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Abstract

Typical simultaneous blood oxygenation-level dependent (BOLD) and arterial spin labeling

(ASL) sequences acquire two echoes, one perfusion-sensitive and one BOLD-sensitive.

However, for ASL, spatial resolution and brain coverage are limited due to the T1 decay of

the labeled blood. This study applies a sequence combining a multiband acquisition with

four echoes for simultaneous BOLD and pseudo-continuous ASL (pCASL) echo planar

imaging (MBME ASL/BOLD) for block-design task-fMRI. A multiband acceleration of four

was employed to increase brain coverage and reduce slice-timing effects on the ASL signal.

Multi-echo independent component analysis (MEICA) was implemented to automatically

denoise the BOLD signal by regressing non-BOLD components. This technique led to

increased temporal signal-to-noise ratio (tSNR) and BOLD sensitivity. The MEICA tech-

nique was also modified to denoise the ASL signal by regressing artifact and BOLD signals

from the first echo time-series. The MBME ASL/BOLD sequence was applied to a finger-

tapping task functional MRI (fMRI) experiment. Signal characteristics and activation were

evaluated using single echo BOLD, combined ME BOLD, combined ME BOLD after MEICA

denoising, perfusion-weighted (PW), and perfusion-weighted after MEICA denoising time-

series. The PW data was extracted using both surround subtraction and high-pass filtering

followed by demodulation. In addition, the CBF/BOLD response ratio and CBF/BOLD cou-

pling were analyzed. Results showed that the MEICA denoising procedure significantly

improved the BOLD signal, leading to increased BOLD sensitivity, tSNR, and activation sta-

tistics compared to conventional single echo BOLD data. At the same time, the denoised

PW data showed increased tSNR and activation statistics compared to the non-denoised

PW data. CBF/BOLD coupling was also increased using the denoised ASL and BOLD data.

Our preliminary data suggest that the MBME ASL/BOLD sequence can be employed to col-

lect whole-brain task-fMRI with improved data quality for both BOLD and PW time series,

thus improving the results of block-design task fMRI.

Introduction

Functional MRI (fMRI) is a powerful, noninvasive tool to measure brain function. Two major

contrasts used for fMRI are blood oxygenation-level dependent (BOLD) and arterial spin
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labeling (ASL). While the BOLD fMRI signal is sensitive to magnetic susceptibility fluctuations

caused by changes in blood oxygenation, it is also related to changes in cerebral blood flow

(CBF), cerebral blood volume (CBV), and the cerebral metabolic rate of oxygenation

(CMRO2). In contrast, ASL fMRI measures blood flow changes directly by magnetically tag-

ging blood flowing into the brain. Therefore, CBF and BOLD are commonly used to study the

hemodynamic response to neuronal activity and extract information regarding the role of the

microvasculature in the brain [1–5].

Sequences have been developed to obtain ASL and BOLD contrast simultaneously by col-

lecting ASL- and BOLD-sensitive echoes in one acquisition [1–8]. These sequences have been

used to assess the contributions of CBF to the BOLD response [3, 4], obtain calibrated BOLD

and cerebrovascular reactivity (CVR) measurements [9, 10], and reduce total imaging time by

acquiring two image contrasts in one acquisition [5]. Furthermore, simultaneous acquisition

of ASL and BOLD is an important tool for neurovascular coupling measures [6] and has been

applied in research of aging and stroke [7, 8]. However, ASL requires a tagging module and

post-labeling delay (PLD) to allow tagged blood to flow into the brain. For pseudo-continuous

ASL (pCASL), the recommended approach for ASL imaging [11], the suggested tagging time

and PLD are each more than 1.5 s [11]. This approach results in long TRs and total ASL acqui-

sition readout times that are severely limited by the short T1 relaxation of the tagged blood. In

turn, it reduces the signal-to-noise ratio (SNR) and restricts the image resolution and total

number of slices that can be acquired. Slices also experience varying PLD, which can affect

accurate CBF quantification. Thus, most simultaneous ASL/BOLD studies acquire a 64×64

matrix, slice thicknesses >5 mm, and less than 20 slices, which can be inadequate when study-

ing finer structures.

To address these issues, our group has recently developed a multiband (MB), multi-echo

(ME) simultaneous ASL/BOLD sequence [12]. This sequence leverages two advanced tech-

niques, MB imaging and ME imaging, to concurrently acquire whole-brain ASL and BOLD

time-series with high tSNR. MB imaging, where multiple slices are excited and acquired simul-

taneously, can be used to increase spatial coverage and/or temporal resolution [13, 14]. MB

imaging has been developed and validated for task fMRI [15] and resting-state fMRI [14, 16]

and has been combined with ASL to acquire high-resolution blood flow images [17–19]. One

major advantage of the addition of MB to ASL is a reduction in interslice labeling delay time

differences. This is because MB imaging allows more slices to be acquired in fewer excitations

compared with single band acquisitions. Fewer excitations also means T1-relaxation of the

labeled blood is reduced. This leads to an increased SNR and more accurate CBF estimations

[17–19]. MB-ASL has shown similar CBF estimation compared with single band ASL [19].

The MBME ASL/BOLD sequence also utilizes a multi-echo approach. In contrast to typical

simultaneous ASL/BOLD sequences, which acquire only two echoes, our MBME ASL/BOLD

sequence acquires four total echoes. A growing body of research indicates the image SNR, tem-

poral SNR (tSNR), and BOLD sensitivity can be increased using ME echo-planar imaging

(EPI) approaches [20–25]. The BOLD contrast is highest when the TE equals the T2� relaxa-

tion of the tissue of interest. However, T2� varies across the brain. This can be corrected for by

acquiring several (>2) echoes and averaging them, weighted by the voxelwise T2�. Combining

echoes in this way has resulted in improved BOLD sensitivity [20, 21, 26]. Images can be fur-

ther denoised using an automated ME independent component analysis (MEICA) approach

[23, 24, 27], which can robustly separate BOLD and non-BOLD components. The MEICA

technique classifies independent components as either BOLD or non-BOLD depending on

whether their amplitudes are linearly dependent on TE or not dependent on TE, respectively.

Components deemed unrelated to BOLD fluctuations are removed from the data.

MBME simultaneous ASL/BOLD fMRI
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In a previous study, the MBME ASL/BOLD sequence was used to acquire resting state

fMRI data in a cohort of healthy control subjects [12]. Functional connectivity strength and

network size was significantly increased following MEICA denoising of the BOLD signal.

Robust connectivity was also observed in well-known brain networks using ASL-derived per-

fusion-weighted time-series. In the current study, we applied the MBME ASL/BOLD sequence

to task fMRI. Four total echoes were acquired and combined to increase the image tSNR and

BOLD sensitivity and remove non-BOLD signal from the BOLD data. Furthermore, we have

modified the MEICA algorithm and introduce an automated ASL denoising technique to

increase the tSNR of ASL data. Task fMRI data were acquired and compared between perfu-

sion-weighted (PW), PW denoised (PWDN), second echo (E2), multi-echo combined (MEC),

and multi-echo combined, denoised (MECDN) time-series.

Methods

Subjects

This study was approved by the Medical College of Wisconsin Institutional Review Board, and

all subjects provided written informed consent before participating. 13 healthy adult volun-

teers (six males, seven females; mean age = 30.2 +/- 8.5 years, ranging from 20–50 years) were

recruited for this study. All subjects were right-handed. Subjects were asked to refrain from

intake of caffeine before the MRI exam.

Imaging

All imaging was performed on a General Electric 3T MR750 system with a body transmit

coil and 32 channel NOVA receive head coil. A T1-weighted, magnetization-prepared rapid

acquisition with gradient echo (MPRAGE) was collected and used for coregistration with

the functional images. Images were acquired with the following parameters: TR/TE = 7.3/

3.0ms, FA = 8˚, FOV = 256mm, 1×1×1mm3 resolution, BW = 62.5kHz, and TI = 900ms. A

T2-weighted CUBE image was also acquired with the following parameters: TR/TE = 2500/

63.6ms, FA = 90˚, FOV = 256mm, 1×1×1mm3 resolution, and BW = 125kHz.

MBME ASL/BOLD sequence

A sequence diagram for the MBME ASL/BOLD sequence is shown in Fig 1. The sequence is

described in detail in [12]. In short, the sequence consists of an unbalanced pCASL tagging

module [28, 29], followed by a PLD, a MB excitation, and ME gradient-echo EPI readout.

Blipped-CAIPI [16] was also applied to reduce g-factor noise amplification caused by the slice-

unaliasing in MB imaging, and is indicated by the z-gradient blips. In-plane acceleration was

also implemented. Calibration repetitions were acquired at the start of the MBME ASL/BOLD

acquisition using an interleaved approach and an MB excitation with phase-cycling [12, 30].

These repetitions were used for the subsequent unaliasing. The last repetition in each acquisi-

tion was not tagged in order to obtain an M0 image, which is the equilibrium brain tissue mag-

netization used to normalize the subtracted PW maps for CBF quantification.

Functional scan protocol

Subjects underwent one task-based fMRI MBME ASL/BOLD acquisition. The sequence incor-

porated an unbalanced pCASL labeling scheme with labeling time = 1.5s and PLD = 1.5s. In

addition, at the beginning of the MB acquisition, calibration volumes were acquired. A partial

k-space acquisition was employed with a partial Fourier factor of 0.75. Additional parameters

for the MBME ASL/BOLD run were as follows: number of echoes = 4;

MBME simultaneous ASL/BOLD fMRI
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TE = 9.1,25,39.6,54.3ms; TR = 4.0 s; in-plane R = 2; MB-factor = 4; RF excitations per TR = 9

(total slices = 9×4 = 36); FOV = 240mm; resolution = 3×3×3mm3; matrix size = 80x80;

FA = 90˚; RF pulse width = 6400ms; Blipped CAIPI FOV shift = FOV/3. Scans lasted six min-

utes including calibration repetitions resulting in 90 functional repetitions.

During the task-based fMRI scan, subjects performed a finger-tapping task. A block-

design paradigm, consisting of four alternating periods of rest and bilateral finger tapping, was

applied. Rest and tapping periods lasted 10 TRs (40 sec) each. During tapping periods, subjects

were instructed to tap their thumb to the other four digits sequentially at their own pace.

Reconstruction

All image reconstruction was performed in Matlab (The MathWorks, Inc., Natick, MA, USA)

and described in detail in [12]. First, Nyquist ghosting correction was performed using naviga-

tor echoes collected at the beginning of each excitation followed by echo separation. The cali-

bration repetitions, acquired at the start of each MBME ASL/BOLD scan, were unaliased using

a discrete Fourier transform and used to generate kernels for slice and in-plane unaliasing. A

slice-GRAPPA algorithm [16] was implemented for slice unaliasing and applied separately for

each echo. A traditional 1D-GRAPPA approach [31] was used to perform in-plane unaliasing

following the slice-unaliasing procedure. Partial k-space was reconstructed using a homodyne

method [32].

Preprocessing

The fMRI data processing pipeline is shown in Fig 2. Preprocessing was performed on each

echo separately using AFNI [33, 34] (https://afni.nimh.nih.gov/afni) and FSL (http://fsl.fmrib.

ox.ac.uk/fsl/fslwiki) [35]. Anatomical segmentation and registration was performed in SPM.

First, the MPRAGE image was segmented into gray matter (GM), white matter (WM), and

cerebrospinal fluid (CSF). The gray matter and white matter segmentations were then com-

bined resulting in a brain-only MPRAGE image. This image was then transformed to Mon-

treal Neurological Institute (MNI) space using a nonlinear registration algorithm. Motion was

estimated for the first echo and those estimates were applied to the subsequent echoes using

Fig 1. MBME ASL/BOLD pulse sequence design. The sequence consists of an unbalanced pCASL labeling train, followed by a PLD,

and finally an ME EPI readout. The first echo train was acquired after the acquisition of navigator echoes through the center of k-

space. The phase was then rewound to the start of k-space, and the next echo train was acquired. This was repeated three times for a

total of four echoes. MB imaging was implemented by replacing the single-band excitation pulse with a MB excitation pulse. Finally,

blipped-CAIPI was utilized to shift the FOV of aliased slices and reduce g-factor penalties associated with MB imaging. Reprinted

from [31] under a CC BY license, original copyright 2017.

https://doi.org/10.1371/journal.pone.0190427.g001
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3dvolreg in AFNI. Echoes were then coregistered to the anatomical MPRAGE image using

epi_reg in FSL [36] with an affine registration with 12 degrees of freedom. Next the functional

data was transformed to MNI space via applywarp in FSL using the transformation matrix out-

put from the MPRAGE-MNI registration and normalization.

Multi-echo combination and denoising

All four echoes were combined using the T2�-weighted approach [26, 37]. First, the voxelwise

mean across time of each individual echo dataset was used to estimate the signal immediately

after excitation, S0 , and the voxelwise T�
2
, T�2ðfitÞ using log linear regression (Eq 1). The

voxelwise T�2ðfitÞ was then used to determine the weights, wðT�
2
Þ (Eq 2), which were used in a

weighted summation of the echoes. TEn represents the nth echo time.

SðTEnÞ ¼ S0 � expð� ð1=T�2ðfitÞ Þ � TEnÞ ð1Þ

w T�
2

� �
¼

TEn � expð� TEn=T�2ðfitÞ Þ
P

nTEn � expð� TEn=T�2ðfitÞ Þ
ð2Þ

Following the echo combination, the data were denoised using the automated MEICA tech-

nique in afni and the meica.py plugin (v2.5). Default parameters were used except for the

“daw” parameter, a weight use to control ICA dimensionality, which was raised from 10 to 20

Fig 2. Schematic showing the processing pipeline for the ASL and BOLD echoes. The first and second echoes were processed

separately to yield the PWnone and E2 data, respectively. Echoes were combined using a T2�-weighted approach to generate the MEC

dataset. This dataset was further denoised using MEICA, resulting in the MECDN dataset. No additional regression was performed

in the GLM for the PW and MECDN datasets. Example activation curves and model fits are shown for the different datasets.

https://doi.org/10.1371/journal.pone.0190427.g002
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to account for the low number of timepoints. This method is described in detail elsewhere [23,

24, 27] and classifies independent components as BOLD or non-BOLD based on whether their

amplitudes are linearly dependent on TE [23, 24, 27]. Components deemed non-BOLD were

removed from the data. For all cases, the tag-control modulation was identified as a non-

BOLD component and removed from the data.

ASL processing

BOLD signal is known to contaminate the PW signal [38–40]. Liu et al showed there are two

components of this BOLD contamination [38]. The first component is a multiplicative term

related to the non-zero echo time of the sequence. The second component is a spurious com-

ponent that can be reduced by a low pass filter. These filtering techniques however, are not

perfect [38, 40].

Perfusion-weighted denoising. Therefore, we have further modified the MEICA algo-

rithm in order to denoise the first-echo images by removing both the artifact and BOLD com-

ponents from the signal prior to generating the PW time-series (i.e. surround subtraction and

high-pass filtering and demodulation). First, data from all echoes was low-pass filtered using a

band-pass filter (3dTproject in afni) with a maximum frequency of 0.09 Hz. This frequency is

below the label-control oscillation frequency (for TR = 4s, f = 1/(2�TR) = 0.125 Hz), the main

perfusion frequency (0.1125 Hz), and the second harmonic of the perfusion signal (0.1 Hz).

The perfusion frequencies were determined by subtracting the task frequency (1/80s = 0.0125

Hz) from the label-control oscillation frequency. Filtering had the effect of removing PW sig-

nal oscillations from the data. Without low-pass filtering, one or more ASL components, char-

acterized by these label/control oscillations, were identified. These components tended to be

classified as artifacts and would be removed from the data, significantly reducing the tSNR of

the subsequently calculated PW time-series. Next, the original MEICA algorithm was run, as

described above, using the low-pass filtered echoes. This procedure combined the echoes

using the T2� weighted approach [26, 37], extracted independent components, and classified

those components as BOLD, artifact, and indeterminate. The BOLD and artifact components

were then regressed out of the original, unfiltered first-echo data. A flow chart showing the

PW denoising algorithm is shown in Fig 3.

The PW denoising procedure relies heavily on the original MEICA algorithm; however,

there are two key differences between the techniques. First, a temporal filtering procedure is

applied prior to MEICA to remove perfusion-related signal oscillations. The original MEICA

algorithm is then run without modification on this data. Second, whereas the original MEICA

algorithm removes non-BOLD components from the combined ME time-series and keeps

BOLD components, here we remove artifact and BOLD signals from the unfiltered, heavily

perfusion weighted first-echo.

An additional denoising procedure was employed where only the artifact components were

removed from the first-echo time-series. This was compared to the data where both artifact

and BOLD components were regressed to determine whether regressing the BOLD signal pro-

vided an added benefit over regressing only the artifact components. Furthermore, to verify

PW signal was not being removed by the denoising procedure, the mean and temporal stan-

dard deviation of the PW signal in gray matter were analyzed.

Perfusion-weighted time-series. A PW time-series was generated for both the non-

denoised and denoised first-echo data using two common, related, approaches: by surround

subtracting label and control images (SS) [41] and by high-pass filtering the data followed by

demodulation (HD) [4, 42]. Both these approaches are equivalent to demodulation followed

by low-pass filtering, but differ in the filtering frequency. HD data was high-pass filtered with

MBME simultaneous ASL/BOLD fMRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0190427 February 1, 2018 6 / 21

https://doi.org/10.1371/journal.pone.0190427


Fig 3. Schematic showing the perfusion-weighted denoising procedure. Echoes were first despiked, volume registered, and

coregistered to MNI space. Each echo was then individually low-pass filtered at f� 0.09 Hz. Echoes were then combined using a

T2�-weighted approach. This low-pass filtered, multi-echo combined dataset was fed into the MEICA algorithm, which extracted

independent components and classified them as artifact, BOLD, or indeterminate. The BOLD and artifact components were

regressed from the unfiltered first-echo data resulting in a denoised first-echo dataset. Surround subtraction and high-pass filtering

followed by demodulation were performed on this data leading to denoised PW datasets. A GLM was employed on this data to

determine activation.

https://doi.org/10.1371/journal.pone.0190427.g003
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a minimum frequency of 0.09 Hz for the reasons described above. The modulated ASL compo-

nent is present only above this frequency. Thus, high-pass filtering above this frequency sepa-

rates the modulated ASL signal from the BOLD component present below 0.09Hz [4].

fMRI processing

The above procedures resulted in three BOLD and six PW datasets for each scan that under-

went further processing for fMRI analyses: E2 (second echo, TE = 25ms), combined multi-

echo (MEC), MEC after MEICA denoising (MECDN), PW without denoising for the SS and

HD data (PWss,none and PWhd,none), PW denoised with artifact components regressed for the

SS and HD data (PWDNss,art and PWDNhd,art), and PW denoised with artifact and BOLD

components regressed for the SS and HD data (PWDNss,art+BOLD and PWDNhd,art+BOLD). All

data were blurred with a 4.5 mm full width at half maximum (FWHM) Gaussian kernel. For

the E2 and MEC data, the six rigid-body motion parameters derived from the motion correc-

tion processing were regressed out of the data, and label-control oscillations were regressed

out of the data by including a column of alternating −1s and 1s in the design matrix.

Statistical analysis

A general linear model (GLM) was used for the task-based fMRI analysis using 3dDeconvolve in

afni. For the E2 and MEC data, in addition to the nuisance regression of motion parameters and

the label-control sequence, the model included detrending with a third-degree polynomial. This

was not necessary for the MECDN data where MEICA removed the low frequency drifts and

motion-related artifacts. Individual activation maps were thresholded at an uncorrected p<0.01.

For the MEICA denoised BOLD and ASL data, the number of degrees of freedom was reduced

by the number of components regressed from the data on an individual subject basis. For the

MECDN data, an average of 43.1 +/- 7.7 total components were identified, and the number of

regressed components ranged from 10 to 24, with a mean of 14.9 +/- 4.6. For the PW data, an

average of 32.9 +/- 5.6 total components were found. For the PW data with artifact components

removed, the number of regressed components ranged from ranged from 4 to 18, with a mean

of 11.2 +/- 3.9. Finally, for the PW data with artifact and BOLD components removed, the num-

ber of regressed components ranged from 13 to 33, with a mean of 22.8 +/- 5.3. For the BOLD

data, following 3dDeconvolve, a restricted maximum likelihood (REML) model (3dREMLfit)
was used to model temporal autocorrelations in the data. This program uses an ARMA(1,1) to

model the time-series noise correlation in each voxel. ASL data have been shown to not have sig-

nificant temporal autocorrelation, so this model was not used for the PW data [40].

Group maps were calculated for each dataset (E2, MEC, MECDN, PWss,none, PWhd,none,

PWDNss,art, PWDNhd,art, PWDNss,art+BOLD, and PWDNhd,art+BOLD) using a one-sample t-test.

Group maps were thresholded at p<0.005 with cluster-size thresholding to correct for multiple

comparisons. The minimum cluster size was determined using the recommended approach

from Cox et al to reduce the family wise error rate [43]. First, spherical autocorrelation param-

eters (acf) were estimated using the residuals from the t-test and 3dFWHMx in afni. These

parameters were then averaged for the BOLD and ASL data separately to create one set of

acf parameters for the BOLD and ASL data. Parameters were then fed into afni’s 3dClustSim
program to determine minimum cluster sizes for α<0.05. The minimum cluster size for the

BOLD data was 182 and for the ASL data was 131.

For each subject and dataset, the tSNR was computed on a voxelwise basis and defined as

the mean signal divided by the standard deviation of the noise across the time-series. For the

BOLD data, the mean tSNR was extracted from a whole-brain mask. For the PW data, the

mean tSNR was extracted from the GM segmentation. In addition, the mean and maximum t-

MBME simultaneous ASL/BOLD fMRI
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scores of the fMRI task were computed in activated voxels using an overlap mask that was cre-

ated for each subject from voxels active in all BOLD and all PW datasets separately. Noise sig-

nal was defined as the residual between each voxel’s best fit to the model and the signal itself.

Statistical comparisons between mean values were made using a Bonferroni-corrected paired

t-test to compare across datasets with significance set at p < 0.05.

CBF/BOLD relationship

For most simultaneous ASL/BOLD studies, the ASL signal is used to provide a better interpre-

tation of the activation, instead of another way to compute activation. To that end, the rela-

tionship between the ASL and BOLD activation responses was evaluated. Mean signal was

extracted for E2, MECDN, PWss,none, PWhd,none, PWDNss,art+BOLD, and PWDNhd,art+BOLD data

from an overlap mask consisting of voxel active for all six datasets (uncorrected p< 0.01). The

time series were converted to percent signal change by dividing by the mean of the residual

time-series from the GLM. The four activation blocks for each dataset were then averaged. The

activation magnitude was computed as the mean of the middle five time points from the acti-

vation. The ratio between CBF and BOLD activation magnitude was computed for the E2 and

MECDN data vs. the PW and PWDN datasets respectively. The relationship between these

ratios and baseline CBF was also computed.

Finally, CBF/BOLD coupling was computed for the same datasets. CBF/BOLD coupling was

assessed by correlating the signals from the E2 and MECDN datasets to the PW and PWDN

data respectively on a voxelwise basis using Pearson correlation. The correlation maps were

thresholded at an uncorrected p<0.01 and the mean correlation values were extracted. The cor-

relation maps were then averaged across subjects to create group CBF/BOLD coupling maps.

Results

Data quality

Representative individual echo, MEC, MECDN, and mean PWss,none and PWss,art+BOLD images

are shown in Fig 4. Image quality was better for the MEC and MECDN data compared to any

individual echo. The PWss,art+BOLD data was less noisy compared to the PWss,none data. This is

most noticeable in the white matter. Group-averaged tSNR is shown in Fig 5. Quantitative

results are shown in Table 1 and mirrored the results from the previously published resting

state MBME ASL/BOLD study [12, 30]. Specifically, whole-brain tSNR significantly increased

for the MEC data compared to the E2 data (p<0.001) and for the MECDN data compared

to the MEC and E2 data (p<0.001). In addition, tSNR was significantly increased for the

PWDNss,art+BOLD data compared to the PWDNss,art and PWss,none data (p<0.001) and for the

PWDNss,art vs. PWss,none data (p<0.001). The same trend was observed for the HD data with

PWDNhd,art+BOLD tSNR increased compared to the PWDNhd,art and PWhd,none data (p<0.001)

and for the PWDNhd,art vs. PWhd,none data (p<0.001).

No significant differences in mean PW signal were seen between PWss,none, PWDNss,art, or

PWDNss,art+BOLD datasets (26.4±4.5, 26.5±4.5, 26.4±4.5 respectively) or PWhd,none, PWDNhd,art,

or PWDNhd,art+BOLD datasets (12.6±2.2, 12.6±2.2, 12.7±2.2 respectively). The increase in tSNR

was driven by a significant decrease in the standard deviation after denoising for both the SS

and HD datasets.

Task fMRI

BOLD results from the group finger tapping fMRI analysis are shown in Fig 6. Fig 6A shows

the results of the group analysis across subjects for the E2, MEC, and MECDN. The MECDN

MBME simultaneous ASL/BOLD fMRI
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dataset detected the most activation, followed by the MEC and E2 datasets. Fig 6B shows mean

signal curves from one representative subject in active voxels for the E2, MEC, and MECDN

datasets. An ANOVA comparing datasets did not show significant differences.

PW results are shown in Fig 7. Additional activation was observed for the PWDNss,art+BOLD

data compared to the and PWss,none data (Fig 7A, left); however, no appreciable differences

were observed for the PWDNhd,art+BOLD data compared to the PWhd,none data (Fig 7A, right).

In addition, increased activation was seen for the HD data compared to the SS data. Fig 7B

shows mean activation time-series from a representative subject for SS (left) and HD data

(right). The SS denoised time-series appears markedly cleaner with less variance than the non-

Fig 4. Representative PW and BOLD datasets. (A) Mean PWss,none (top) and PWDNss,art+BOLD data (bottom) images. These

images were created by averaging and subtracting the label images from the control images. MB imaging allows for the collection of

whole-brain images in a relatively short readout time reducing T1 effects. (B) Example individual echo, MEC, and MECDN images

from a single time point from one subject. Image quality improves with echo combination.

https://doi.org/10.1371/journal.pone.0190427.g004
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denoised SS time-series. A slight improvement can be seen for the denoised HD time series

compared to the non-denoised time series.

Quantitative results are shown in Table 1. In summary, the mean t-score in active voxels

was significantly increased for the MECDN and MEC data compared to the E2 data and for the

MEC data compared to the E2 data. Mean t-score was also increased for the PWDNss,art+BOLD

data compared to the PWDNss,art and PWss,none data and for the PWDNhd,art+BOLD data com-

pared to the PWhd,none data. Maximum t-score in active voxels was not significantly different

for the BOLD data, but increased with denoising for the PW data.

CBF/BOLD relationship

No differences were seen between processing schemes for the CBF/BOLD response ratio (Fig

8A). In addition, a significant negative correlation was observed between the CBF/BOLD ratio

and mean baseline CBF for all processing schemes except for HD, PW/E2 which trended

toward significance (p = 0.08) (Fig 8B). For the SS technique, CBF/BOLD coupling signifi-

cantly increased for the PWDN and MECDN datasets compared to the E2 and PW datasets.

Fig 5. Group tSNR maps. The tSNR significantly increased from the E2 to MECDN data (p<0.001). For the PW data, tSNR maps

are shown for the SS data. The tSNR for the PWDNss,art+BOLD significantly increased compared to the PWDNss,art and PWss,none data

(p<0.001).

https://doi.org/10.1371/journal.pone.0190427.g005

MBME simultaneous ASL/BOLD fMRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0190427 February 1, 2018 11 / 21

https://doi.org/10.1371/journal.pone.0190427.g005
https://doi.org/10.1371/journal.pone.0190427


For the HD technique, CBF/BOLD significantly increased for the MECDN dataset compared

to the E2 data (Fig 9). There was a slight, but non significant increase in coupling for the

PWDN data for the HD method. These results are also observed in the group maps.

Discussion

The purpose of this work was to evaluate our recently developed MBME ASL/BOLD sequence

for task-fMRI. To accomplish this, a finger-tapping task fMRI study was performed using this

sequence. Four total echoes were collected. Combining the echoes resulted in increased BOLD

sensitivity. The BOLD data was further cleaned using the MEICA denoising procedure. The

MEICA technique was also modified to denoise the PW data. Motor activation was detected

from the finger-tapping task using non-denoised and denoised PW and BOLD time-series.

Data denoising resulted in increased sensitivity, tSNR, activation strength, and activation vol-

ume for the PW and BOLD datasets, and increased CBF/BOLD coupling.

One major advantage of our MBME ASL/BOLD implementation, compared with other typ-

ical simultaneous ASL/BOLD sequences, is that it gives us the ability to collect more than two

echoes. A T2� weighted combination of the echoes resulted in increased tSNR for the BOLD

echoes. MEICA could also be used to denoise the data [23, 24, 27]. The automated MEICA

denoising process relies on the TE dependence of BOLD-related ICA components to remove

non-BOLD signals from the data. Using MEICA, the tSNR increased approximately 2.5 times

Table 1. Group averages for quantitative metrics.

Whole-brain tSNR Mean t-score Overlapping Voxels Max t-score Overlapping Voxels

E2 46.7 (6.2) 4.16 (0.39) 10.40 (3.41)

MEC 78.8 (9.5) 4.61 (0.63) 10.26 (3.34)

MECDN 104.4 (9.6) 5.38 (0.88) 10.65 (3.01)

Statistics ME>SE��� ME>SE��

MEDN>SE��� MEDN>SE�� N.S.

MEDN>ME��� MEDN>ME�

PWss,none 1.49 (0.29) 3.68 (0.17) 9.72 (2.18)

PWDNss,art 1.71 (0.33) 3.95 (0.31) 10.48 (2.47)

PWDNss,art+BOLD 1.88 (0.44) 4.30 (0.27) 11.79 (2.20)

Statistics PWDNss,art+BOLD > PWss,none
��� PWDNss,art+BOLD > PWss,none

��� PWDNss,art+BOLD > PWss,none
���

PWDNss,art+BOLD > PWDNss,art
��� PWDNss,art+BOLD > PWDNss,art

��� PWDNss,art+BOLD > PWDNss,art
��

PWDNss,art > PWss,none
��� PWDNss,art > PWss,none

�� PWDNss,art > PWss,none
�

PWhd,none 1.69 (0.28) 4.88 (0.31) 11.66 (1.61)

PWDNhd,art 1.77 (0.32) 5.00 (0.33) 12.01 (1.50)

PWDNhd,art+BOLD 1.80 (0.31) 5.04 (0.31) 12.23 (1.37)

Statistics PWDNhd,art+BOLD > PWhd,none
��� PWDNhd,art+BOLD > PWhd,none

��� PWDNhd,art+BOLD > PWhd,none
�

PWDNhd,art+BOLD > PWDNhd,art
��� PWDNhd,art > PWhd,none

�� PWDNhd,art+BOLD > PWDNhd,art
�

PWDNhd,art > PWhd,none
���

Note: Data is presented as mean (standard deviation). Mean and max t-scores were extracted from active voxels that overlapped for the BOLD data (E2, MEC, and

MECDN) and PW data (PWss,none, PWDNss,art, PWDNss,art+BOLD, PWhd,none, PWDNhd,art, and PWDNhd,art+BOLD) separately. Individual statistical maps were

thresholded at an uncorrected p<0.01. Abbreviations: tSNR = temporal signal to noise ratio; E2 = single echo (second echo, TE = 25ms); MEC = multi-echo combined;

MECDN = multi-echo combined and denoised; PW = perfusion-weighted; PWDN = perfusion-weighted denoised; SS = surround subtracted; HD = high-pass filtered,

demodulated.

��� = p<0.001,

�� = p<0.01,

� = p<0.05, Bonferroni-corrected.

https://doi.org/10.1371/journal.pone.0190427.t001
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compared to E2, resulting in more activation and increased mean t-statistics. Previous work

showed increased BOLD sensitivity for resting state fMRI using the MBME ASL/BOLD

sequence by combining echoes and incorporating MEICA denoising [12, 30]. Here, we con-

firm these increases in BOLD sensitivity extend to task-based fMRI as well.

The MECDN data showed increased activation, both in terms of the activation volume and

activation strength, compared with the MEC and E2 data, as well as a higher overall tSNR.

Though the temporal resolution of the MBME ASL/BOLD sequence was relatively low

(TR = 4.0s), the increased tSNR from the additional echoes outweighed the drawbacks of the

slight TR increase caused by these echoes. Murphy et al. showed that with increased tSNR,

much shorter time-series are needed to detect activations for a certain effect size [44]. In line

with this notion, our results also suggest the scan duration could be much shorter by using

MECDN or PWDNart+BOLD for fMRI to detect activations with similar effect size as

Fig 6. Finger-tapping task BOLD results. (A) Robust bilateral activation was seen in the motor cortex, including the pre and postcentral gyrus, medial

frontal gyrus, and cerebellum for all datasets. Increased activation was observed for the MEC data compared to E2 data and for the MECDN data

compared to the MEC and E2 data. Activation was also observed in subcortical areas for the MECDN data. All maps were thresholded at p<0.005 and

cluster corrected with a minimum cluster size of 182 voxels (α<0.05). (B) Average BOLD time-series extracted from a mask of voxels active for all

BOLD datasets.

https://doi.org/10.1371/journal.pone.0190427.g006
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conventional E2 or PW scans. The MBME ASL/BOLD sequence and subsequent denoising

strategies provide a trade-off between scan time and activation strength. This is an important

implication for future clinical applications.

Moreover, an increased area of activation was present in MECDN data in the group analy-

sis. This included activation in subcortical areas not seen with the MEC and E2 data. Extensive

bilateral activation was found in the insula and thalamus. The insula and thalamus have been

shown to be part of the somatomotor network [45, 46]. The thalamus is also known to be part

of somatosensory pathways, which control our perception of touch. Finger-tapping necessarily

involves touch, so activation in these deep gray matter regions should occur. Gradient echo

EPI has typically shown poor performance in subcortical regions and requires higher sensitiv-

ity to detect significant signal changes [47]. Our results indicate MEICA denoising may be use-

ful for identifying task-based subcortical activation due to the increased tSNR and resulting

BOLD sensitivity. Kundu et al. found robust resting-state functional connectivity between sub-

cortical and cortical structures following MEICA denoising, while no clear connectivity pat-

terns could be detected by using standard denoising [24].

In this study, the MEICA algorithm was modified to denoise the PW data by regressing

artifact and BOLD components from the first echo. BOLD signal can contaminate the PW sig-

nal, however, the BOLD and CBF time courses are strongly temporally coupled. Thus, there is

the potential for true PW signals to be removed by removing BOLD components. To avoid

this, all echoes were low-pass filtered below the label/control oscillation frequency and perfu-

sion frequencies. This removed the majority of the perfusion contribution to the signal while

Fig 7. Finger-tapping task PW results. (A) For the SS results (left), bilateral activation was observed in the motor cortex for the

PWss,none and PWDNss,art+BOLD data. An increased activation area was seen for the PWDNss,art+BOLD data compared to the PWss,none

data. The HD data (right) showed increased activation compared to the SS data, however no differences were seen between the

denoised and non-denoised data the. All maps were thresholded at p<0.005 and cluster corrected with a minimum cluster size of

131 voxels (α<0.05). (B) Average SS PW signal from one representative subject (left) and average HD PW signal from the same

subject (right). All PW signal was extracted from a mask of voxels active for all PW datasets. The denoised SS time-series appear less

noisy with less variance compared to the non-denoised time-series. This effect is less apparent for the HD data.

https://doi.org/10.1371/journal.pone.0190427.g007
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keeping the BOLD contributions. BOLD and artifact components were extracted using this

filtered signal and then removed from the unfiltered first echo. To verify PW signal was not

being removed, mean PW signal was analyzed. No differences were seen between the denoised

and non-denoised data.

It is important to note this denoising technique is limited to block design fMRI studies

where the PW signal is relegated to high frequencies, and thus a wideband lowpass filter can be

used to remove the PW components. For event-related and resting state studies, this type of fil-

ter could potentially include PW components, which will then be removed from the data by

the MEICA process.

In this study, both SS and HD techniques were used to extract the PW time-series. While

these are two common approaches, they are fundamentally the same. Surround subtraction

has been shown to be equivalent to demodulation followed by lowpass filtering, which itself is

equivalent to highpass filtering followed by demodulation. We showed PW data quality bene-

fits from the regression of BOLD components in addition to artifact components for both the

Fig 8. CBF/BOLD relationship. (A) The mean ratio of CBF to BOLD signal is plotted across subjects in active voxels

(CBF/BOLD response ratio) for SS (left) and HD data (right). The response ratio was examined for non-denoised

(PW/E2) and denoised data (PWDN/MECDN). No significant difference was observed between the non-denoised and

denoised response ratios averaged across the middle five activation TRs (TR #s 8–12). (B) CBF/BOLD response ratio

plotted against baseline CBF for SS (left) and HD data (right). A significant negative correlation was observed between

the CBF/BOLD ratio and mean baseline CBF for all processing schemes except for HD, PW/E2 which trended toward

significance.

https://doi.org/10.1371/journal.pone.0190427.g008
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SS and HD time series. PWDNss,art+BOLD and PWDNhd,art+BOLD data had increased tSNR and

mean t-score compared to PWDNss,art and PWDNhd,art data respectively (the HD t-score

trended toward significance). Both of these techniques have been shown to minimize the con-

tribution of BOLD signal to the ASL signal [4, 38, 42]. These results indicate there may still be

BOLD contamination of the PW signal using these methods.

High-pass filtering followed by demodulation was used as a stricter filtering approach to

examine if the MEICA denoising technique was still effective. To provide a fair comparison

between denoised and non-denoised HD data, the highpass filter frequency was the same as

the lowpass filter frequency used for the MEICA denoising approach. By removing low-fre-

quency BOLD and artifact components from the signal, MEICA denoising acts as an imperfect

Fig 9. BOLD/CBF coupling. (A) Group averaged correlation between CBF and BOLD time-series for non-denoised (PW,E2) and denoised (PWDN,

MECDN) data for SS (left) and HD data (right). In general, CBF-BOLD correlation increased with denoising. This was confirmed quantitatively (B)

where the mean correlation extracted from a mask of significantly correlated voxels was highest for fully denoised datasets (PWDN,MECDN).
��� = p<0.001, �� = p<0.01, � = p<0.05, Bonferroni-corrected.

https://doi.org/10.1371/journal.pone.0190427.g009
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high-pass filter. Thus, in theory, highpass filtering and demodulating the data without denois-

ing should provide similar, if not better, results compared to MEICA denoising as all fre-

quency components below 0.09 Hz, including the inderminate components left by the

denoising procedure, are removed. In fact, the HD method without denoising resulted in

increased activation strength and volume compared to the SS method with denoising. How-

ever, highpass filtering and demodulating the denoised signal did lead to slight, but significant

increases in mean t-score and tSNR at the individual level compared to highpass filtering and

demodulating the non-denoised signal. SS filtering is not as strict as HD filtering (i.e. the fre-

quency cutoff is lower). Therefore, MEICA denoising has a larger effect as less noise is inher-

ently removed by the SS process, and there is increased BOLD contamination in the signal.

Future studies could comprehensively examine the effect of filter cutoff frequency on PW data.

Finally, the relationship between CBF and BOLD activation was investigated. CBF/BOLD

response ratios and CBF/BOLD coupling were compared between the denoised data (MECDN

and PWDN) and non-denoised data (E2 and PW). The ratio between CBF and BOLD activa-

tion magnitude did not change with denoising indicating denoising does not change the quan-

titative relationship between CBF and BOLD. This has implications for techniques such as

BOLD calibration, which uses ASL and BOLD data to estimate CMRO2 [48]. We also found a

significantly negative relationship between the CBF/BOLD activation magnitude ratio and

baseline CBF that did not change with denoising. This was likely driven by the increased base-

line CBF leading to a reduced percent signal change for CBF activation as a larger CBF increase

was needed to produce the same percent signal change as a lower baseline CBF. For the SS

data, both BOLD and PW denoising with MEICA contributed to increased CBF/BOLD cou-

pling. For the HD data, increases in CBF/BOLD coupling were driven by BOLD denoising

with a limited effect from PW denoising.

This study was not without limitations. First, the number of subjects was relatively small.

The purpose of this study was to determine the feasibility of using the MBME ASL/BOLD

sequence to detect brain activation. Thus, the small subject size was justified. Additionally,

only one scan was collected per subject, so a repeatability analysis could not be conducted.

Future studies should look at the repeatability/reproducibility of MBME ASL/BOLD scans.

A relatively short PLD (1.5s) was employed for this study compared to the recommended

PLD of 1.8 s for pCASL [11]. Shorter PLDs have the benefit of increased SNR, but can lead to

intravascular artifacts if blood does not have adequate time to reach capillary-feeding small

arteries. In addition, when the PLD is too short, the CBF response to activation can be overesti-

mated. For example, if the arterial transit time is reduced in the activated state, the proportion

of tagged blood in the voxel will be higher creating an artificially increased change in CBF

[49]. This could impact studies where quantitative accuracy of CBF is necessary and should be

examined in future studies. The PLD chosen here was a trade-off between TR, SNR, and the

arterial transit time.

The issue of short PLD is especially important for interleaved MB acquisitions with MB

slice packets that simultaneously cover inferior and superior slices. Intravascular artifacts were

not detected in this study, and we were also able to consistently detect PW activation. Looking

into locations for the simultaneously excited slices in MB pCASL may be worthwhile. Increas-

ing PLD necessarily increases TR. The TR for ASL acquisitions is already long, owing to the

long tagging and PLD segments of the sequence. However, we have shown that additional ech-

oes collected in the MBME ASL/BOLD sequence can compensate for the longer TR.

Of note, most recently developed ASL sequences have utilized a segmented 3D readout,

such as 3D GRASE, or stack of spirals approaches [11]. These techniques can also acquire

whole-brain, high resolution ASL data; however, they are not compatible with multi-echo

(ME) time-series acquisitions as they lead to very long TEs (for the 3D GRASE case) or TRs

MBME simultaneous ASL/BOLD fMRI
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(for the segmented stack of spirals case). Background suppression (BS) was not used for the

ASL scans in this study. There remains debate whether BS is appropriate for 2D approaches

since BS can only be optimized for one slice. Furthermore, BS necessarily reduces BOLD SNR

and tSNR. Future studies should examine the effect of BS on MBME ASL/BOLD.

In conclusion, we applied the MBME ASL/BOLD sequence to task fMRI. Motor activation

was robustly detected using ASL and BOLD. In addition, the collection of more than two ech-

oes allowed MEICA denoising to be applied to both the BOLD and PW data, resulting in

increased tSNR, activation strength and volume, and CBF/BOLD coupling.
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