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nerative framework for molecular
graph-structure Co-design†

Zaixi Zhang, ab Qi Liu,*ab Chee-Kong Lee,c Chang-Yu Hsieh d

and Enhong Chenab

Designing molecules with desirable physiochemical properties and functionalities is a long-standing

challenge in chemistry, material science, and drug discovery. Recently, machine learning-based

generative models have emerged as promising approaches for de novo molecule design. However,

further refinement of methodology is highly desired as most existing methods lack unified modeling of

2D topology and 3D geometry information and fail to effectively learn the structure–property

relationship for molecule design. Here we present MolCode, a roto-translation equivariant generative

framework for molecular graph-structure Co-design. In MolCode, 3D geometric information empowers

the molecular 2D graph generation, which in turn helps guide the prediction of molecular 3D structure.

Extensive experimental results show that MolCode outperforms previous methods on a series of

challenging tasks including de novo molecule design, targeted molecule discovery, and structure-based

drug design. Particularly, MolCode not only consistently generates valid (99.95% validity) and diverse

(98.75% uniqueness) molecular graphs/structures with desirable properties, but also generates drug-like

molecules with high affinity to target proteins (61.8% high affinity ratio), which demonstrates MolCode's

potential applications in material design and drug discovery. Our extensive investigation reveals that the

2D topology and 3D geometry contain intrinsically complementary information in molecule design, and

provide new insights into machine learning-based molecule representation and generation.
Introduction

Designing molecules with desirable characteristics is of
fundamental importance in many applications, ranging from
drug discovery1–3 to catalysis4 and semiconductors.5,6 However,
the size of the drug-like chemical space is estimated to be in the
order of 1033,7 which precludes an exhaustive computational or
experimental search of possible molecular candidates. In recent
years, advances in machine learning (ML) methods have greatly
accelerated the exploration of chemical compound space.8–18

Many studies propose to generate 2D/3D molecules and opti-
mize molecular properties with deep generative models.19–28

Molecules can be naturally represented as 2D graphs where
nodes denote atoms, and edges represent covalent bonds. Such
concise representation has motivated a series of studies in the
tasks of molecule design and optimization. These works either
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predict the atom type and adjacency matrix of the graph,29–32 or
employ autoregressive models to sequentially add nodes and
edges.23,33 Furthermore, some methods leverage the chemical
priors of molecular fragments/motifs and propose to generate
molecular graphs fragment-by-fragment.34,35 However, complete
information about a molecule cannot be obtained from these
methods since the 3D structures of molecules are still
unknown, which limits their practical applications. Due to
intramolecular interactions or rotations of structural motifs,
the same molecular graph can correspond to various spatial
conformations with different quantum properties.36–40 There-
fore, molecular generative models considering 3D geometry
information are desired to better learn structure–property
relationships.

Recently, some studies characterize molecules as 3D point
clouds where each point has atom features (e.g., atom types)
and 3D coordinates and corresponding generative models have
been proposed for 3D molecule design. These methods include
estimating pairwise distances between atoms,41 employing
diffusion models to predict atom types and coordinates of all
atoms,42 and using autoregressive models to place atoms in 3D
space step-by-step.24,26,43 Since molecular drugs inhibit or acti-
vate particular biological functions by binding to the target
proteins, another line of work further proposes generating 3D
molecules inside the target protein pocket, which is a complex
© 2023 The Author(s). Published by the Royal Society of Chemistry
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conditional generation task.44–47 However, most of these
methods do not explicitly consider chemical bonds and valency
constraints and may generate molecules that are not chemically
valid. Moreover, the lack of bonding information also inhibits
the generation of realistic substructures (e.g., benzene rings).

In this work, we propose MolCode, a roto-translation
equivariant generative model for molecular graph-structure
Co-design from scratch or conditioned on the target protein
pockets. Different from previous works that focus on a certain
modality (e.g., 2D molecular graphs) our method designs 2D
molecular graphs or 3D structures simultaneously, i.e., co-
design. Our model is motivated by the intuition that the infor-
mation of the 2D graph and 3D structure is intrinsically comple-
mentary to each other in molecule generation: the 3D geometric
structure information empowers the generation of chemical
bonds, and the bonding information can in turn guide the
prediction of 3D coordinates to generate more realistic
substructures by constraining the searching space of bond
length/angles. We note one concurrent work MiDi48 has
a similar idea and proposes a novel diffusion-based generative
model for jointly generating molecular 2D graphs and 3D
structures. In MolCode, we employ autoregressive ow as the
backbone framework to generate atom types, chemical bonds,
and 3D coordinates sequentially. To encode intermediate 3D
graphs, roto-translation equivariant graph neural networks
(GNNs)49,50 are rst used to obtain node embeddings. Note that
our MolCode is agnostic to the choice of encoding GNNs. Then,
a novel attention mechanism with bond encoding enriches
embeddings with global context as well as bonding informa-
tion. In the decoding process, we construct a local coordinate
system based on local reference atoms and predict the relative
coordinates, ensuring the equivariance of atomic coordinates
and the invariance of likelihood. The generated 2D molecular
graphs also help check the chemical validity of the generated
molecules in each step. In our experiments, we show that
MolCode outperforms existing generative models in generating
diverse, valid, and realistic molecular graphs and structures
from scratch. Further investigations on targeted molecule
discovery show that MolCode can generate molecules with
desirable properties that are scarce in the training set,
demonstrating its strong capability of capturing structure–
property relationships for generalization. In the future, the
Bayesian optimization methods19,20,22,51–54 can be applied to our
MolCode for further improvement. Finally, we extend MolCode
to the structure-based drug design task and manage to generate
drug-like ligand molecules with high binding affinities.
Systematic hyperparameter analysis and ablation studies show
that MolCode is robust to hyperparameters and the unied
modeling of 2D topology and 3D geometry consistently
improves molecular generation performance.

Results
Sequential generation with ow models

Contrary to previous works that treat molecules solely as 2D
graphs or 3D point clouds, a molecule is comprehensively rep-
resented as a 3D-dimensional graph G = (V, A, R) in this work.
© 2023 The Author(s). Published by the Royal Society of Chemistry
Let a and b denote the number of atom types and bond types.
For a molecule with n atoms, V ˛ {0,1}n×a is the atom type
matrix, A ˛ {0,1}n×n×(b+1) is an adjacency matrix, and R ˛ ℝn×3 is
the 3D atomic coordinate matrix. We add one additional type of
edge between two atoms, which corresponds to no edge
between two atoms. Following previous works like GraphAF23

and G-SchNet,24 we formalize the problem of molecular graph
generation as a sequential decision process (Fig. 1A and B). We
can factorize the probability of molecule P(V, A, R) as:

PðV ;A;RÞ ¼
Yn
i¼1

PðVi;Ai;RijV:i�1;A:i�1;R:i�1Þ (1)

¼
Yn
i¼1

Yi�1

j¼0

PðVijV:i�1;A:i�1;R:i�1Þ$P
�
AijjV:i;A:i�1;R:i�1

�
$

PðRijV:i;A:i;R:i�1Þ; (2)

where V:i−1, A:i−1 and R:i−1 indicate the graph (V, A, R) restricted
to the rst i − 1 atoms, Vi and Ri represent the atom type and
coordinates of the i-th atom, and Ai denotes the connectivity of
the i-th atom to the rst i − 1 atoms. We employ a normalizing
ow model55 to learn such probabilities. A ow model aims to
learn a parameterized invertible function between the data
point variable x and the latent variable z: fq:z˛ ℝd/ x˛ ℝd. The
latent distribution pZ is a pre-dened probability distribution,
e.g., a Gaussian distribution. The data distribution pX is
unknown. But given a data point x, its log-likelihood can be
computed with the change-of-variable theorem:

log pX(x) = log pZ(fq
−1(x)) + logjdetJj, (3)

where J ¼ vfq
�1ðxÞ
vx

is the Jacobian matrix. To train a ow model

on molecule datasets, the log-likelihoods of all data points are
computed from eqn (3) and maximized via gradient ascent. In
the sampling process, a latent variable z is rst sampled from
the pre-dened latent distribution pZ. Then the corresponding
data point x is obtained by performing the feedforward trans-
formation x = fq(z). Therefore, fq needs to be invertible, and the
computation of det J should be tractable for the training and
sampling efficiency. A common choice is the affine coupling
layers23,56,57 where the computation of det J is very efficient
because J is an upper triangular matrix.

Fig. 1 shows a schematic depiction of the MolCode archi-
tecture. At each generation step, we predict the new atom type,
bond types, and the 3D coordinates sequentially. We use an
equivariant graph neural network for the extraction of condi-
tional information from intermediate molecular graphs. A novel
multi-head self-attention network with bond encoding is
proposed to further capture the global and bonding informa-
tion. For the generation of atomic coordinates, MolCode rstly
constructs a local spherical coordinate system and generates
the relative coordinates i.e. d, q, f, which ensure the equivar-
iance of coordinates and the invariance of likelihood. In the de
novo molecule design and targeted molecule discovery, Mol-
Code generates molecules from scratch. In structure-based drug
design, which is a conditional generation task, the target
Chem. Sci., 2023, 14, 8380–8392 | 8381



Fig. 1 Molecule generation with MolCode. (A) In the sequential generation, MolCode concurrently generates molecular 2D graphs and 3D
structures. The joint probability of atom types, bond types, and coordinates can then be factorized into a chain of conditional probabilities. (B)
MolCode employs the normalized flow as the backbone model and predicts atom types, bond types, and coordinates sequentially in each step.
(C) MolCode employs roto-translation equivariant graph neural networks and multi-head self-attention with bond encoding for the conditional
feature extraction from the intermediate 3D graph. (D) For the generation of atomic coordinates, MolCode firstly constructs a local spherical
coordinate system and generates the relative coordinates i.e. d, q, f, which ensure the equivariance of coordinates and the invariance of
likelihood.
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protein pocket represented as a 3D-dimensional graph is rst
input into MolCode. Then MolCode generates ligand molecules
based on the protein pocket.

We train MolCode on a set of molecular structures and the
corresponding molecular graphs can be obtained with toolkits
in chemistry.58,59 In the generation process, we check whether
the generated bonds violate the valency constraints at each step.
If the newly added bond breaks the valency constraint, we just
reject it, sample a new latent variable and generate another new
bond type. More details on the model architecture and training
procedure can be found in the Methods section.
De novo molecule design

For virtual screening, the generative model should be able to
sample a large quantity of valid and diverse molecules from
scratch. In the random molecule generation task, we evaluate
MolCode on the QM9 dataset61 consisting of 134k organic
molecules with up to nine heavy atoms from carbon, nitrogen,
oxygen, and uorine. We use validity, uniqueness, and novelty
to evaluate the quality of the generated molecules: validity
calculates the percentage of valid molecules among all the
generated molecules; uniqueness is the percentage of unique
molecules among all the valid molecules; novelty measures the
fraction of novel molecules among all the valid and unique
8382 | Chem. Sci., 2023, 14, 8380–8392
ones. Specically, the 3D molecular structures are rst con-
verted to 2D graphs, and the bond types (single, double, triple,
or none) are determined based on the distances between pairs
of atoms and the atom types.59 A molecule is considered valid if
it obeys the chemical valency rules; it is considered unique or
novel if its 2D molecular graph appears only once in the whole
sampled molecule set or does not exist in the training set. In
Table. S3,† we compare MolCode with four state-of-the-art
baselines including E-NFs,60 G-SchNet,24 G-SphereNet43, and
EDM42 on 3D molecule generation. We also compare MolCode
with its two variants i.e. MolCode without validity check (Mol-
Code w/o check) and MolCode without bond information
(MolCode w/o bond) for ablation studies. Note that we still
conduct bond prediction and validity check while the bonding
information is not used for 3D coordinate prediction in Mol-
Code w/o bond. All metrics are computed from 10 000 generated
molecular structures. We observe that MolCode achieves the
best performance in generating valid and diverse molecular
structures (99.95% validity, 98.75% uniqueness). With the
advantage of the generated bonds, MolCode can rectify the
generation process when the valency constraints are violated,
and therefore better explore the chemical space with the
autoregressive ow framework. Interestingly, even without
a validity check, MolCode can still achieve validity as high as
© 2023 The Author(s). Published by the Royal Society of Chemistry



Table 1 Results of random molecule generation on the QM9 dataset.
Validity calculates the percentage of valid molecules among all the
generated molecules; uniqueness refers to the percentage of unique
molecules among the valid molecules; novelty measures the fraction
of molecules not in the training set among all the valid and unique
molecules. Time records the sampling time for 10 000 molecules. The
best results are bolded

Method Validity Uniqueness Novelty Time (s)

E-NFs60 41.30% 92.96% 81.12% 3360
G-SchNet24 84.19% 94.11% 83.47% 92
G-SphereNet43 87.54% 95.49% 81.55% 450
EDM42 92.27% 98.24% 72.84% 4339
MolCode (w/o check) 94.60% 96.54% 74.18% 563
MolCode (w/o bond) 92.12% 94.32% 75.43% 655
MolCode (w/o angle) 86.43% 87.60% 72.91% 653
MolCode 99.95% 98.75% 75.90% 674

Edge Article Chemical Science
94.60%, which indicates the strong ability of MolCode to
capture the underlying chemical rules by modeling the gener-
ation of bonds. In MolCode (w/o bond), the bonding informa-
tion is not provided to the conditional information extraction
block. The validity drops from 99.95% to 92.12% and the
uniqueness drops from 98.75% to 94.32%, which also veries
the usefulness of bonding information in MolCode. Regarding
novelty, as discussed by previous work42 that QM9 is the
exhaustive enumeration of molecules that satisfy a predened
set of constraints, the novelty of MolCode is reasonable and
acceptable (Table 1).

To further investigate how well our model ts the distribu-
tion of QM9, we conduct qualitative substructure analysis
(Table S1†). Specically, we rst collect the bond length/angle
distributions in the generated molecules and the training
Fig. 2 Results of random molecule generation. We show the distributio
functions for carbon–carbon single bond and carbon–oxygen single bo
carbon–carbon and carbon–carbon–oxygen chains (second row) in the
grams of calculated HOMO–LUMO gaps and isotropic polarizability for m
before biasing (purple curves), and for the QM9 dataset (blue curves). (C)
molecule for QM9 and for molecules generated with MolCodes. B1, B2, a
are rings of size 3 to 6.

© 2023 The Author(s). Published by the Royal Society of Chemistry
dataset and then employ Kullback–Leibler (KL) divergence to
compute their distribution distances. We show several common
bond and bond angle types. We can observe that MolCode
obtains much lower KL divergence than the other methods and
its variant without bond information, indicating that the
molecules generated by MolCode capture more geometric
attributes of data. Moreover, we show two sets of bond length
distributions (carbon–carbon single bond and carbon–oxygen
single bond) and two sets of bond angle distributions (carbon–
carbon–carbon and carbon–carbon–oxygen chains) in Fig. 2A.
Generally, the distributions of MolCode align well with those of
QM9, indicating that the distances and angles between atoms
are accurately modeled and reproduced. We illustrate some
randomly sampled molecules generated by MolCode in the ESI
(Fig. S1†).

Targeted molecule discovery

The ability to generate molecules with desirable properties that
are either absent or rare in the training data (e.g., newmaterials)
is quite useful for the target exploration of chemical space. Here
we conduct two targeted molecule discovery experiments,
namely the HOMO–LUMO gap minimization and the isotropic
polarizability maximization. Following previous works,24,43 we
netune the pretrained generative models on the collected
biased datasets. Specically, we collect all molecular structures
whose HOMO–LUMO gaps are smaller than 4.5 eV and all
molecular structures whose isotropic polarizabilities are larger
than 91 bohr3 from the QM9 as the biased datasets. Aerward,
we generate 10 000 molecular structures with the netuned
model and compute the quantum properties (HOMO–LUMO
gap and isotropic polarizability) with the PySCF package.62,63

The performance is then evaluated by calculating the mean and
ns of novel molecules generated by MolCode. (A) Radial distribution
nd (first row) and angular distribution functions for bonded carbon–
training data and in the generated molecules by MolCode. (B) Histo-
olecules generated with the biased MolCode (green curves), MolCode
Bar plots showing the average numbers of atoms, bonds, and rings per
nd B3 correspond to single, double, and triple bonds. R3, R4, R5, and R6

Chem. Sci., 2023, 14, 8380–8392 | 8383
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optimal value over all property scores (mean and optimal) and
the percentage of molecules with good properties (good
percentage). Molecules with good properties are those with
HOMO–LUMO gaps smaller than 4.5 eV and isotropic polariz-
abilities larger than 91 bohr3, respectively.

The results of targeted molecule discovery for two quantum
properties are shown in Table 2. For the two properties, our
MolCode outperforms all the baseline methods and its variants
without validity check and bonding information, demon-
strating MolCode's strong capability in capturing structure–
property relationships and generating molecular structures
with desirable properties. For instance, even though the biased
datasets are only 3.20% and 2.04% of QM9 respectively, the ne-
tuned MolCode achieves good percentages of 87.76% and
38.40%. We also illustrate the property distributions of QM9,
MolCode, and biased MolCode in Fig. 2B. Clearly, we can
observe that the property distributions of MolCode align well
with those of the QM9 dataset while the property distributions
of the biased MolCodes shi towards smaller HOMO–LUMO
gap and larger isotropic polarizability respectively.

Fig. 2C reveals further insights into the structural statistics
of the generated molecules. First, we observe that MolCode
captures the atom, bond, and ring counts of the QM9 dataset
accurately. Second, for the biased MolCode towards smaller
HOMO–LUMO gaps, the generated molecules exhibit an
increased number of nitrogen/oxygen atoms and double-bonds
in addition to a tendency towards forming six-atom rings. These
Fig. 3 The distributions of Vina scores, QED, and SA scores of the gen
reference. Lower Vina scores and higher QED and SA indicate better lig

Table 2 Results of the targeted molecule generation. We aim to minimiz
properties are calculated by PySCF and the best results are bolded. Good
smaller than 4.5 eV or isotropic polarizabilities larger than 91 bohr3 resp

Method

HOMO–LUMO gap

Mean Optimal Good p

QM9 (dataset) 6.833 0.669 3.20%
G-SchNet24 3.332 0.671 75.50%
G-SphereNet43 2.967 0.315 81.58%
EDM42 3.255 0.453 76.19%
MolCode (w/o check) 2.905 0.284 81.80%
MolCode (w/o bond) 2.874 0.267 83.56%
MolCode 2.809 0.178 87.76%

8384 | Chem. Sci., 2023, 14, 8380–8392
features indicate the presence of aromatic rings with nitrogen/
oxygen atoms and conjugated systems with alternating single
and double bonds, which are important motifs in organic
semiconductors with small HOMO–LUMO gaps. Finally, for the
biased MolCode towards larger isotropic polarizability, the
generated molecules contain more atoms, bonds, and rings,
which are the prerequisites for large isotropic polarizabilities.
Structure-based drug design

Designing ligand molecules binding with target proteins is
a fundamental and challenging task in drug discovery.64

According to the lock and key model,65,66 the molecules that bind
tighter to a disease target are more likely to be drug candidates
with higher bioactivity against the disease. Therefore, it is
benecial to take the structure of the target proteins into
consideration when generating molecules for drug discovery.
Here, we trainMolCode on the CrossDocked2020 dataset67which
contains 22.5 million protein-molecule complexes for structure-
based drug design. Starting with the target protein pocket as
the context, MolCode iteratively predicts the ligand atom types,
bond types, and atom coordinates. We generate 100 ligand
molecules for each target protein pocket in the test set. More
details are included in the Methods section.

Fig. 3 shows the property distributions of the sampled ligand
molecules. Here, we mainly focus on the following metrics
following previous works:44,47 Vina score measures the binding
erated molecules. We also show the distributions of the test set for
and quality.

e the HOMO–LUMO gap and maximize the isotropic polarizability. The
percentage measures the ratio of molecules with HOMO–LUMO gaps
ectively

Isotropic polarizability

ercentage Mean Optimal Good percentage

75.19 196.62 2.04%
78.20 216.06 31.39%
87.21 378.63 34.72%
89.10 381.24 33.23%
92.20 359.48 36.15%
90.82 372.19 35.31%
95.36 403.57 38.40%

© 2023 The Author(s). Published by the Royal Society of Chemistry



Fig. 4 Examples of the generated molecules with higher binding affinities than the references. We report the Vina scores and a lower Vina score
indicates higher binding affinity.

Edge Article Chemical Science
affinity between the generated molecules and the protein
pockets; QED68 measures how likely a molecule is a potential
drug candidate; synthesizability (SA) represents the difficulty of
drug synthesis (the score is normalized between 0 and 1 and
higher values indicate easier synthesis). In our work, The Vina
score is calculated by QVina,69,70 and the chemical properties are
calculated by RDKit71,72 over the valid molecules. Before feeding
to Vina, all the generated molecular structures are rstly rened
by universal force elds.73 Four competitive baselines including
LiGAN,74 AR,44 GraphBP,46 and Pocket2Mol47 are compared. We
also show the distributions of the test set for reference. MolCode
can generate ligand molecules with higher binding affinities
(lower Vina scores) than baseline methods. Specically, MolCode
succeeds to generate molecules with higher affinity than corre-
sponding reference molecules for 61.8% protein pockets on
average (Table S2†). Moreover, the generated molecules also
exhibit more potential to be drug candidates (higher QED and
SA). These improvements indicate that MolCode effectively
captures the distribution of 3D ligand molecules conditioned on
binding sites with the graph-structure co-design scheme. More
detailed evaluations are shown in Table S2.†

In Fig. 4, we further show several examples of generated 3D
molecules with higher affinities to the target proteins than their
corresponding reference molecules in the test set. It can be
observed that our generated molecules with higher binding
affinity also have diverse structures and are largely different
from the reference molecules. It demonstrates that MolCode is
capable of generating diverse and novel molecules to bind
target proteins, instead of just memorizing and reproducing
© 2023 The Author(s). Published by the Royal Society of Chemistry
known molecules in the dataset, which is quite important in
exploring novel drug candidates.
Conclusion

In this article, we have reported a roto-translation equivariant
generative framework for molecular graph-structure co-design
from scratch or conditioned on the target protein pockets. As
compared to existing methods that only represent and generate
2D topology graphs or 3D geometric structures, MolCode
concurrently designs 2D molecular graphs and 3D structures
and can well capture complex molecular relationships. Exten-
sive experiments on de novomolecule design, targeted molecule
discovery, and structure-based drug design demonstrate the
effectiveness of our model. Our investigation demonstrates that
the 2D topology and 3D geometry contain intrinsically
complementary information for molecular representation and
generation and the unied modeling of them greatly improve
the molecular generation performance.

There are also several potential extensions of MolCode as
future works. First, MolCode may be extended and applied to
signicantly larger systems with more diverse atom types such
as proteins and crystal materials. Although MolCode has been
trained on ligand–protein pocket complexes from the Cross-
docked2020 dataset, modications will be necessary to ensure
further scalability. Another potential improvement is to incor-
porate chemical priors such as ring structures into MolCode to
generate more valid molecules and realistic 3D structures. For
example, the molecules may be generated fragment-by-
Chem. Sci., 2023, 14, 8380–8392 | 8385
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fragment instead of atom-by-atom, which can also speed up the
generation process. Furthermore, wet-lab experiments may be
conducted to validate the effectiveness of MolCode. Overall, we
anticipate that further developments in deep generative models
will greatly accelerate and benet various applications in
material design and drug discovery.
Methods
Dataset

For the task of random molecule generation and targeted
molecule discovery, we evaluate MolCode on the QM9 (ref. 61)
and the GEOM-Drug75 dataset. The QM9 dataset contains over
134k molecules and their corresponding 3D molecular geome-
tries computed by density functional theory (DFT). In the
random molecular geometry generation task, we randomly
select 100k 3D molecular geometries as the training set and 10k
3D molecular geometries as the validation set. For the targeted
molecule discovery, we collect all molecular geometries whose
HOMO–LUMO gaps are smaller than 4.5 eV and all molecular
geometries whose isotropic polarizabilities are larger than 91
bohr3 as the netuning dataset. The GEOM-Drug dataset
contains larger drug-like molecules with an average of 44 atoms
and up to 181 atoms. We ltered GEOM-Drug following
previous work.76 Aer ltering, we removed the hydrogen atoms
and constructed the training, validation, and testing sets with
231 523, 28 941, and 28 940 molecules, respectively.

As for the structure-based drug design, we use the Cross-
Docked dataset67 which contains 22.5 million protein-
molecule structures following ref. 44 and 47. We lter out
data points whose binding pose RMSD is greater than 1 Å and
molecules that can not be sanitized with RDkit,71,72 leading to
a rened subset with around 160k data points. We use
mmseqs2 (ref. 77) to cluster data at 30% sequence identity,
and randomly draw 100 000 protein–ligand pairs for training
and 100 proteins from remaining clusters for testing. For
evaluation, we randomly sample 100 molecules for each
protein pocket in the test set.

For all the tasks including random/targeted molecule
generation and structure-based drug design, MolCode and all
the other baseline methods are trained with the same data split
for a fair comparison.
Overview of MolCode

Let a be the number of atom types, b be the number of bond
types, and n denote the number of atoms in a molecule. We can
represent the molecule as a 3D-dimensional graph G = (V, A, R),
where V ˛ {0,1}n×a is the atom type matrix, A ˛ {0,1}n×n×(b+1) is
an adjacency matrix, and R ˛ ℝn×3 is the 3D atomic coordinate
matrix. Note that we add one additional type of edge between
two atoms, which corresponds to no edge between two atoms.
Here, each element Vi in V and Aij in A are one-hot vectors. Viu =
1 and Aijv= 1 represent that the i-th atom has type u and there is
a type v bond between the i-th and j-th atom respectively. The i-
th row of the coordinate matrix Ri represents the 3D Cartesian
coordinate of the i-th atom.
8386 | Chem. Sci., 2023, 14, 8380–8392
We adopt the autoregressive ow framework55 to generate
the atom type Vi of the new atom, the bond types Aij, and the 3D
coordinates at each step. Since both the node type Vi and the
edge type Aij are discrete, which do not t into a ow-based
model, we adopt the dequantization method21,23 that converts
them into continuous numbers via adding noise as follows:

~Vi = Vi + u, u ∼ U(0, 1)a; ~Aij = Aij + u,u ∼ U(0, 1)b+1, i $ 1. (4)

where U(0, 1) is the uniform distribution over the interval (0, 1).
To generate Vi and Aij, we rst sample the latent variable zVi ˛ ℝa

and zAij ˛ ℝb+1 from the standard Gaussian distribution N ð0; 1Þ,
and thenmap zVi and zAij to ~Vi and ~Aij respectively by the following
affine transformation:

~Vi = sVi �zVi + tVi ; ~Aij = sAij�zAij + tAij , i $ 1, 0 # j # i − 1, (5)

where � denotes the element-wise multiplication. Both the
scale factors (sVi and sAij) and shi factors (tVi and tAij) depend on
the conditional information extracted from the intermediate 3D
graph Gi, which we will discuss later. Aer obtaining ~Vi and ~Aij,
Vi and Aij can be computed by taking the argmax of ~Vi and ~Aij i.e.,
Vi = one-hot(arg max ~Vi) and Aij = one-hot(arg max ~Aij).

However, it is non-trivial to generate coordinates that satisfy
the equivariance to rigid transformations and the invariance
property of likehood. Inspired by G-SchNet,24 MolGym,78 and G-
SphereNet,43 we choose to construct a local spherical coordinate
system and generate the distance di ,the angle qi, and the
torsion angle fi w.r.t. the constructed local SCS. Specically, we
rst choose a focal atom from all atoms in Gi, which is
employed as the reference point for the new atom. The new
atom is expected to be placed in the local area of the selected
focal atom. Assume that the focal node is the f-th node in Gi.
First, the distance di from the focal atom to the new atom is
generated, i.e., di = ‖Ri − Rf‖. Then, if i$ 2, the angle qi ˛ [0, p]
between the lines (Rf, Ri) and (Rf, Rc) is generated, where c is the
closest atom to the focal atom in Gi. Finally, if i$ 3, the torsion
angle fi ˛ [−p, p] formed by planes (Rf, Rc, Ri) and (Rf, Rc, Re) is
generated, where e denotes the atom closest to c but different
from f in Gi. Similar to ~Vi and ~Aij, di, qi, fi can be obtained by:

di = sdi�zdi + tdi , i $ 1, (6)

qi = sqi�zqi + tqi , i $ 2, (7)

fi = sfi �zfi + tfi , i $ 3, (8)

where zdi , z
q
i , z

f
i ˛ ℝ denote the sampled latent variables from

standard Gaussian distributions and the scale factors sdi , s
q
i , s

f
i ˛

ℝ are the shi factors tdi , t
q
i , t

f
i ˛ ℝ are the functions of Gi. The

coordinate Ri of the new atom is computed based on the relative
coordinates di, qi, fi and the reference atoms (f, c, e), hence
satisfying the roto-translation equivariance property.

Encoder

Generating the atom type, covalent bonds, and 3D position at
each step requires capturing the conditional information of the
intermediate graphGiwith an equivariant encoder. InMolCode,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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we use SphereNet49 for the QM9 dataset and EGNN50 for the
CrossDocked2020 dataset to obtain the node embeddings. Note
that MolCode is agnostic to the choice of equivariant graph
neural networks. SphereNet can capture the complete
geometric information inside molecular structures including
bond length/angles and dihedral angles but can hardly scale to
large molecules due to computational complexity. In contrast,
EGNN only encodes pairwise distances between atoms and is
more efficient than SphereNet on systems with more atoms e.g.,
ligand–protein pocket complexes. For the input graph Gi, let the
node embedding matrix computed by 3D GNN be H =

[hT0,h
T
1,.,hTi−1,]

T ˛ ℝi×d, where hj is the embedding of the j-th
atom and d is the dimension of embedding.

To further encode the information of covalent bonds and
capture the global information in the molecule graph, we
modify the self-attention mechanism79 and propose a novel
bond encoding. The multi-head self-attention (MHA) with bond
encoding is calculated as:

MHAðHÞ ¼ Con
�
ATT1;.;ATTh

�
WO; ATTkðHÞ

¼ softmax
�
Ak

�
Vk; (9)

Ak
ij ¼

�
hiW

k
Q

��
hjW

k
K

�T
ffiffiffi
d

p þ Con
�
Emb

�
Aij

�
; hi þ hj

�
Wk

E ; Vk

¼ HWk
V ; 1# k#K; (10)

where Con($) denotes the concatenation operation, Emb(Aij) is
the embedding of the bond between the i-th and j-th atom, K is
number of attention heads, WQ

h,W
K
h,W

V
h,W

E
h, and WO are learn-

able matrices.
In MolCode, we use the SphereNet49 with 4 layers or EGNN50

with 6 layers to extract features from the intermediate 3D
graphs, where the input embedding size is set to 64 and the
output embedding size is set to 256. The cutoff is set as 5 Å. The
node features are set as the one-hot vectors of atom types and
the edge representations are initialized with spherical basis
functions. In the multi-head self-attention module with bond
encoding, there are 4 attention heads. Besides that, we employ 6
ow layers with a hidden dimension of 128 for the decoder. We
use the model conguration for all the experiments.

Decoder

To generate new atoms, the scale factor sVi and shi factor tVi in
eqn (5) can be computed as:

sVi ,t
V
i = MLP(Con(hf,MHAV(H)f)), (11)

where MLPV is a multi-layer perceptron and MHAV(H)f denotes
the f-th node embedding from the output of the multi-head self-
attention network. With the predicted new atom Vi, we can
update H to ~H and predict sAij and tAij in eqn (5):

~H = [hT0 ,h
T
1 ,.,hTi−1,~h

T
i ]

T, ~hi = Emb(Vi), (12)

sAij ,t
A
ij = MLPA(Con(~hi,hj,MHA( ~H)f)), 0 # j # i − 1, (13)
© 2023 The Author(s). Published by the Royal Society of Chemistry
where Emb(Vi) denotes the atom type embedding here. As for
the scale and shi factors in eqn (8), we have:

sdi ,t
d
i = MLPd(Con(hf,MHA( ~H)i)), i $ 1, (14)

sqi ,t
q
i = MLPq(Con(hf,hc,MHA( ~H)i)), i $ 2, (15)

sfi ,t
f
i = MLPf(Con(hf,hc,he,MHA( ~H)i)), i $ 3, (16)

where MHA(~H)i is the node embedding of the newly added atom
from the output of the multi-head self-attention network.

As for the focal atom selection, we employ a multi-layer
perceptron (MLP) with the atom embeddings as input.
Atoms that are not valence lled are labeled 1, otherwise 0.
Particularly, in the structure-based drug design task where
there is no ligand atom at the beginning, the focal atoms are
dened as protein atoms that have ground-truth ligand atoms
within 4 Å at the rst step. Aer the generation of the rst
ligand atom, MolCode selects focal atoms from the generated
ligand atoms. At the inference stage, we randomly choose the
focal atom f from atoms whose classication scores are higher
than 0.5. The sequential generation process stops if all the
classication scores are lower than 0.5 or there is no gener-
ated bond between the newly added atom and the previously
generated atoms.
Validity lter

The graph-structure codesign scheme in MolCode makes it
feasible to check the chemical validity based on the generated
2D graphs at each step. Specically, we explicitly consider the
valency constraints during sampling to check whether current
bonds have exceeded the allowed valency. The valency
constraint is dened as:X

j

��Aij

��# valencyðViÞ and
X
i

��Aij

��# valency
�
Vj

�
; (17)

where jAijj denote the order of the chemical bond Aij. If the newly
added bond breaks the valency constraint, we will reject the
bond Aij, sample a new zij in the latent space and generate
another new bond type.
Model training and inference

To make sure the generated atoms are in the local region of
their corresponding reference atoms, we propose to use Prim's
algorithm to obtain the generation orders of atoms. The weights
of the edges are set as the distances between atoms. The rst
atoms of molecules are randomly sampled in each epoch to
encourage the generalization ability of the model. With such
obtained trajectories, MolCode is trained by stochastic gradient
descent with the following loss function. For a 3D molecular
graph G with n atoms (n > 3), we maximize its log-likelihood in
eqn (18) and (19) to train the MolCode model. Besides, the
atom-wise classier for focal atom selection is trained with
a binary cross entropy loss.
Chem. Sci., 2023, 14, 8380–8392 | 8387
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log pðGÞ ¼
Xn�1

i¼1

"
log pZV

�
zVi

�þ log

�����v
~Vi

vzVi

�����
#

þ
Xn�1

i¼1

Xi�1

j¼0

"
log pZA

�
zAij

�
þ log

�����v
~Aij

vzAij

�����
#

(18)

þ
Xn�1

i¼1

�
log pZd

�
zdi
�þ log

����vdivzdi

����
	
þ
Xn�1

i¼2

�
log pZq

�
zqi
�þ log

����vqivzqi

����
	

þ
Xn�1

i¼3

�
log pZf

�
zfi
�þ log

����vfi

vzfi

����
	
:

(19)

In the randommolecule generation task, our MolCode model
is trained with Adam80 for 100 epochs. The learning rate is set as
0.0001 and the batch size is set as 64. We report the results from
the epoch with the best validation loss. It takes around 36 hours
to train a MolCode from scratch on 1 Tesla V100 GPU. In the task
of targeted molecule discovery, the model is further ne-tuned
with a learning rate of 0.0001 and a batch size of 32. The ne-
tuning epochs are set as 40 for the HOMO–LUMO gap and 80
for the isotropic polarizability. In the task of structure-based
drug design, we train MolCode with Adam optimizer for 100
epochs with a learning rate of 0.0001 and a batch size of 8. b1 and
b2 in Adam is set to 0.9 and 0.999, respectively.
8388 | Chem. Sci., 2023, 14, 8380–8392
For all the tasks including random/targeted molecule
generation and structure-based drug design, MolCode, and all
the other baseline methods are trained with the same data split
for a fair comparison. We run the code provided by the authors
to obtain the results of baseline methods. Due to the random-
ness of training and molecule sampling, the results are not
exactly the same but roughly match the results in the original
papers. For example, the validity reported in G-SphereNet is
88.18% and we have 86.43% in Table S3.†

During generation, we use temperature hyperparameters from
the prior Gaussian distributions. Specically, we change the stan-
dard deviation of the Gaussian distribution to the temperature
hyperparameters. To decide the specic values of temperature
hyperparameters, we perform a grid search over {0.3, 0.5, 0.7} based
on validity and uniqueness in random molecule generation to
encourage generatingmore valid and diversemolecules.We use 0.5
for sampling zVi , 0.5 for sampling zAi , 0.3 for sampling zdi , 0.3 for
sampling zqi , and 0.7 for sampling zfi as the default setting. We have
the following interesting insights for choosing temperature hyper-
parameters: to generate valid and diverse molecules, the hidden
variables for bond lengths/angles (zdi and zqi ) are assignedwith small
temperature hyperparameters (low variance) since the values of
a certain type of bond lengths/angles are largely xed. In contrast,
the torsion angles are more exible in molecules so that the
temperature hyperparameter of zfi is larger. We use the same xed
temperature hyperparameters for the targeted molecule discovery
© 2023 The Author(s). Published by the Royal Society of Chemistry
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and structure-based drug design experiments. In Fig. S2,† we show
the hyperparameter analysis with respect to zVi , z

A
i , z

d
i , z

q
i , and zfi . The

default values with these hyperparameters are set to 0.5.MolCode is
generally robust to the choice of hyperparameters and can further
benet from setting appropriate hyperparameter values. In the
future, the generation may be further improved with Bayesian
optimization over the hyperparameters.81

Algorithm 1 and 2 show the pseudo-codes of the training and
generation process of MolCode for random/targeted molecule
generation. Note that to scale to large molecules in experiments,
the bonds are only generated and predicted between new atoms
and the reference atoms. The pseudo-codes of MolCode for
structure-based drug design are similar to Algorithm 1 and 2,
except that the ligand atoms are generated conditioned on the
protein pocket instead of generated from scratch.

Data availability

The data necessary to reproduce our numerical benchmark
results are publicly available at https://github.com/divelab/DIG
and https://github.com/gnina/models.

Code availability

The code used in the study is publicly available from the GitHub
repository: https://github.com/zaixizhang/MolCode.
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