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Introduction
As George Pickering’s reflections on the concept of hypertension 
show, the establishment of cut-off points can be seen as the result of 
a negotiation process involving all sorts of assumptions, both philo-
sophical and purely practical.

� [cited by Amsterdamska and Hiddinga]1

Heart failure (HF) is a relatively common cardiac syn-
drome known for its severe sequelae, including death. The 
diagnosis is often only evident from the combination of 
symptoms (such as fatigue and dyspnea) and signs (eg, ankle 
edema), plus clinical investigations including the determina-
tion of left ventricular (LV) size and chamber filling pressure, 
in addition to information derived from specific biomarkers. 
In the United States, one in nine deaths in 2009 included HF 

as contributing cause. About half of people who develop HF 
die within 5 years of diagnosis. HF costs the nation an esti-
mated $32  billion each year. This total includes the cost of 
health care services, medications to treat HF, and missed days 
of work.2

HF manifests as at least two subtypes, which are com-
monly distinguished on the basis of the metric ejection frac-
tion (EF).3–8 HF patients are typically designated into EF 
categories based on this single measurement at a point in 
time, although EF is not necessarily static.5 Approximately 
half of all patients with HF have preserved ejection fraction 
(HFpEF), and they often include women and elderly.9 Thus, 
as life expectancies continue to increase in western societies, 
the prevalence of HFpEF will continue to grow. Many fea-
tures of the HF syndrome are similar across the EF spectrum, 
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including elevated left atrial pressure, abnormal LV-filling 
dynamics, neurohumoral activation, dyspnea, impaired exer-
cise tolerance, frequent hospitalization, and reduced sur-
vival.10 However, in contrast to (classical) HF with reduced 
ejection fraction (HFrEF), only a limited spectrum of treat-
ment modalities seem effective in improving morbidity and 
mortality rates in HFpEF,6 apart from measures for the reduc-
tion of risk factors (such as hypertension and obesity) plus a 
supportive approach (including diet, diuretics, and rehabili-
tation), and management of concomitant conditions (such as 
sleep apnea, insomnia, depression, and sexual dysfunction).11 
Additionally, a large pathophysiological heterogeneity exists 
within the broad spectrum of HFpEF.12 Studies are further 
complicated by the existence of various comorbidities such as 
diabetes mellitus and kidney failure.

Traditionally, the cardiac performance index EF has been 
widely applied to conveniently assess the severity of cardiac 
problems.13 In the particular case of the HF syndrome, it is 
clear that EF is only one of the many indicators to character-
ize the various aspects.12 Typically, a low value of EF corre-
sponds with serious cardiac problems and a poor prognosis. 
Calculation of EF is carried out by taking the ratio of two 
LV volume determinations during a cardiac cycle, namely, 
at the completion of filling and at maximal contraction. This 
ratio yields a dimensionless number, which obviously does 
not require (time-consuming) calibration of the underlying 
volumetric data. Although the calculation of EF is attractive 
from a practical point of view,14 it is also evident from simple 
theoretical considerations that EF cannot be a valid indicator 
for severity in all types of heart diseases.12,13 This notion is 
strikingly illustrated by recent observations showing that half 
of all HF patients do not exhibit the expected low value of EF. 
In contrast, such HF patients show higher values for EF, often 
comparable to those encountered in healthy individuals.12 
Advised cut-off levels to distinguish HFrEF from HFpEF are 
clearly formulated,15,16 but unfortunately vary between 40% 
and 50% in actual clinical studies,11 often making it difficult 
to interpret and compare their outcomes.12 The reported fre-
quent occurrence of transitions between major phenotypes of 
HF5,17 also necessitates well-defined and uniform criteria for 
the separating line.12

The remarkable discrepancy concerning a numerical 
expression of EF and the two-fold routes for interpretation 
(ie, a normal value for EF may mean either no substantial car-
diac disease or severe cardiac syndrome) urges further inves-
tigation. This dilemma cannot just be solved by the current 
practice of assigning a new name to a syndrome where the 
pertinent EF value seems to deny the presence of severe LV 
failure. Thus, in terms of the traditional interpretation of EF, we 
notice that the present terminology for the subdivision in a 
classical type (HFrEF) versus the new syndrome (indicated 
as HFpEF) is not sound or clarifying.12 This dilemma can 
probably only be solved if we analyze LV volumes rather than 
their ratio (as reflected by EF).13,14,18 We propose to leave the 

EF-centric paradigm and enter the Volume Regulation Graph 
(VRG) domain.12 The latter includes iso-EF lines, which, 
however, are not coincident with regression lines for HFpEF 
and HFrEF.

Subgroups of HF patients are located in at least two dis-
tinct regions on the basis of their end-systolic volume (ESV) 
and EDV, and therefore uniquely located within the LV vol-
ume domain.12,13 Our present study uses modern approaches 
to explore a more rational foundation for classifying two phe-
notypes of HF, in particular, by applying Machine Learning 
(ML) techniques.19,20

In an earlier study, we reported the remarkable connec-
tion between EF and one of its basic elements, namely, ESV, 
in contrast to the other constituent, ie, end-diastolic volume 
(EDV).21 Following the definition,

	 EF = (1 − ESV/EDV) × 100%,	 (1)

we notice that ESV and EDV form the building blocks for 
the analysis of LV mechanical function. Essentially, ESV and 
EDV are primary determinants of LV volume regulation.12 
Therefore, in the past, we had proposed to construct a graph of 
ESV versus EDV,18 which has the clear advantage of yielding 
(nearly perfect) linear relationships.12 Moreover, the index EF 
is implicitly incorporated in this representation. Indeed, iso-
EF lines can be inscribed, leading to the notion that patient 
groups can theoretically be distinguished on the basis of their 
volume regulation characteristics.12 Accordingly, the present 
study explores novel guidelines to classify patients as either 
HFpEF or HFrEF, while obviating the limitations inherent to 
EF by instead applying the paradigm of the VRG.12 In sum-
mary, we address three relevant issues regarding classification 
of HF patients: consequences of varying the cut-off values, 
implications for borderline patients (in the gray zone), and 
proposals for categorizing an uncommon group of patients not 
covered by current guidelines and located in the region where 
EF  .50% and end-diastolic volume index (EDVI) slightly 
greater than 97 mL/m2.

Acceptance Rate of the Current Paradigm 
Concerning HF
In terms of LV volumetric characteristics, the two major HF 
phenotypes are distinguished on the basis of both EF and 
EDVI.15,16 The present EF–EDVI model has several limita-
tions, while the guidelines are not always adhered to:

1.	 There is no documentation why a cut-off for EF at 50% 
is the best choice.10 In fact, all groups of investigators 
adopt their own cut-off at 40%, 45%, or 50% without 
clear motivation. It is often not explained why the official 
guidelines were NOT accepted.

2.	 Several researchers eliminate the discussion sub #1 by 
excluding patients with 40% , EF , 50%. The introduc-
tion of a gray zone is not proposed in guidelines,11,15,16,22 
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yet invoked by some authors without elaborating on the 
consequences of this particular choice.

3.	 A fair investigation concerning transition for HFrEF to 
HFpEF (and vice versa) requires a uniform statement 
regarding the dividing line. This especially applies to the 
above-mentioned gray zone where most likely the major-
ity of the transitions occur.5,10,17

4.	 A small group of HF is not covered by the present guide-
lines, namely, those with EF .50% and EDVI .97, eg, 
with EDVI range extended to 102 mL/m2.7

Thus, there is a need to refine or even reconsider the 
paradigm. This study explores new routes and opens up the 
discussion. ML results may show that a varying EF cut-off 
has advantages and that ESV may be preferred above EF, as 
suggested in Figure 1. We hope that these proposals will be 
evaluated in future clinical studies. A paradigm shift seems 
indicated because the dynamic metric EF depends on almost 
everything that affects heart function.5,12–14,23–26

Experimental Framework
Rather than looking at EF alone (as is done in most studies), 
we investigate HF from the perspective of the volume domain 
description.12 This approach has the advantage of considering 
the basic variables that define the derived index EF, namely 
ESV and EDV.18 An important impetus of the volume domain 
method resides in the fact that stratification of patients can 
easily be incorporated, as illustrated elsewhere.12 From basic 
physiology, it is clear that ESV and EDV are highly linearly 

related for well-defined patient groups.27 EF is inversely and 
nonlinearly connected with ESV,12,13 while there is generally 
no significant relationship between EF and EDV.21

The EF-related criterion in vogue today for HFrEF and 
the preserved EF variant of HF does not seem to be founded 
on a solid basis.12,28–30 Thresholds adopted for EF vary from 
40% to 50%.4,11 Apart from the lack of consensus, we can dis-
cern additional shortcomings inherent to the present practice. 
A division between HFrEF and HFpEF based on a cut-off at 
50% seems arbitrary. Clearly, patients with EFs of 51% and 
49% are not different, and likely to cross back and forth the 
threshold,10 resulting in frequent transitions.5,17 A breakpoint 
value of 50% for EF simply appears to be selected halfway the 
spectrum, while an additional boundary condition for LV fill-
ing volume (ie, EDV ,97 mL/m2) in HFpEF may turn out to 
be superfluous. To resolve these issues we undertake an inves-
tigation including ML, specifically Support Vector Machine 
(SVM) approaches.31 We analyzed actual HF patients plus 
an additional data set created by generating random numbers 
and subdividing them on the basis of theoretical guidelines. 
We have performed some experiments using the Weka tool,32 
which is a collection of ML algorithms and data preprocessing 
tools.33 After that, the method that had a better generalization 
behavior, namely, SVM PEGASOS (Primal Estimated sub-
GrAdient SOlver for SVM), was selected for carrying out the 
rest of the experiments.

In this retrospective HF study, we have included 35 
patients with preserved EF (referred to as HFpEF) and 13 
patients with reduced EF (denoted as HFrEF). LV volume 
and pressure data were obtained by one of the authors (GH) 
during diagnostic catheterization procedures at the Cardio-
vascular Center, OLV Clinic, Aalst, in Belgium, as described 
previously.13 All 48 patients had an end-diastolic pressure 
above 16 mmHg, which is considered the gold standard, as 
opposed to tissue Doppler surrogates. Cardiac volumes are cor-
rected for body surface area and indicated as such by the affix 
index (I). This normalization procedure is needed to ascertain 
compliance with the European Society for Cardiology (ESC) 
guidelines for classification of HF.16 Further details regard-
ing these patients and earlier clinical investigations regarding 
these groups have been reported elsewhere.13

One convenient route to evaluate various advanced 
approaches applies randomly generated numbers (Monte Carlo 
[MC] simulation). We created a database initially consisting 
of 63 data pairs and later expanded to 1000 data pairs, where 
the equivalent of EDVI was chosen to be the higher num-
ber and the end-systolic volume index (ESVI) the lower one 
in each pair. Subsequently, all data pairs beyond the (patho) 
physiological range were eliminated. Notably, data pairs were 
removed when calculated EF would refer to the hyperkinetic 
heart (EF .95%) or to near-terminal situations (EF ,10%) 
or create excessive cardiac output. As a result, a working set 
of 403 data pairs remained, which reflect the full pathophysi-
ological spectrum. These data pairs are explicitly assumed 

0

20

40

60

80

100

EDVI (mL/m2)

0 25 50 75 100 125 150

E
F

 (
%

)

HFpEF
HFrEF
ESVI = 35 mL/m2

Figure 1. Scatter plot of all HF patients described in this study, relating 
EF to EDVI. The graph illustrates the connection between the old 
paradigm (relating EF to EDVI) and the new concept which highlights 
the exclusive importance of ESVI as indicated by the red-yellow curve. 
The European Society for Cardiology (ESC) guidelines currently require 
two constraints (ie, EF .50% and EDVI .97 mL/m2). Our new approach 
indicates that one criterion may be sufficient, namely ESVI (here with 
cut-off set at 35 mL/m2). As clearly illustrated in the figure, the old 
paradigm already includes the novel candidate. This graph immediately 
visualizes the alternative (and more simple) route to analyze and 
distinguish HF phenotypes, namely on the basis of ESVI.
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to represent full-fledged surrogate HF patients not only in 
terms of their LV volume characteristics13 but also supposed 
to comply with all clinically relevant requirements inherent 
to typical HF inclusion criteria, ie, elevated levels of specific 
biomarkers, and LV filling pressure above 16 mmHg. These 
assumptions provide the opportunity to fully focus on volume-
related aspects of the HF syndrome and explore guidelines for 
classification.12

Results
Based on the Frank-Starling law, LV function is often 
described by relating stroke volume (SV) to EDV.12,18 The 
ratio of SV and EDV yields EF (see Eq. 1). The combination 
of EF and EDV was traditionally proposed to specify criteria 
for HF subtypes12 and may be referred to as the classical para-
digm to distinguish HF patients. To illustrate this viewpoint, 
we present in Figure  1 the values of EF and EDVI for all 
our real patients. Just by eye-balling, it is evident that a fixed 
value of ESVI (see the yellow curve composed of the triangles) 
separates the two phenotypes of HF. This remarkable finding 
will be pursued in our analysis and the potential importance 
of ESVI as pivot will therefore be explored while applying 
ML methods.

Thus, the starting point of our present analysis is dif-
ferent and illustrated in Figure  2 by depicting the same 
real HF patients in a graph that relates the basic volumet-
ric data, ie, ESVI and EDVI. The fundamental question 
now is how to f ind a solid method to separate the two 
phenotypes involved. In addition, consideration is given 
to the consequences of including a gray zone for EF val-
ues near the most frequently used cut-off levels (cf. gray 

triangle in Fig.  2 which encompasses the region where 
40% , EF , 50%).12

As a first step, we will analyze the patient data while 
utilizing the standard criteria (ie, cut-off at EF  =  50% and 
EDV ,97 mL/m2 for HFpEF). Linear regression analysis for 
the two HF patient groups yields:

HFrEF: ESVI = 0.65 EDVI − 5.44, r2 = 0.894, 
aveEF = 39.84, n = 13		  (2)

HFpEF: ESVI = 0.31 EDVI − 2.55, r2 = 0.258, 
aveEF = 72.68, n = 35		  (3)

The slopes are significantly (P , 0.005) different, in con-
trast to EF versus EDVI for each group (see Fig. 1). Notice 
that n is the number of points and r2 is the coefficient of deter-
mination, while aveEF is the average value of EF.

If data pairs within the gray zone (here for symmetry rea-
sons selected around the EF = 50% line and thus limited to 
45% , EF , 55%) are eliminated, we find that linear regres-
sion analysis yields slightly different equations:

HFrEF: ESVI = 0.65 EDVI + 0.47, r2 = 0.939, 
aveEF = 35.13, n = 8		  (4)

HFpEF: ESVI = 0.34 EDVI – 5.53, r2 = 0.315, 
aveEF = 73.82, n = 33	�  (5)

Essentially, the new set of regression lines results from 
the fact that the center zone around the iso-EF line at 50% has 
been selectively eliminated (cf. gray triangle in Fig. 2, referring 
to 40 , EF , 50%), as also demonstrated by the enhanced 
divergence of the new averages for EF in both groups.

The VRG-related regression coefficients for all applied 
EF cut-off levels are shown in Table 1.

An important observation is that the regression lines for 
both HF groups tend to run more in parallel as the cut-off 
value for EF is further reduced. However, at the same time, 
the values for the intercepts diverge, indicating that the LV 
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Figure 2. Scatter diagram for all 48 HF patients analyzed in this study. 
The superimposed gray triangle refers to the gray zone for EF, ie, 
the area where usually 40 , EF , 50%. Here the triangle is chosen 
slightly larger so as to include the higher range suggested for women.  
A graphical representation of ESVI versus EDVI of the left ventricle 
forms a logical combination, since major criteria for HF subtypes are 
based on volume-derived data. The regression lines for HFrEF and 
HFpEF are depicted in orange and green, respectively. Clearly, they 
refer to different and mutually exclusive areas in the LV volume domain. 
The gray triangle acts like a wedge to separate the two groups.

Table 1. Regression lines for different EF cut-offs (at 40%, 45%, 
50%, and 55%).

EF (%) ESVI–EDVI regression R2 N

slope intercept

55 HFrEF: 0.67 −8.00 0.91 15

HFpEF: 0.34 −5.53 0.31 33

50 HFrEF: 0.65 −5.44 0.89 13

HFpEF: 0.31 −2.55 0.26 35

45 HFrEF: 0.65 0.46 0.94 8

HFpEF: 0.58 −19.78 0.58 40

40 HFrEF: 0.60 8.69 0.94 6

HFpEF: 0.60 −19.91 0.55 42
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volume regulation properties as reflected by the ESVI–EDVI 
diagram persistently remain different for both groups.

Results of applying ML techniques. ML is an area of 
Artificial Intelligence that explores algorithms and processes 
that are capable of learning from data.34 Generally speaking, 
the data sets that should be available contain the values of a 
number of variables, which are called attributes. If there is a 
specially designated attribute, called output, and the aim of 
the process is to use a learning algorithm that predicts its value 
for instances that have not been seen yet, the process is called 
supervised learning, and a common task is classification, where 
the value to be predicted is a label. The set of instances used for 
the learning process is called training set, while the data set of 
unseen samples is called test set. If on the contrary, the process 
is aimed at extracting the information from the training data 
set, but without using the values of the output variable, the 
process is called unsupervised learning, and one of the most 
common methods is clustering, which aims at finding groups 
of items that are similar. There have been previous attempts 
at applying ML techniques to the prediction of HF35 using 
variable selection methods, such as logistic regression and 
boosting, and to the prediction of HF subtypes,36 although 
resulting prediction rates were relatively low. Other authors37 
explored whether clustering analysis using phenotypic data 
could identify phenotypically distinct HFpEF categories. 
However, our objective in this study is to use ML techniques 
to be able to discriminate between the patients with preserved 
EF and those with reduced EF using the concept of the VRG 
and exploring also some possible new guidelines for classifica-
tion, opening up the discussion.

Our first experiments aimed at using unsupervised ML 
methods (ie, a method that does not make use of the knowl-
edge regarding the output class to which the data points 
belong) for the three data sets provided, namely:

1.	 Data set 1: data from real patients, a total of 48 instances 
where 35 belong to class HFpEF and 13 to class HFrEF.

2.	 Data set 2: data simulated with MC, a total of 63 
instances where 34 belong to class HFpEF and 29 to 
class HFrEF.

3.	 Data set 3: MC data generated as testing data, a total 
of 403  instances where 150 refer to class HFpEF, 137 
belong to class HFrEF, while a third group (n  =  116) 
still requires classification because on the basis of current 
guidelines they belong to neither HFpEF nor HFrEF. 
The third group is specifically introduced to challenge 
the universal validity of the current EF–EDVI paradigm 
(Fig. 1) which favors a linear separator based upon a fixed 
value for EF.

Unsupervised learning, as stated above, tries to find hid-
den structure in unlabeled data. Thus, as the examples feed-
ing the algorithm are unlabeled, there is no error or reward 
signal to evaluate a potential solution. There are several 

algorithms that can be used for this purpose. Clustering is 
a common technique, consisting of grouping a set of data in 
such a way that those belonging to the same group (called 
a cluster) are more similar (in one sense or another, that 
is defined by the type of algorithm and its parameters) to 
each other than to those in other clusters. To perform an 
unsupervised separation of the two major phenotypes of HF 
patients, we evaluated three different clustering algorithms, 
using different approaches, all implemented in the Weka 
software tool32:

1.	 K-means using Euclidean distance, one of the most pop-
ular clustering methods,38

2.	 Expectation maximization (EM), which assigns a prob-
ability distribution to each instance indicating the prob-
ability of it belonging to each of the clusters,39 and

3.	 Sequential information bottleneck algorithm (sIB), which 
assigns for each instance the cluster that has the mini-
mum cost/distance to the instance.40

The results are shown in Figure 3 for the data sets 1 and 
2 (real patients and simulated MC, including only the two 
major types of patient subgroups). Note that instances incor-
rectly assigned to a cluster are represented with a square in 
the figure and that only the third algorithm (sIB) tried to 
separate the samples using a similar approach as the current 
clinical guidelines.16 However, it can also be seen that the 
patients reclassified in an alternative manner (see squares in 
Fig. 3) are all located within a region which in some other 
studies is conveniently neglected and benevolently referred to 
as gray zone.

Our second series of experiments employs a supervised 
automatic classification of both major HF types. Supervised 
learning infers a function from the analysis of labeled train-
ing data, and thus the real output for all data examples in 
the training set is available and used by the algorithm. The 
function inferred can subsequently be used for mapping new 
examples. An optimal scenario will allow the algorithm to 
correctly determine the class labels (ie, HF phenotype) for any 
new unseen instances. There are several classification algo-
rithms that can be possibly used, each with its strengths and 
weaknesses, as no single algorithm obtains best results on all 
supervised learning problems. Thus, the performance of clas-
sification methods (ie, the adequacy of the resulting classifica-
tion function) should be evaluated on a test set, different from 
the training set.

In order to decide which classifier is the best for the 
problem at hand, first several classifiers were tried, all belong-
ing to different families, and using the actual patient data 
(48 instances) as training data with a 10-fold cross-validation, 
and the simulated MC data (n = 63) as testing data set. This 
division is a common practice in ML, as both data sets are 
relatively small, and it is recommended to use the real data for 
training, and obtaining adequate generalization.
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The following classifiers, available at Weka tool, were tested:

1.	 Support Vector Machine methods: SVM PEGASOS41 
and SMO, which implements a Sequential Minimal 
Optimization algorithm for training a support vector 
classifier.42

2.	 Nearest neighbor classifiers (IB1),43 which is a classic 
algorithm that uses normalized Euclidean distance to find 
the training instance closest to the given test instance, 
and predicts the same class as this training instance; and 
NNGE, a nearest neighbor-like algorithm using non-
nested generalized exemplars.44

3.	 Rule-based algorithm OneR,45 which is a simple, yet 
useful classification algorithm that generates one rule for 
each predictor in the data, and then selects the rule with 
the smallest total error as its one rule.

4.	 Tree-based algorithms (classic C4.5,46 and PART,47 that 
builds a partial C4.5 decision tree in each iteration and 
makes the best leaf into a rule.)

5.	 A Naïve-Bayes classifier48 is a simple probabilistic classi-
fier based on applying Bayes’ theorem with strong (naive) 
independence assumptions. This classifier assumes that 

the presence or absence of a particular feature is unrelated 
to the presence or absence of any other feature, given the 
class variable. A naive Bayes classifier considers each of 
the features to contribute independently of the probabil-
ity that a sample belongs to a given class, regardless of 
the presence or absence of the other features.

Table 2  shows the results in terms of training and test 
errors.

Reviewing the results obtained, we opted for the SVM 
PEGASOS approach, as SVMs are among the most popu-
lar ML techniques due to their capabilities for capturing 
complex relations between the data without the need for 
complicated preprocessing.49 In particular, the PEGASOS 
approach,41 that implements the stochastic variant of the 
PEGASOS method of Shalev-Shwartz et  al.41 was the 
approach that obtained the best generalization result 
(together with IB1, a neighboring technique) with the real 
data set of 48 patients, testing over the MC simulation 
data set.

After deciding on using the SVM PEGASOS for fur-
ther experimentation, our next step was to carry out a new 
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Figure 3. Results of three clustering algorithms [(A) K-means using Euclidean distance, (B) EM, and (C) sIB, respectively] regarding data set 1 (left) 
and data set 2 (right). The graphs display ESVI (on the y axis) versus EDVI (on the x axis). The axes are scaled to minimum and maximum values of the 
collection of data points. Squares represent instances that are incorrectly assigned to a cluster. Interestingly, the algorithms generate dividing patterns 
which deviate from the wedge paradigm shown in Figure 2.
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study, aiming at studying the results obtained when patients 
belonging to the so-called gray zone for EF (ie, the area where 
40% , EF , 50%) were included. A set of experiments were 
carried out, using different cut-off points (EF at 40%, 45%, 
50%, 55%) in the training data set (data set 1), to evaluate the 
consequences of adopting different criteria for defining major 
HF phenotypes. We also looked at a level of 55%, because 
it has been suggested that the EF value for women may be 
higher.50  As test set, we used data set 3, with implemented 
physiological constraints to the MC data in terms of EF below 
10% or beyond 95%, plus a maximum value for cardiac output. 
A summary of the results is shown in Table 3. Note that while 
using different cut-offs, the number of samples belonging to 
each class will vary.

In detail, the regression analysis results are summarized 
in Table 4.

Figure 4 shows in the left columns the real labels for the 
test set data, while in the right it is shown how the samples 
that belong to the third group (in green color in the figures at 
the left) are labeled regarding HFpEF and HFrEF. The figure 
shows both graphs for the 40%, 45%, 50% and 55% cut-offs. 
It is interesting to see the evolution of the classifications of 

Table 2. Comparison of various classifying approaches applied to 
the separation of two major heart failure phenotypes.

Classifier Training error (%) Test error (%)

C4.5 4.17 6.35

Naïve bayes 4.17 9.52

SVM PEGASOS 2.08 4.76

SMO 16.67 19.05

IB1 2.08 4.76

OneR 6.25 4.76

NNGE 6.25 6.35

PART 4.17 6.35

Note: Bold face is used to highlight best results obtained in training and test 
errors.

Table 3. A summary with the results obtained for EF cut-offs at 40%, 
45%, 50%, and 55%.

Cut-off for EF 40% 45% 50% 55%

Training set 
(HFpEF/HFrEF)

42/6 40/8 35/13 33/15

Test set (HFpEF/
HFrEF/3rd group)

169/94/ 
140

162/108/ 
133

150/137/ 
116

138/168/ 
97

TPR (HFpEF) 1 (169) 0.91 (161) 0.98 (147) 0.99 (136)

TPR (HFrEF) 0.87 (82) 0.96 (104) 0.97 (133) 0.98 (164)

Third group 
(HFpEF/HFrEF)

133/7 117/16 59/57 74/23

Notes: The rows called TPR (True Positive Rate) contain within parentheses 
the number of data samples classified as heart failure (HF) class HFpEF (third 
row) and HFrEF (fourth row), respectively. The third group are the patients 
needing further classification, ie, with EF .50% and beyond EDVI 97 mL/m2.

Table 4. A summary with the results obtained for the regression lines 
with EF cut-offs at 40%, 45%, 50%, and 55%.

Cutoff 
(%)

ESVI–EDVI regression  
predicted

ESVI–EDVI regression
Third group removed

slope intercept slope intercept

55 HFrEF: 0.69 −9.63 HFrEF: 0.72 −0.97

HFpEF: 0.33 −6.73 HFpEF: 0.20 +0.95

50 HFrEF: 0.67 −9.24 HFrEF: 0.76 −11.82

HFpEF: 0.25 −0.82 HFpEF: 0.20 +2.52

45 HFrEF: 0.73 −6.08 HFrEF: 0.74 −7.25

HFpEF: 0.44 −11.09 HFpEF: 0.28 −0.73

40 HFrEF: 0.80 −9.34 HFrEF: 0.83 −12.56

HFpEF: 0.48 −12.39 HFpEF: 0.29 +0.06

Note: First column contains slope and intercept for both HFrEF and HFpEF 
regression lines for predicted labels and the second column contains the 
same values if the third group is eliminated.

the two groups between the two classes with the different 
cut-offs.

Figure  5  shows in the right column, the predicted 
labels for the test set, while the left column shows the same 
prediction if the samples belonging to the third group are 
removed, for 40%, 45%, 50%, and 55% cut-offs, so as to 
be able to see the differences appearing among them. In 
all cases, regression lines are depicted in green color, and 
the regression coefficients for both HF classes are added in 
Table 4.

A.	 Cut-off 40%.
In Figure 4, we can see the behavior of the third group, 

which can largely be classified as HFpEF. Interestingly, the 
separation does not follow the linear division as prescribed by 
the concept referring to a constant EF value for the cut-off. As 
can be seen, the points that are labeled differently seem to be 
located on the border between the main classes. Within this 
context, it is relevant to emphasize the transition phenomenon 
where HF patients migrate from HFpEF to HFrEF territory, 
as well as in the opposite direction. Reportedly, such transi-
tions are observed in 39% of all HF patients (either way) in 
one study,17 and 22% in another.5 This switch of phenotype 
further complicates the problem of identifying HF patients 
within clinical subclasses.
B.	 Cut-off 45%.

Following the same conventions as in the previous cut-off 
series, and using the information from Table 3, one can derive 
the number of patients in each class in the data set, and the 
number of instances in each class of the test set.

As before, the second two graphs from Figure 4  show 
the behavior of the third group, which can partly be classified 
as HFpEF. Again, the points that seem to be labeled diffe
rently are on the border between the main classes and again 
suggest a nonlinear division between the two major pheno-
types of HF.
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in reality correspond with the suggestion formulated for women, having higher values for EF compared to men.50 In the right side of the figure, the 
predictions using the complete test data set is displayed, while on the left side, the samples belonging to the third group are eliminated.

C.	 Cut-off 50%.
As it can be done with the previous cut-off levels at 40% 

and 45%, we can also compare the actual labels of the test set 
and the predicted labels, by examining the third graph in the 
left column in Figure 4 and the third graph in the right column 

of Figure 5. Visual inspection of the corresponding graph in 
Figure 4 reveals that the blue symbols (referring to HFrEF) 
can quickly be distinguished from the red ones (pertaining 
to HFpEF) by drawing a straight line almost parallel to the 
abscissa near ESVI = 40 mL/m2. Clearly, this is not a perfect 
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Figure 6. All MC-generated data points (n = 403) displayed in the style of the classical paradigm, ie, EF versus EDVI. Two important conclusions can be 
derived from this graph (see text).

demarcation, but for practical purposes, it can be a convenient 
rule of thumb, as will later also be illustrated in Figure 6 while 
following the classical paradigm. As can be seen in Figure 4 in 
the third row, the number of points of the third group that are 
now labeled as HFrEF has increased.
D.	 Cut-off 55%.

Finally, and as above, the corresponding results show 
that most points belonging to the third group are now again 
diminishing.

Returning to the old paradigm (illustrated in Fig.  1), 
we have presented all (n = 403) MC-generated surrogate HF 
patients by means of their data points in Figure  6, which 
relates EF to EDVI. The group as a whole shows a curvilin-
ear inverse relationship with modest correlation, as previously 
also documented for a large group (n = 165) of patients.51 The 
three subgroups are marked by their color-coded symbols. The 
third group has been introduced to challenge the validity of 
the linear separation as proposed in published studies by using 
EF at 40%, 45%, or 50%.4,11 As seen in Figures 4 and 5, the 
SVM analysis reveals a clear tendency of the dividing line to 
bend downward in the higher volume range, thus leaving the 
concept of a constant EF line, regardless of the specific cut-off 
level selected for EF. In particular, in the third row in Figure 4 
(which refers to the recommended cut-off level for EF at 50%), 
we observe that a line intersecting near ESVI = 40 mL/m2 and 
almost parallel to the abscissa constitutes a reasonable demar-
cation of the HFpEF and HFrEF territories.

In Figure  6, three curves are inscribed based on con-
stant values for ESVI (at 30, 35, and 40 mL/m2). Similarly, 
as shown in Figure 1 for the actual HF patients, we can again 
separate the HFpEF group (blue lozenges) from the HFrEF 
group (purple squares) applying a suitable curve referring to 

ESVI. The third group (yellow-red triangles) represents HF 
candidates for whom no guidelines have been established yet, 
ie, with EF .50% and EDVI .97 mL/m2.7 Two important 
conclusions can be derived from Figure 6, both supported by 
the ML analysis described in this paper:

1.	 The maximum value for EDVI in this theoretical example 
is 136 mL/m2 (see green arrow) in the HFpEF group with 
cut-off set at EF = 50%. Thus, the previous constraint of 
97 mL/m2 may turn out to be rather superfluous.

2.	 A fixed value for ESVI (eg, at 35 mL/m2) reasonably sep-
arates HFpEF from HFrEF phenotype. Also, the third 
as yet unassigned group (triangles) is classified in a rather 
logical manner.

Discussion
Volumetric components of EF. Figures 1 and 2 illustrate 

the old (ie, EF versus EDVI) and the new paradigms (namely, 
the VRG where ESVI is related to EDVI), respectively. It is 
clear from the definition formula (Eq. 1) that EF depends on 
its two constitutive components, namely, ESVI and EDVI. 
The impacts of the two elements are unequal.51 In fact, ESVI 
is the major determinant of EF, while often EF and EDVI fail 
to yield a significant correlation in selected diagnostic groups13 
as also illustrated in Figure 1. Routine cardiac catheterization, 
as well as application of other appropriate imaging modalities, 
provides information on EF, yet determining LV size has not 
achieved the critical role it deserves.14 The exposé regarding 
the diagnostic dilemma in congestive HF further points out 
that everyone accepts that a low EF is abnormal, while unfor-
tunately seldom attention is paid to LV volume itself.14 In the 
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present study, we have combined ESVI and EDVI to generate  
a VRG for the LV. This representation implicitly reveals iso-
EF trajectories as linear relationships.12 Our application of ML 
methods to classification of subgroups in HF indicates that 
ESVI may be of pivotal importance. This approach deserves 
further investigations in longitudinal cohorts, preferably with 
stratification by gender, age, comorbidities, and therapeutic 
modalities.12

The following sections will critically address several enti-
ties that have been instrumental in our approach. Advantages 
and limitations will be discussed.

Criteria for HF within the old paradigm. HF is a syn-
drome characterized by a high mortality rate, frequent hospi-
talizations, reduced quality of life, and a complex therapeutic 
regimen. Knowledge about HF is accumulating so rapidly that 
individual clinicians may be unable to readily and adequately 
synthesize new information into effective strategies of care 
for patients with this syndrome. Trial data, though valuable, 
often do not give direction for individual patient management. 
These characteristics make HF an ideal candidate for prac-
tice guidelines.11 However, criteria formulated for HFpEF 
may vary considerably.12 In a recent paper,52 the guidelines as 
specified by the ESC and Heart Failure Society of America 
were interpreted as:

1.	 Signs and/or symptoms of HF (Framingham or Boston 
criteria, exercise testing, quality of life questionnaire),

2.	 EF .50%
3.	 EDVI ,75 mL/m2

4.	 Evidence of diastolic LV dysfunction obtained invasively 
(cardiac catheterization) or noninvasively (transmitral or 
tissue Doppler or left atrial size), and

5.	 Exclusion of noncardiac diseases that could cause symp-
toms commonly present in patients with HF.

Remarkably, not all investigators adhere to the EF .50% 
requirement; some consistently choose 45% and others 
40%.4,11 Therefore, we have specifically explored all these 
situations using the SVM tool. Apparently, disagreement 
exists only on the lower side and never on the higher end (eg, 
EF at 55%). The troubled range concerns precisely the region 
known as gray zone. It seems that the epicenter of doubt only 
pertains to selected patients being positively identified as 
HFrEF or not. According to the official rules, all patients with 
40%  ,  EF  ,  50% inevitably belong to HFrEF. Yet, many 
studies find indications to count them collectively as HFpEF. 
Clinicians are apparently not always sure or disagree about the 
guideline for HFrEF.

The fact that no study overtly addresses a higher than 
50% cut-off is not really what we would expect in view of the 
notion that women may exhibit a higher EF (cut-off) value.50 
We included this higher value in our study and again detected 
a nonlinear behavior (Figs.  4 and 5, last row) when search
ing for a demarcation to distinguish HFrEF from HFpEF. 

Extrapolating the concept of different EF cut-off values for 
men versus women may imply that the currently held view-
point that women form a majority in the HFpEF group has to 
be reconsidered.

Note also the newly reported EDVI cut-off value of 
75 mL/m2, which is almost 25% smaller than the current ESC 
standard.16 In another study, this value is set at ,102 mL/m2.7 
More importantly, many investigations do not pay attention to 
any boundary condition for EDVI.4,12

Measurements of plasma biomarkers such as NT-proBNP  
are not included in the list given above and only proposed 
when the diagnosis is not certain. Thus, various research 
groups neglect the relevance of the EDVI criterion, but the 
committees do agree concerning an EF cut-off as set at 50%. 
Surprisingly, investigators do not always respect the almost 
unanimously chosen value for EF, but show in practice a pref-
erence for 40%, 45%, or 50%. 4,12 Clearly defined criteria for 
diagnosing HFpEF are sorely needed, but evidence validating 
their use, particularly in the elderly, is lacking.50 For these rea-
sons, we explored the outcomes of different boundary values 
for EF. We added in our analysis the 55% cut-off value in order 
to explore consequences of the suggestion that for women the 
value may be higher than for men.50

VRG and ML models; what can be gleaned?. As a start-
ing point, the EF constraint is applied to both the learning 
and the testing sets. However, their purposes are different, as 
well as their approach. EF in the classical paradigm is a lin-
ear divider, whereas the distinctions made using ML methods 
explore a nonlinear hyperplane. Our strategy is to first find an 
ML method that compares favorably well with the accepted 
old paradigm. As a next step, we try to gain insight into the 
decision pattern exhibited by the SVM evaluations. In other 
words, we take advantage of the observed errors in order to be 
able to detect new and possibly better options for separating 
diagnostically distinct patient groups. Analyzing the behavior 
of the ML methods may provide suggestions for alternative 
classification rules. Using this approach, our study advances 
ESVI as a fascinating candidate, thus supporting the second-
ary insight derived from Figures 1 and 6.

Our study introduces and combines two important ele-
ments for the classification of HF phenotypes: the presentation 
of HF in the LV volume domain12,13 and the application of 
SVM. The volume domain approach overcomes a severe limi-
tation inherent to the use of EF (which solely concentrates on 
a ratio, thereby largely neglecting the importance of regulation 
of LV cavity volume). The ML method has the advantage that 
analysis is not restricted to a linear divider (such as the dicho
tomy embodied in the use of EF for classification purposes). EF 
is considered central to the evaluation and management of HF, 
informs about drug and device therapy, and is widely accepted 
as a determinant of prognosis.5 However, over the last 35 years 
ESVI has increasingly been endowed with a similar pivotal 
role.12 Figure 1 is a striking example, showing that the single 
use of ESVI is almost equivalent to the combined application 
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of EF and EDVI constraints. Interestingly, the EF and ESVI 
schools can be fairly well united by recognizing the (nonlinear 
inverse) relationship between the two indexes.12,13

In our HF study, we have included 35 patients with 
HFpEF and 13 patients with HFrEF.13 We acknowledge that 
these sets concern rather limited groups to be used for training 
purposes when applying ML methods. However, the size of 
our patient groups exceeds those recruited, eg, for an analysis 
of the ultrastructural differences53 when comparing HFpEF 
(n  =  16) and HFrEF (n  =  17) in patients, excluding those 
adherent to beta-blockers.21 As mentioned before, to compen-
sate for the limited numbers of patients, we applied techniques 
such as k-fold cross-validation. Also, the MC strategy permits 
the creation of large groups of surrogate patients suitable for 
extensive analysis.

The definition of HF has a long history and is still evolv-
ing, notably since the identification of various additional sub-
types.12 We applied the strict ESC criteria16 while using the 
gold standard for measuring LV filling pressure, ie, invasive 
determination of LV pressure rather than an echocardio-
graphically derived surrogate. Importantly, the clinical data 
analyzed here were not specifically collected for this study, 
but were retrospective and primarily part of routine diagnos-
tic investigations. This means that our training set for ML 
consists of the best possible data available, acquired within 
an advanced clinical setting. Testing data are generated by 
MC simulation combined with realistic pathophysiologic 
constraints.12 Within this context, it is crucial to emphasize 
that we are not primarily looking for specific properties of 
artificially created patients, but rather explore a large set of 
pertinent data in order to delineate hyperplane criteria to 
classify subtypes of HF, other than those based upon the 
somewhat controversial index of EF.12,14 Application of 
PEGASOS rendered the highest performance, implying that 
only few instances were labeled differently from the predic-
tion on the basis of the EF paradigm. However, there exist 
no documents that prove that EF is the superior criterion. In 
our study, we employ the EF–EDVI paradigm as a starting 
point in order to be able to derive further insight from the 
behavior of ML methods under these circumstances. In that 
respect, the choice for applying PEGASOS acts as a hardest 
case scenario for our study, generating familiar outcomes 
but using totally different routes. That is precisely what we 
want to perform: to learn from ML methods if alternative 
approaches can ignite new ways of thinking about the HF 
classification issue. In this respect, it is remarkable that 
the ML approach suggests ESVI as a key parameter, while  
we noted a similar role for ESVI by close inspection of the 
old paradigm (Fig.  1). It should also be emphasized that 
ML techniques may employ nonlinear strategies to separate 
groups. It appears from our evaluations that the ML approach 
favors a separation which runs somewhat perpendicular to 
the EF cut-off line. This implies that rather ESVI is invoked 
as a powerful discriminator.

EF as criterion in HF. The simple metric of EF has been 
applied for decades to evaluate the status of patients with heart 
disease.12–14,18,23,25,26 Particularly, EF has been employed to 
predict prognosis and document efficacy of surgical and phar-
macologic interventions. With the recent recognition of the 
HFpEF syndrome, however, we are confronted with the fact 
that EF is not a reliable indicator for the goodness of LV perfor-
mance in millions of HF patients worldwide. In fact, in one 
study specifically investigating transitions in a cohort of HF 
patients, it was concluded that EF is a dynamic factor related 
to sex, coexisting conditions, and drug therapy.5 In an ear-
lier study on HF, we reasoned that under certain conditions 
EF is related to the arterial–ventricular coupling index, which 
in turn, is composed of the ratio of two other ratios.13 Para-
doxically, the actual value of EF in some HFpEF patients may 
even be higher than that in healthy individuals.12 This notion 
seems frustrating, but essentially illustrates an overwhelming 
clinical dilemma: is EF generally useful or is the index only 
applicable in selected cases?.12 Admittedly, guidelines indicate 
that EF is not the only indicator to distinguish HF subtypes 
and emphasize that EF must be interpreted against the full 
clinical background of the individual patient.16 The fact that 
EF is generally accepted does not by definition imply univer-
sal applicability; such appanage would imply a major scientific 
flaw.12 In fact, the HFpEF syndrome itself is the best example 
illustrating that a high (ie, normal or preserved) value for EF 
apparently does not guarantee something like the presence 
of a healthy heart, let  alone the absence of failure. In addi-
tion, the rather arbitrary incorporation of a gray zone (where 
40% , EF , 50%) is not acceptable, because that route leaves 
a major critical group of patients virtually undiagnosed.12

The EF–EDVI paradigm versus the VRG. The official 
ESC criteria formulated for HFpEF imply two boundary 
conditions, namely, for EF and for EDVI.16 This concept is 
illustrated in Figure 1. For the HF patients described in this 
study, the two HF phenotypes individually yield no signifi-
cant relationship in the EF–EDVI plane. This is remarkable,  
because one would rather expect spurious correlations due to 
the fact that the values on the ordinate are explicitly depen-
dent on the values on the abscissa. Interestingly, Figure 1 also 
demonstrates that instead of the two criteria formulated by 
the ESC, a single value of ESVI nicely performs the same 
task of separating the two phenotypes. Thus, in this case,  
a fixed value for ESVI suffices as can readily be determined 
by visual inspection. This notion seems surprising but may 
easily be appreciated by the observation of near-perfect linear 
relationships between ESVI and EDVI for selected diagnos-
tic groups,12 and the inverse nonlinear relationship between 
EF and ESVI.12,13,51 These considerations resulted in the 
model to analyze HF via LV volume regulation by relating 
ESVI to EDVI.12,18 Accordingly, the present study employs 
this novel route to classify HF patients. To this end, we apply 
ML methods that are relatively new in the field of LV pump 
function analysis. We applied these analysis methods in 
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particular to the ESVI–EDVI graph (cf. Fig. 2) because this  
representation provides highest correlation among all combi-
nations of ESVI, EDVI, EF, and the differential termed SV 
index.12,18 Moreover, the combination of ESVI and EDVI has 
a sound physiological basis, in contrast to (for example) EF 
versus EDVI (shown in Fig. 1). Another advantage of ESVI 
versus EDVI is the fact that this presentation allows for the 
inscription of linear iso-EF lines.12 Recently, several statisti-
cal learning algorithms, including unbiased hierarchical clus-
ter analysis of phenotypic data (with 67 continuous variables) 
and penalized model-based clustering, have been successfully 
applied to define and characterize mutually exclusive patient 
groups making up a novel classification of HFpEF.37

The EDVI boundary for HFpEF. The additional boun
dary condition intrinsic to the current EF-paradigm and con-
cerning LV filling volume (ie, EDVI , 97 mL/m2) in HFpEF 
patients seems superfluous. This notion does not come as a 
surprise, because in practice, most investigators already do 
not really care about the EDVI constraint. Remarkably, a few 
studies report constraints for EDVI that differ from the pro-
posed value as formulated above. In one study, a boundary 
,102  mL/m2 has been introduced,7 whereas a recent paper 
restricts to ,75 mL/m2.52 Inspection of Figure 1 suggests that 
the applied ESVI criterion does not preclude the occurrence 
of any HFpEF data points beyond an EDVI of 97 mL/m2.  
Also, the MC simulation–based results indicate that the  
classification for both phenotypes continues without restric-
tions for EDVI, although slight nonlinear behavior of the sep-
arating curve becomes manifest in the VRG representation. 
Importantly, we observe again that ESVI may be a relevant 
candidate to classify the two groups, especially when we intro-
duce the third group (Figs. 4 and 5), which is not assigned to 
either HFrEF or HFpEF on the basis of current guidelines.16 
As mentioned before, the choice for applying PEGASOS 
refers to a hardest case scenario for our study. Yet, the SVM 
approach generated results very similar to the EF paradigm, 
although obtained via a totally different route. Reviewing alter
native ML strategies tested in our study such as K-means and 
EM, we derive from the pertinent graphs (Fig. 3) that those 
approaches even more ostensively document dividing lines 
that are almost perpendicular to the iso-EF line of 50%. In 
that respect, these outcomes support the strength of the SVM 
method for classifying HF patients.

Nonlinear divider for HFpEF versus HFrEF. The  
current paradigm regarding classification of HF phenotypes 
assumes a linear divider, namely, EF at a particular cut-off level 
according to the somewhat liberal preference of the individual 
investigator.3,4,12 This variability results in the following diversity: 
EF cut-off at 40% with 22% transitions (both ways in a cohort 
of 2413 HF patients) within an observation period covering  
8 years,5 at 50% (with 39% transitions either way),17 at 40% for 
HFrEF, and at 50% for HFpEF (implying a gray zone between 
40% and 50%),53 45%–50% but likely higher in women,50 
at 45% (and EDVI  ,102  mL/m2, plus evidence of diastolic 

dysfunction by Doppler echocardiography),7 at 50%,30 at 
50%,29 at 45% but without mentioning the EDVI constraint,6 
and at 45%.8 However, there is no rationale to support linearity. 
It is very well conceivable that the cut-off value is not a fixed 
number for EF, but rather varies with gender, age, medication, 
and the size of the heart. Indeed, the choice of EF at 40%–55% 
as criterion for HFpEF appears arbitrary as there is evidence 
that the lower limit for EF in elderly women is much higher.50 
Such a nonlinear discriminator would in particular be more 
appropriate when dilated hearts are involved. As a matter of 
fact, the outcomes of the present study also suggest a nonlinear 
approach, cf. Figures 4 and 5. In contrast, the ML techniques 
applied here do not assume a linear discriminator, but indeed 
create nonlinear (hyper) planes to distinguish groups. Adher-
ing to a nonlinear framework also necessitates a re-evaluation 
of the present simple concept of transition from one phenotype 
to another, just by crossing a straight dividing line.

The distinction between HFpEF and HFrEF is not 
always easy in clinical practice, as is sadly illustrated by the 
frequent introduction of a gray zone for borderline patients.12 
The lack of consensus among investigators regarding the pre-
cise cut-off value for EF obviously further complicates the 
issue. Therefore, the purpose of this study is exploration by 
advanced techniques to classify HF subtypes and outlin-
ing consequences of a particular choice for the EF cut-off 
when being different from 50%. It should be noted that not 
all instances classified by SVM when deviating from those 
assumed on the basis of current guidelines, are necessarily 
incorrect. The relevance of our findings should not only be 
derived from the reported level of match and agreement 
with whatever type of current criteria used in the training 
set. What is probably a more important outcome that is to 
discern which alternative path of classification is suggested 
by the novel approach which is not limited by any restric-
tion regarding a linear divider such as EF. When appreciating 
the nonlinear approach inherent to ML methods, it is clear 
that the proposed assignments are rather logical. As a conse-
quence, the actual accuracy of the SVM analysis may in the 
future turn out to be better than the present outcomes sug-
gest. Also, they make plausible an extension of the HFpEF 
range toward slightly higher EDVI values than the current 
boundary of 97 mL/m2.12

ML tools. Computer-assisted methods for the analysis of 
large databases and the interpretation of their contents have 
found early application in the medical sciences.54 Currently, 
they are employed, eg, for prediction modeling based on elec-
tronic health records,35 data-mining, and machine-learning 
literature for disease classification and prediction regarding 
classification of HF subtypes,36 and more recently, unbiased 
clustering analysis using dense phenomapping to identify phe-
notypically distinct HFpEF categories.37

Various methods have been devised for classification, 
example, discriminant analysis55 and resampling methods.56 
We have selected the SVM approach and reported our findings 
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based on various testing groups. The search for solid criteria 
to distinguish various phenotypes of HF is a turbulent field 
that urgently requires some streamlining. We offer alternative 
routes (such as SVM) to establish sound criteria based on the 
VRG to classify patient groups. In general, we have been inte
rested in analyzing what pattern the ML approach is offering 
for separating groups. This trajectory looks curvilinear in the 
higher volume range and somewhat inclined to endow a more 
central role to ESVI. Therefore, the documented curvilinear 
relationship between EF and ESVI18,51strongly suggests that 
the assumption concerning a linear EF divider may not be of 
general utility over the complete clinically relevant range.

Further, we paid attention to the evaluation of the conse-
quences of eliminating a gray (borderline) zone (ie, EF between 
40% and 50%). Recently, an additional phenotype has been 
described, featuring recovery of EF after beta-blockade.12 
Further studies are required to ascertain if ML approaches are 
capable of classifying more than just two phenotypes.

Conclusions
This study proposes an LV volume regulation representation 
(ie, ESVI in dependence of EDVI), which is shown to have 
clear advantages over the classical EF–EDVI paradigm. The 
new representation is combined with SVM tools to classify 
HF patients. We conclude that ML models offer promise for 
computer-assisted distinction between the two major pheno-
types of HF patients on the basis of ventricular volume data 
analysis. The description in terms of LV volume regulation 
deepens our insights regarding subtypes of HF and how to 
classify them by employing ML models. Our results derived 
from surrogate MC patients indicate a slight nonlinear behav-
ior of the divider compared to the fixed value implicated in the 
EF cut-off paradigm. The nonlinearity of EF as divider is sup-
ported by our present observation that a fixed value for ESVI 
offers a reasonable candidate (Figs. 2 and 6), while the rela-
tionship between EF and ESVI is intrinsically curvilinear.51

Classification primarily guided by LV volumes may have 
preference over the traditional use of their ratio EF, which lat-
ter method apparently invites some investigators to invoke a 
somewhat artificial borderline (gray) zone. Future application 
of EF as a cut-off criterion to distinguish HFpEF from HFrEF 
patients may require incorporation of modifications based on 
gender, age, and medication. Our analysis method, while using 
MC-generated surrogate HF patients, suggests an ESVI- 
associated division pattern. The analysis also indicates that the 
upper limit value for EDVI, currently imposed by the classical 
paradigm, may actually be superfluous in HFpEF patients. In 
addition, selected ML tools combined with the LV volume 
regulation concept may assist during the classification of indi-
vidual patients having measurements located in the (clinically 
often neglected) gray zone where 40% , EF , 50%.

Following Pickering’s thoughts1 regarding the earlier 
laborious search for an acceptable classification of hyperten-
sion using two boundary values, we are ready to accept that in 

the search for classifying HF phenotypes, we still have a long 
way to go.

Acknowledgment
The authors appreciate the feedback and constructive sugges-
tions formulated by the three anonymous reviewers.

Author Contributions
Conceived and designed the experiments: PK, GH, AA, 
VB. Analyzed the data: PK, AA, VB. Wrote the f irst 
draft of the manuscript: PK, AA. Contributed to the 
writing of the manuscript: PK, GH, AA, VB. Collec-
tion of clinical data: GH. Agree with manuscript results 
and conclusions: PK, GH, AA, VB. Jointly developed 
the structure and arguments for the paper: PK, GH, AA, 
VB. Made critical revisions and approved f inal version: 
PK, GH, AA, VB. All authors reviewed and approved 
the f inal manuscript.

References
	 1.	 Amsterdamska A, Hiddinga A. The analyzed body. In: Cooter E, Pickstone J, 

eds. Companion to Medicine in the Twentieth Century. (Chap. 27). London: Rout-
ledge; 2003:420.

	 2.	 CDC. Heart Failure Fact Sheet. Atlanta, GA: CDC; 2013. [30329–4027 USA].
	 3.	 Alba AC, Agoritsas T, Jankowski M, et al. Risk prediction models for mortality 

in ambulatory patients with heart failure: a systematic review. Circ Heart Fail. 
2013;6(5):881–9.

	 4.	 Chan MM, Lam CS. How do patients with heart failure with preserved ejection 
fraction die? Eur J Heart Fail. 2013;15(6):604–13.

	 5.	 Clarke CL, Grunwald GK, Allen LA, et al. Natural history of left ventricular 
ejection fraction in patients with heart failure. Circ Cardiovasc Qual Outcomes. 
2013;6:680–6.

	 6.	 Gori M, Lam CS, Gupta DK, et al. Sex-specific cardiovascular structure and 
function in heart failure with preserved ejection fraction. Eur J Heart Fail. 
2014;16(5):535–42.

	 7.	 Kamp O, Metra M, De Keulenaer GW, et al. Effect of the long-term adminis-
tration of nebivolol on clinical symptoms, exercise capacity and left ventricular 
function in patients with heart failure and preserved left ventricular ejection 
fraction: background, aims and design of the ELANDD study. Clin Res Cardiol. 
2010;99(2):75–82.

	 8.	 Shah AM, Shah SJ, Anand IS, et  al. Cardiac structure and function in heart 
failure with preserved ejection fraction: baseline findings from the echocardio-
graphic study of the treatment of preserved cardiac function heart failure with 
an aldosterone antagonist trial. Circ Heart Fail. 2014;7(1):104–115. [Originally 
published November 18, 2013].

	 9.	 Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic 
heart failure: part I: diagnosis, prognosis, and measurements of diastolic func-
tion. Circulation. 2002;105(11):1387–93.

	 10.	 Little WC, Zile MR. HFpEF: cardiovascular abnormalities not just comorbidi-
ties. Circ Heart Fail. 2012;5:669–71.

	 11.	 Lindenfeld J, Albert NM, Boehmer JP, et al. HFSA 2010 comprehensive heart 
failure practice guideline. J Card Fail. 2010;16:e1–94.

	 12.	 Kerkhof PLM. Characterizing heart failure in the ventricular volume domain. 
Clin Med Insights Cardiol. 2015;9(S1):1–21.

	 13.	 Kerkhof PLM, Kresh JY, Li JK-J, Heyndrickx GR. Left ventricular vol-
ume regulation in heart failure with preserved ejection fraction. Physiol Rep. 
2013;1(2):e0007.

	 14.	 Buckberg GD. Congestive heart failure: treat the disease, not the symptom – 
return to normalcy. J Thorac Cardiovasc Surg. 2001;121:628–37.

	 15.	 Paulus WJ, Tschöpe C, Sanderson JE, et  al. How to diagnose diastolic heart 
failure: a consensus statement on the diagnosis of heart failure with normal left 
ventricular ejection fraction by the Heart Failure and Echocardiography Asso-
ciations of the European Society of Cardiology. Eur Heart J. 2007;28:2539.

	 16.	 McMurray JJ, Adamopoulos S, Anker SD, et al; ESC Committee for Practice 
Guidelines. ESC guidelines for the diagnosis and treatment of acute and chronic 
heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute 
and Chronic Heart Failure 2012 of the European Society of Cardiology. Devel-
oped in collaboration with the Heart Failure Association (HFA) of the ESC. Eur 
Heart J. 2012;33(14):1787–847.

http://www.la-press.com
http://www.la-press.com/journal-clinical-medicine-insights-cardiology-j48


Heart failure classification

71Clinical Medicine Insights: Cardiology 2015:9(S1)

	 17.	 Dunlay SM, Roger VL, Weston SA, Jiang R, Redfield MM. Longitudinal 
changes in ejection fraction in heart failure patients with preserved and reduced 
ejection fraction. Circ Heart Fail. 2012;5(6):720–6.

	 18.	 Beringer JY, Kerkhof PLM. A unifying representation of ventricular volumetric 
indexes. IEEE Trans Biomed Eng. 1998;45:365–71.

	 19.	 Flach P. Machine Learning: The Art and Science of Algorithms that Make Sense of 
Data. New York, NY: Cambridge University Press; 2014.

	 20.	 Shalev-Shwartz S, Ben-David S. Understanding Machine Learning: From Theory 
to Algorithms. Cambridge: Cambridge University Press; 2014.

	 21.	 Kerkhof PLM, Baan J, Buis B, Arntzenius AC. Relations between ejection frac-
tion and ventricular volume, and their alteration by chronic beta-blockade. Br 
Heart J. 1981;46:17–22.

	 22.	 Yancy CW, Fonarow GC, Albert NM, et  al. Influence of age and sex on the 
delivery of guideline-recommended heart failure care in the outpatient cardiol-
ogy practice setting: findings from IMPROVE HF. Am Heart J. 2009;157:754.
e−762.e.

	 23.	 Robotham JL, Takata M, Berman M, Harasawa Y. Ejection fraction revisited. 
Anesthesiology. 1991;74:172–83.

	 24.	 Manisty CH, Francis DP. Ejection fraction: a measure of desperation? Heart. 
2008;94:400–1.

	 25.	 Marmor A, Jain D, Zaret B. Beyond ejection fraction. J Nucl Cardiol. 
1994;1:477–86.

	 26.	 Hugenholtz PG, Wagner HR. Assessment of myocardial function in congenital 
heart disease. In: Adams FH, Swan HJC, Hall VE, eds. Pathophysiology of Con-
genital Heart Diseases. Berkeley: University of California Press; 1970:201–30.

	 27.	 Kerkhof PLM, Li JK-J, Kresh JY. An analytical expression for the regula-
tion of ventricular volume in the normal and diseased heart. Cardiovasc Eng. 
2002;2:37–48.

	 28.	 Li J, Becher PM, Blankenberg S, Westermann D. Current treatment of heart 
failure with preserved ejection fraction: should we add life to the remaining years 
or add years to the remaining life? Cardiol Res Pract. 2013;2013:130724. [Pub-
lished online 2013 October 24].

	 29.	 Penicka M, Bartunek J, Trakalova H, et al. Heart failure with preserved ejec-
tion fraction in outpatients with unexplained dyspnea: a pressure-volume loop 
analysis. J Am Coll Cardiol. 2010;55:1701–10.

	 30.	 Patel HC, Hayward C, di Mario C, Cowie MR, Lyon AR, Rosen SD. Heart 
failure with preserved ejection fraction: the impact of stricter definitions. Eur J 
Heart Fail. 2014;16(7):767–71.

	 31.	 Cristianini N, Shawe-Taylor J. An Introduction to Support-Vector Machines and 
Other Kernel-based Learning Methods. New York, NY: Cambridge University 
Press; 2000.

	 32.	 Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The 
WEKA Data Mining Software: an update. SIGKDD Explor. 2009;11(1):10–8.

	 33.	 Witten IH, Frank E, Hall M. Data Mining: Practical Machine Learning Tools 
and Techniques. Morgan Kaufmann Publishers, Third Edition (The Morgan 
Kaufmann Series in Data Management Systems), January, 2011.

	 34.	 Bramer M. Principles of Data Mining. London: Springer-Verlag; 2013.
	 35.	 Wu J, Roy J, Stewart WF. Prediction modelling using EHR data: challenges, 

strategies and a comparison of machine learning approaches. Med Care. 
2010;48:S106–13.

	 36.	 Austin PC, Tu JV, Ho JE, Levy D, Lee DS. Using methods from the data min-
ing and machine learning literature for disease classification and prediction:  
a case study examining classification of heart failure subtypes. J Clin Epidemiol. 
2013;66:398–407.

	 37.	 Shah SJ, Katz DH, Selvaraj S, et al. Phenomapping for novel classification of 
heart failure with preserved ejection fraction. Circulation. 2015;131(3):269–79.

	 38.	 MacQueen JB. Some methods for classification and analysis of multivariate 
observations. In: Proceedings of the 5th Berkeley Symp. On Mathematical Sta-
tistics and Probability. Berkeley: University of California Press; 1967:281–97.

	 39.	 Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete 
data via the EM algorithm. J R Stat Soc Series B Stat Methodol. 1977;39(1):1–38.

	 40.	 Noam Slonim, Nir Friedman, Naftali Tishby. Unsupervised document clas-
sification using sequential information maximization. Proceedings of the 25th 
International ACM SIGIR Conference on Research and Development in Information 
Retrieval. 2002:129–36.

	 41.	 Shalev-Shwartz S, Singer Y, Srebro N. PEGASOS: Primal Estimated sub- 
GrAdient SOlver for SVM. Proceedings of 24th International Conference on 
Machine Learning. 2007:807–14.

	 42.	 Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK. Improvements to Platt’s 
SMO algorithm for SVM classifier design. Neural Comput. 2001;13(3):637–49.

	 43.	 Aha D, Kibler D. Instance-based learning algorithms. Mach Learn. 1991; 
6:37–66.

	 44.	 Martin B. Instance-Based Learning: Nearest Neighbor with Generalization [Ph.D. 
thesis]. Hamilton, New Zealand; 1995.

	 45.	 Holte RC. Very simple classification rules perform well on most commonly used 
datasets. Mach Learn. 1993;11:63–91.

	 46.	 Quinlan R. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan 
Kaufmann Publishers; 1995.

	 47.	 Frank E, Witten IH. Generating accurate rule sets without global optimization. 
In: Proceedings of Fifteenth International Conference on Machine Learning; 
1998:144–51.

	 48.	 John GH, Langley P. Estimating continuous distributions in Bayesian classifiers. 
In: Eleventh Conference on Uncertainty in Artificial Intelligence. San Mateo; 
1995:338–45.

	 49.	 Van Gestel T, Suykens JAK, Baesens B, et al. Benchmarking least squares sup-
port vector machine classifiers. Mach Learn. 2004;54:5–32.

	 50.	 Kaila K, Haykowsky MJ, Thompson RB, Paterson DI. Heart failure with pre-
served ejection fraction in the elderly: scope of the problem. Heart Fail Rev. 
2012;17(4–5):555–62.

	 51.	 Kerkhof PLM, Li JK-J, Kresh JY. End-systolic volume as primary determinant 
of ejection fraction in HFpEF versus HFrEF. Europ. J. Heart Fail. 2013;15 
(Suppl. 1): ISSN 1388–98424 (abstract # 1783).

	 52.	 Zile MR, Baicu CF, Ikonomidis J, et al. Myocardial stiffness in patients with 
heart failure and a preserved ejection fraction: contributions of collagen and titin. 
Circulation. 2015.

	 53.	 Hamdani N, Paulus WJ, van Heerebeek L, et al. Distinct myocardial effects of 
beta-blocker therapy in heart failure with normal and reduced left ventricular 
ejection fraction. Eur Heart J. 2009;30(15):1863–72.

	 54.	 Kerkhof PLM, Alonso-Betanzos A, Moret-Bonillo V. Medical Artificial Intel-
ligent Systems. In: Webster’s Encyclopedia Electric and Electronic Engineering. 
New York: Wiley & Sons; 1999;12:498–508.

	 55.	 Agresti A. An Introduction to Categorical Data Analysis. New York: John Wiley 
and Sons; 1996.

	 56.	 Sauerbrei W. The use of resampling methods to simplify regression models in 
medical statistics. Appl Statist. 1999;48:313–29.

http://www.la-press.com
http://www.la-press.com/journal-clinical-medicine-insights-cardiology-j48

