient asplenia and in another patient anal atresia were observed. Furthermore, the two more
severely affected patients were born with pronounced congenital skin creases at the back, the arms,
and legs. During the first year of life the skin creases became less pronounced and disappeared
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(Ufartes et al., 2020). Interestingly, the clinical phenotype of the
newly described malformation syndrome caused by FBRSL1
variants partially overlaps with the severe form of AUTS2
syndrome (Table 1).

AUTS2 syndrome (MIM 615834) was first described in 2013
(Beunders et al., 2013), as a neurodevelopmental disorder caused
by pathogenic variants and deletions of the AUTS2 gene (MIM
607270, activator of transcription and developmental regulator).

Depending on the location of AUTS2 point mutations/deletions
the phenotype ranges from an isolated neurodevelopmental
disorder (e.g., autism spectrum disorder, attention deficit
hyperactivity disorder, learning disabilities and/or intellectual
disability) to a syndromic disorder with microcephaly, short
stature, feeding difficulties, heart defects, skeletal anomalies,
contractures and dysmorphic features (Beunders et al., 2013;
Beunders et al., 2016; Saeki et al., 2019; Sanchez-Jimeno et al.,

TABLE 1 | Comparison of clinical features seen in patients with FBRSL1 mutation and patients with AUTS2 syndrome.

Clinical findings FBRSL1 syndromic phenotype AUTS2 syndrome

Growth and feeding
Low birth weight 2/3 10/54 (18,5%)
Short stature 3/3 26/59 (44,1%)
Microcephaly 3/3 37/57 (64,9%)
Feeding difficulties 3/3 33/55 (60,0%)

Neurodevelopmental disorders
Intellectual disability 3/3 64/66 (97,0%)
Autism/autistic behaviour 3/3 16/40 (40,0%)
Sound sensitivity n.a 28/56 (50,0%)
Hyperactivity/ADHD n.a 17/28 (60,7%)

Neurological disorders
Generalized hypotonia n.a 23/60 (38,3%)
Structural brain anomaly -/1/n.a 11/46 (23,9%)
Cerebral palsy/spasticity 2/3 20/57 (35,1%)
Other: respiratory insufficiency with ventilation therapy 3/3

Dysmorphic features
High arched eyebrows 2/3 13/37 (35,1%)
Hypertelorism 0/3 14/37 (37,8%)
Proptosis 0/3 7/37 (18,9%)
Short palpebral fissures 0/3 9/37 (24,3%)
Up slanting palpebral fissures 0/3 5/37 (13,5%)
Ptosis 0/3 11/37 (29,7%)
Epicanthol folds 2/3 8/37 (21,6%)
Strabismus 0/3 9/37 (24,3%)
Prominent nasal tip 1/3 7/37 (18,9%)
Anteverted nares 0/3 7/37 (18,9%)
Deep/broad nasal bridge 2/3 12/37 (32,4%)
Short/upturned philtrum 2/3 11/37 (29,7%)
Micro-/retrognatia 1/3 11/36 (30,6%)
Low set ears 2/3 11/36 (30,6%)
Ear pit 0/3 5/36 (13,9%)
Narrow mouth 1/3 16/37 (43,2%)
Other: widely spaced teeth 2/3 -

Skeletal disorders
Kyphosis/scoliosis 3/3 10/47 (21,3%)
Arthrogryposis/shallow palmar creases 0/3 6/28 (21,4%)
Tight heel cords n.a 6/13 (46,2%)
Other (camptodactyly/contractures) 3/3 -

Congenital malformation
Hernia umbilicalis/inguinalis 0/3 6/59 (10,2%)
Patent foramen ovale/atrial septum defect 2/3 4/26 (15,4%)

Other
•Cleft palate 2/3 -
•Asplenia 1/3 -
•Anal atresia 1/3 -
•Abnormality of the skin 2/3 -
•Hearing impairment 2/3 -

The clinical feature terminology is based on the list of features used for the AUTS2 syndrome severity scoring system (Beunders et al., 2013). The data for AUTS2 syndrome were adapted
from Sanchez-Jimeno et al. which is based on nine different studies (Sultana et al., 2002; Kalscheuer et al., 2007; Bakkaloglu et al., 2008; Huang et al., 2010; Girirajan et al., 2011; Jolley
et al., 2013; Nagamani et al., 2013; Liu et al., 2015; Beunders et al., 2016). In addition, the data include a cohort of five patients published by Sanchez-Jimeno et al. (Sanchez-Jimeno et al.,
2021). The data for the FBRSL1 syndromic phenotype is based on the three patients published in Ufartes et al. (Ufartes et al., 2020). Abbreviations: n.a. � not assessed, ADHD � attention
deficit/hyperactivity disorder. A remarkable overlap between the two syndromes was observed with a wider spectrum and higher rate of congenital malformations in children with a
pathogenic variant in FBRSL1.
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2021). To date, more than 60 patients with AUTS2 syndrome
have been described in the literature and most of them carry an
intragenic de novo deletion of AUTS2, whereas point mutations
leading to the disease are rarely described (Sanchez-Jimeno et al.,
2021). Due to a high inter- and intrafamilial variability an AUTS2
syndrome severity scoring system (ASSS) was established by
Beunders and colleagues 2013. The scoring system is based on
32 features seen with a frequency of over 10% in AUTS2
syndrome patients of the first described cohort (Beunders
et al., 2013). The ASSS revealed that patients with small
deletions at the N-terminus of AUTS2 typically present a mild
phenotype; in some cases, these deletions were inherited from a
mildly or unaffected parent (Beunders et al., 2013). In contrast,
deletions of the C-terminus of AUTS2 are mostly associated with
a severe AUTS2 syndrome phenotype combining
neurodevelopmental features with malformations and
dysmorphic features (Beunders et al., 2013). Therefore, it was
suggested that the AUTS2 C-terminus plays a critical role in
AUTS2 syndrome (Beunders et al., 2013; Beunders et al., 2016;
Saeki et al., 2019; Sanchez-Jimeno et al., 2021). Interestingly, the
situation seems to be different for the truncating FBRSL1 variants
characterized in Ufartes et al. (2020), which all localized to the
N-terminus of the FBRLS1 gene. As the patients carrying FBRSL1
variants showed features associated with AUTS2 syndrome, we
also used the ASSS to compare the phenotype of the three patients
with a variant in FBRSL1 (Ufartes et al., 2020) to patients with
AUTS2 syndrome (Table 1). A remarkable clinical overlap
between the FBRSL1 syndromic phenotype and the severe
form of AUTS2 syndrome was observed. Although, so far only
three patients with the FBRSL1 syndromic phenotype have been
described (Ufartes et al., 2020), it seems that they show a wider
range of congenital malformations compared to the symptoms
observed in AUTS2 patients. To gain insight into common and
distinct functions of FBRSL1 and AUTS2, we take a closer look at
their evolutionary conservation and potential functions.

FBRSL1 AND AUTS2 ARE PARALOGS THAT
LIKELY SHARE CONSERVED FUNCTIONS

FBRSL1 and AUTS2 belong to a tripartite gene family, the AUTS2
family, which also includes Fibrosin (FBRS) (Singh et al., 2015).
The AUTS2 family is predicted to be an ohnolog gene family
(Singh et al., 2015), representing a group of paralog genes
generated by two rounds of whole genome duplication during
vertebrate evolution and frequently implicated in human disease
(Dickerson and Robertson, 2012; Singh et al., 2012; Malaguti
et al., 2014; Mclysaght et al., 2014). The AUTS2 family ohnologs
show a large overlap of conserved regions, but also unique
elements which likely contribute to the functional diversity of
the proteins (Sellers et al., 2020). Detailed information about the
conserved regions shared by AUTS2-related proteins as well as an
evolutionary analysis of the AUTS2 family can be found in Sellers
et al., 2020 (Sellers et al., 2020). Based on their extended
phylogenetic analysis, Sellers et al. recommended to rename
FBRSL1 to AUTS2-like Protein 1, because AUTS2 and
FBRSL1 share a most recent common ancestor, suggesting that

these proteins are evolutionary closer related to each other than to
FBRS (Sellers et al., 2020). Thus, it is intriguing to speculate that
both proteins may share common functions, which may also
explain their overlapping phenotypes observed in the respective
syndromes.

Research using animal model systems indicate that FBRSL1
and AUTS2 share common functions in vertebrate development.
As Auts2 function in neurodevelopmental disorders has been
addressed in a number of comprehensive reviews (Oksenberg and
Ahituv, 2013; Hori and Hoshino, 2017; Pang et al., 2021), we will
here only briefly discuss its role in mouse and zebrafish
development. In the mouse, Auts2 is broadly expressed in the
developing brain, with high expression in key areas of higher
cognitive brain function (Bedogni et al., 2010). Heterozygous
disruption ofAuts2 results in similar symptoms as seen in AUTS2
syndrome patients including growth reduction, defects in
communication, exploratory behavior as well as learning and
memory, while social behavior and sensor motor gating functions
were normal (Gao et al., 2014; Hori et al., 2015). In zebrafish,
auts2 is highly expressed in the developing brain and
Morpholino-mediated knockdown resulted in microcephaly,
reduced lower jaws, swimming defects and a reduced response
to tactile stimuli (Beunders et al., 2013; Oksenberg et al., 2013).

Currently, data analyzing the function of Fbrsl1 in animal
model systems are limited. The expression of fbrsl1 has been
analyzed in zebrafish and these data show that it is mainly
expressed in the developing brain, but also in the spinal cord,
the cranial ganglia and the somites (Kondrychyn et al., 2017). In
Xenopus, fbrsl1 is expressed throughout early developmental
stages (Ufartes et al., 2020). At tailbud stages, it is expressed
in the brain and craniofacial structures including the branchial
arches and the cranial nerves (Ufartes et al., 2020). Morpholino-
mediated Fbrsl1 knockdown resulted in craniofacial defects and
the embryos showed cartilage hypoplasia as well as a reduction in
brain size on the injected side (Figures 1A–C). Furthermore, the
cranial nerves (Figure 1D) and motor neurons displayed
impaired neuronal migration (Ufartes et al., 2020). Thus, the
first functional data on Fbrsl1 in Xenopus development indicate
that FBRSL1 may share similar functions with AUTS2 in neural
development, but may also have a unique role in craniofacial
development, which is also consistent with the findings in
patients affected by the respective disorders.

AUTS2 HASNUCLEARANDCYTOPLASMIC
FUNCTIONS WHICH MAY BE SHARED BY
FBRSL1
For AUTS2 a dual function, acting either in the cytoplasm or in
the nucleus of developing neurons has been described (Hori et al.,
2014). In the nucleus, AUTS2 was identified as a component of
the Polycomb repressive complex PRC1 (Gao et al., 2012; Gao
et al., 2014). Polycomb repressive complexes are multiprotein
complexes acting as epigenetic regulators during development
(Aranda et al., 2015; Chittock et al., 2017). Traditionally, they
exert their function as transcriptional repressors (Simon and
Kingston, 2013; Chittock et al., 2017; Kassis et al., 2017). The
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FIGURE 1 | Fbrsl1 knockdown phenotypes in Xenopus laevis and cellular localization of distinct human FBRSL1 transcripts. (A) Knockdown of Fbrsl1 by injection
of a fbrsl1 Morpholino oligonucleotide (MO) leads to craniofacial defects that can be rescued by co-injection of RNA coding for the human short N-terminal FBRSL1
isoform NP_001369670 (Ufartes et al., 2020). LacZ RNA was co-injected as a lineage tracer, the injected side is marked by blue staining. (B) Anti-Collagen Type II
immunofluorescence visualizes the cartilage and indicates cartilage hypoplasia on the fbrsl1MO-injected side. BA, branchial arches; Ch, ceratohyal; Ir, infrarostral;
Me, Meckel’s cartilage; Qu, quadrate. (C) Neural cell adhesion molecule (NCAM) staining shows reduced brain size and (D) impaired outgrowth of cranial nerves on
the fbrsl1 MO-injected side; * marks the injected side. Scale bar in A-D: 500 µm. (E) Human FBRSL1 transcripts/isoforms compared to the human AUTS2 long
isoform as previously published (Sultana et al., 2002; Oksenberg and Ahituv, 2013; Sellers et al., 2020). Like its AUTS2 ohnolog, the long isoform has a AUTS2
domain and proline rich (PR) regions (predicted with MobiDB (Piovesan et al., 2020)). Both short N-terminal isoforms differ in their C-terminal sequence from the long
isoform (presented in grey) due to an alternative exon 3, which contains an Ftsk-domain. In addition, a predicted C-terminal isoform (marked with “?“) including
the AUTS2 domain is shown as this isoform was validated for mouse Fbrsl1. PR, proline-rich domain; PY, PPPY motif; HX, hexanucleotide repeat; HR, trinucleotide (H)
repeat; AUTS2, AUTS2/FBRSL1/FBRSL homology region. (F) Immunofluorescence analysis performed on human fibroblasts. Antibodies directed against the
N-terminal as well as the C-terminal part of FBRSL1 detected FBRSL1 isoforms (green) in the nucleus. However, only the N-terminal FBRSL1 antibody also
detected FBRSL1 in the cytoplasm, suggesting that the short N-terminal FBRSL1 isoforms show cytoplasmic and nuclear localization. The negative control showed
no signal. Cytoskeletal staining was detected using an α-Tubulin antibody and nuclei were stained using DAPI. Images were obtained using a confocal laser microscope
with ×600 magnification. Scale Bar: 10 µm. All experimental data have been previously published (Ufartes et al., 2020).
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two main Polycomb complexes are PRC1 and PRC2 (reviewed in
Barbour et al., 2020; Cohen et al., 2020; Geng and Gao, 2020). The
PRC1 complex acts as an E3 ubiquitin ligase that
monoubiquitinates lysine 119 of histone H2A (H2AK119ub1)
(De Napoles et al., 2004; Wang et al., 2004). The consequences of
Polycomb dependent histone H2A ubiquitination were recently
reviewed by Tamburri et al. (2021). In addition, the PRC1
complex is involved in ubiquitination-independent chromatin
compaction (Eskeland et al., 2010). At least six PRC1
subcomplexes (PRC1.1-PRC1.6) were identified consisting of
the E3 ubiquitin ligase RING1A or RING1B and one of the
six Polycomb Group Ring Fingers (PCGF1-6) (Chittock et al.,
2017; Varlet et al., 2020). AUTS2 has been described as a
component of the subcomplexes PRC1.3 and PRC1.5 (Gao
et al., 2012; Gao et al., 2014). The PRC1.5 complex contains
the components AUTS2, PCGF5, RING1B, CK2B, and RYBP
(Gao et al., 2012; Gao et al., 2014). The binding of AUTS2 to the
PRC1.5 complex switches its function to a transcriptional
activator by recruiting the histone acetyltransferase EP300 and
casein kinase 2 (CK2) (Gao et al., 2014; Liu et al., 2021). Co-
immunoprecipitation experiments revealed that RING1B
interacts with AUTS2 only in the presence of PCGF5 (Gao
et al., 2014), suggesting a bridging function of PCGF5. The
recruitment of CK2 to the complex is likely mediated by
direct AUTS2 binding and this interaction suppresses
monoubiquitination of H2AK119 by RING1B (Gao et al.,
2014). The C-terminal part of AUTS2 (404–913) is sufficient
to mediate the transcriptional activation via EP300 binding
(Gao et al., 2014). Therefore, the recruitment of CK2 to the
PRC1.5 complex and the AUTS2-EP300 interaction seem to
be responsible for converting the repressive PRC1 function
into an activator function (Gao et al., 2014; Monderer-
Rothkoff et al., 2021). Recently, de novo pathogenic variants in
the HX repeat region of AUTS2 were described in patients
with a phenotype overlapping with Rubinstein-Taybi
syndrome (Liu et al., 2021). Rubinstein-Taybi syndrome
(RSTS, OMIM 180849 and OMIM 613684) is a
neurodevelopmental disorder characterized by intellectual
disability, autism spectrum disorders, microcephaly, facial
dysmorphism, growth retardation, large thumbs and hallux
and a variable degree of additional malformations and
symptoms (reviewed in Van Gils et al., 2021). The underlying
cause of RSTS are pathogenic variants in EP300 and CREBBP
(Petrij et al., 1995; Roelfsema et al., 2005). Interestingly, the
AUTS2 variants leading to an RSTS-overlapping phenotype
disrupt the binding of AUTS2 to EP300, suggesting that the
HX repeat domain is responsible for this interaction (Liu et al.,
2021). The binding of AUTS2 to PRC1.3 and the recruitment to
chromatin was shown to be directed by the transcription factor
nuclear respiratory factor 1 (NRF1). In motor neurons, AUTS2
and NRF1 colocalize at actively transcribed loci, whereby AUTS2
binding requires NRF1, but NRF1 binding is independent of
AUTS2 (Liu et al., 2021). Thus, it was suggested that NRF1
recruits AUTS2 in the context of the PRC1.3 complex to genes
involved in neuronal differentiation. The transcription of these
genes will then be activated by binding of EP300 to the AUTS2
HX repeat domain (Liu et al., 2021).

Like AUTS2, FBRSL1 was also identified by tandem affinity
purification and mass spectrometry as an interaction partner of
PRC1.3 and PRC1.5 (Gao et al., 2012). Further, it was shown that
FBRSL1 competes with AUTS2 for binding to the PRC1.5
complex (Gao et al., 2014). Thus, it will be interesting to see if
a PRC1.3 or PRC1.5 complex containing FBRSL1 in place of
AUTS2 has again a repressive function instead of an active role.
While interaction of FBRSL1 and AUTS2 with Polycomb
complexes indicates a role of these proteins in transcriptional
gene regulation, they likely also control additional processes in
the cytoplasm.

For AUTS2 it has been shown that—in addition to its function
in the nucleus—it also functions in the cytoplasm by controlling
cytoskeletal dynamics. Cytoplasmic AUTS2 functions by
regulating small GTPases of the Rho family thereby affecting
actin dynamics in the developing brain (Hori et al., 2014). By
stimulating small guanine exchange factors (GEFs) AUTS2
activates Rac1 and induces lamellipodia formation and neurite
extension. Conversely, AUTS2 inhibits Cdc42 thereby
suppressing filopodia formation (Hori et al., 2014). For Rac1
activation, the N-terminal PR1 region of the AUTS2 protein
seems to be important, as overexpression of mutant AUTS2,
lacking the N-terminal PR1 domain, did not lead to lamellipodia
formation (Hori et al., 2014). Currently, it is unknown if FBRSL1
may play a similar role. However, we recently demonstrated that
FBRSL1 is localized in the cytoplasm as well as in the nucleus of
HEK293 cells and human fibroblasts (Figures 1E,F) (Ufartes
et al., 2020). Consistent with the AUTS2 data (Hori et al., 2014),
mainly a nuclear FBRSL1 pattern was detected with an antibody
directed against the C-terminal part of FBRSL1, while nuclear and
cytoplasmic FBRSL1 was observed with an antibody targeted
against the N-terminal part of the protein (Figure 1F) (Ufartes
et al., 2020). Thus, it is likely that FBRSL1—like AUTS2—has
nuclear versus cytoplasmic functions which may require distinct
domains of the protein.

FBRSL1 AND AUTS2 SHOW
TRANSCRIPTIONAL COMPLEXITY

Consistent with the concept of distinct subcellular functions,
different transcripts have been identified for AUTS2 and FBRSL1.
The longest AUTS2 and FBRSL1 transcripts are encoded by 19
exons, in addition shorter N-terminal or C-terminal transcripts of
the respective proteins have been described. For AUTS2, two
isoforms have been extensively studied: the long transcript
containing 19 exons (NM_015570.4) and a short C-terminal
isoform containing the last 11 exons, starting at exon 9, first
characterized by Beunders et al., 2013 (Beunders et al., 2013). The
C-terminal isoform contains a region of homology to the paralogs
FBRSL1 and FBRS, which was called AUTS2 family domain
(Kondrychyn et al., 2017), and is critical for the nuclear
function of AUTS2 (Beunders et al., 2013). Beunders et al.
showed that the characteristic dysmorphic features were more
pronounced in patients with 3’ AUTS2 deletions (Beunders et al.,
2013). Furthermore, they showed that Morpholino-mediated
knockdown of zebrafish Auts2 resulted in microcephaly and
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reduced lower jaw size, comparable to defects seen in patients
with an AUTS2 disruption. The morphant phenotypes could be
rescued with wild-type human full-length Auts2 RNA, but also
with a short C-terminal Auts2 isoform encoded by exons 9–19
(Beunders et al., 2013) demonstrating the important role for the
AUTS2 C-terminus during development.

Like for AUTS2, a long FBRSL1 transcript containing 19 exons
(NM_001142641.2) was identified (Figure 1E) (Ufartes et al.,
2020). In addition, two N-terminal isoforms were validated
(Figure 1E) and studied in more detail. The two short isoforms
contain an alternative exon three leading to a stop codon. These
two short N-terminal forms lack the homologous AUTS2 family
domain, but include a predicted DNA translocase domain (Ftsk)
(NCBI conserved database, CDD) (Ufartes et al., 2020).
Interestingly, while the severe AUTS2 syndrome phenotype was
caused by variants of the C-terminus (Beunders et al., 2013), the
situation was different for the three patients with the FBRSL1-
associated syndromic phenotype: all three patients harbor a
truncating variant (stop mutation in two patients and a
frameshift variant with premature stop codon in the other
patient) in the N-terminus of FBRSL1 affecting the short
N-terminal isoforms (Ufartes et al., 2020). Consistently, using
the Xenopus systems, we could show that a human N-terminal
isoform of FBRSL1 was able to rescue the Xenopus morphant
craniofacial defects. However, neither a patient variant of this
isoform nor the long FBRSL1 isoform, which both lack the Ftsk
domain, were able to rescue the morphant phenotype (Ufartes
et al., 2020). These data suggest that mutations of the short
N-terminal FBRSL1 isoforms are causative for the
developmental phenotype in the animal model system and
possibly also in human patients.

It is tempting to speculate that this transcriptional complexity
is also responsible for the distinct functions of FBRSL1 and
AUTS2. For example, in zebrafish it has been shown that the
transcriptional complexity of distinct Auts2 family ohnologs is
mediated by alternative splicing and alternative promotor use
(Kondrychyn et al., 2017). Interestingly, the expression of the
distinct Auts2 paralogs is temporally and spatially tightly
controlled during development (Kondrychyn et al., 2017).
Thus, there are multiple levels, by which distinct functions can
be regulated by this gene family.

CONCLUSION

According to currently available data on FBRSL1, we would
speculate that the N-terminal region of FBRSL1, has an
important function in mammalian development. This
hypothesis is also supported by the finding that all three
patients, affected by a novel severe malformation syndrome,
carry FBRSL1 variants localizing to the N-terminal region of
FBRSL1. Although these patients show overlapping features to
patients with AUTS2 syndrome, which is caused by variants in
the FBRSL1-paralog AUTS2, they have a higher rate and wider
spectrum of congenital malformations. As the number of
described patients with FBRSL1 variants are currently small,
larger patient cohorts with clinical description of the disease
are required to confirm these first observations. FBRSL1 and
AUTS2 are closely related paralogs, but the presently published
data indicate that they have distinct functions and cannot replace
each other. Thus, future research will need to address the
molecular and cellular mechanism of FBRSL1 to reveal its
unique role in development and disease.
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