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Abstract: Selenium (Se) is essential for human health, however, Se is deficient in soil in many
places all around the world, resulting in human diseases, such as notorious Keshan disease and
Keshin–Beck disease. Therefore, Se biofortification is a popular approach to improve Se uptake and
maintain human health. Beneficial microorganisms, including mycorrhizal and root endophytic fungi,
dark septate fungi, and plant growth-promoting rhizobacteria (PGPRs), show multiple functions,
especially increased plant nutrition uptake, growth and yield, and resistance to abiotic stresses.
Such functions can be used for Se biofortification and increased growth and yield under drought
and salt stress. The present review summarizes the use of mycorrhizal fungi and PGPRs in Se
biofortification, aiming to improving their practical use.

Keywords: selenium; biofortification; transporters; mycorrhizal fungi; plant growth-promoting
rhizobacteria (PGPRs)

1. Introduction

At present, it is widely accepted that selenium (Se) possesses multiple physiological functions
in various biological systems as an integral part of a range of proteins containing Se. Therefore Se is
important for human health. However, Se distribution in the earth’s crust is greatly uneven, ranging
from 0.005 mg·kg−1 in Finland to 8000 mg·kg−1 in Tuva-Russia [1]. Se deficiency has been reported in
many places all around the world including China, North America, New Zealand, Australia, Sweden,
and Finland [2–5]. Some notorious diseases are directly related to Se deficiency, such as Keshan
disease and Keshin–Beck disease, two endemic diseases related to Se deficiency. Keshan disease
was first prevalent at alarge scale in 1935 in Keshan county, Heilongjiang province, China. Keshan
disease generally occurs in children and women of childbearing age and its symptoms are related to
impairment of cardiac function, cardiac enlargement, and arrhythmia [6]. Although the main factor
was not determined for the disease in etiology, it was closely related to Se because it was found
that there was an obvious Se deficiency in local soil, and Se supplementation could partly control
the disease. An investigation analyzed some physiological parameters, including blood Se level,
glutathione peroxidase-1 (GPx-1) activity, and variance at codon 198 in GPx-1 gene, and found that the
main risk factors for the disease were low GPx-1 activity, Keshan disease family history, and living in an
endemic area [7], suggesting that Keshan disease is closely related to low GPx-1 activity. Kaschin–Beck
disease is an osteoarthropathy, which manifests as severe dysarthrosis of joints, shortened fingers
and toes, and in severe cases dwarfism. In China, the disease is prevalent in the Tibetan Plateau [8,9].
An investigation carried out by Zhang et al. [8] showed that the levels of environmental Se were very
low, and Kaschin–Beck disease in the Tibetan Plateau was much severe with decreasing environmental
Se under the Se-deficient condition, suggesting the relationship between Kaschin–Beck disease and Se
deficiency in the Tibetan Plateau. In addition, Se is related to other human diseases and health, such as
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cancer [10–13], muscle disease [14], and healthy aging and longevity [15–17]. Therefore, it is essential
to maintain Se homeostasis in human body [18,19]. It was estimated that Se intake of >900 µg·day−1 is
harmful, and intake of <30 µg·day−1 is not enough [20]. Some data have shown that over 800million
people all around the world might suffer from Se deficiency [21–26]. Therefore, sufficient dietary Se
uptake is important for human health.

Acquired Se is converted into some proteins thatcontain at least one of the two amino acids
(i.e., selenocysteine (SeCys) and selenomethionine (SeMet)) as a key component (i.e., selenoproteins).
Human health and diseases are related to selenoproteins, and selenocysteine is regarded as the 21st
proteinogenic amino acid. The human genome encodes about 30 selenoproteins. In the article written
by Reeves and Hoffmann [27], they described functions of selenoproteins in detail. Among the
selenoproteins in human, glutathione peroxidases (GPxs) seem to be more important, because they
include eight proteins (GPx1–GPx8) having antioxidant properties with multidimensional roles in living
cells, ranging from H2O2 homeostasis to regulation of apoptosis [28]. Therefore, enough Se uptake is
essential for functional maintenance of these selenoproteins. Since Se is deficient in many places all
around the world, Se fortification in food is necessary. In view of high toxicity of selenite and selenate,
Se biofortification is relatively bio-safe. Organic Seleno-compounds act as potential therapeutic and
chemo-preventive agents that function as antioxidants, enzyme modulators, antitumor, antimicrobials,
antihypertensive agents, antivirals, and cytokine inducers [29]. Organic seleno-compounds are
provided with crop food [30–35], vegetables [36–42], fruits [43–45], and even nuts [46–48]. Therefore,
how to increase concentrations of organic seleno-compounds in these plants is of significance for
improvement of dietary Se acquisition by human being.

Se biofortification may be carried out by multiple ways, such as application of Se fertilizers on
leaves [49–53] and in soil [52,54,55]. Se-enriched organic fertilizers are also applied. For example,
Bañuelos et al. [56] used Se-enriched Stanleya pinnata to cultivate Se-enriched broccoli and carrots,
and found that more than 90% of organic Se was converted to inorganic selenate and selenite. Se foliar
application seems to be most effective way to fortify Se uptake in most arable crops [52,57]. However,
a contrary result was observed by Lyons et al. [58]. They found foliar application was less efficient than
application to soil at planting (at application rates of 40 and 120 g·ha−1, respectively) in Australian trials.
The agronomic application of Se fertilizers are more expensive and short-term solutions, especially in
large-scale fields. Relatively, agronomic Se biofortification with beneficial microorganisms (BMOs) is a
more inexpensive and long-term solution, especially in poor places and Se-rich places, such as Enshi,
Hubei province, China [59] and Pineridge Natural Area, a seleniferous site west of Fort Collins, CO,
USA [60].

In the present article, we focus on the roles of beneficial microorganisms in Se biofortification and
our aim is to improve use of beneficial microorganisms in practice.

2. Improvement of Se Biofortification by BMOs

Symbiosis of plants with BMOs is helpful for plant growth and to increase in micronutrition
uptake and resistance to abiotic and biotic stresses. Based on the characteristics of BMOs, BMOs
can be used for Se biofortification. BMOs, including mycorrhizal fungi (endo- and ectomycorrhizal
fungi), root endophytic fungi (REFs), and PGPRs, are popular in biofilmed biofertilizers. Arbuscular
mycorrhizal fungi (AMFs) are preferential to colonize in roots of angiosperms, and ectomycorrhizal
fungi are popular in gymnosperms. Most REFs possess a wide range of plant hosts.

2.1. Arbuscular Mycorrhizal Fungi

Arbuscular mycorrhizal fungi are used for Se biofortification because of their ability to enhance
nutrition uptake of their host plants (Table 1). Functions of mycorrhizal fungi have been the primary
focus of research, especially those involved in phosphate uptake. The genomes of these fungi
encode some high-affinity inorganic phosphate transporters and some of them have been isolated
and identified [61–65]. On the other hand, in planta, some symbiosis-specific phosphate transporters



J. Fungi 2020, 6, 59 3 of 15

can be induced by symbiosis with mycorrhizal fungi [61,66–72]. Thus, the interaction between
plants and mycorrhizal fungi strengthens phosphate uptake and transportation to host plants [73–77].
Similarly, there are some sulfate transporters encoded by genomes of mycorrhizal fungi, such as sulfate
transporters GBC38160.1 and GBC25943.1 and sulfate permeases PKY50973.1 in arbuscular mycorrhizal
fungus Rhizophagus irregularis, sulfate transporters EDR02618.1 and EDR02177.1, and sulfate permeases
EDR11271.1 and EDR00466.1 in ectomycorrhizal fungus Laccaria bicolor. Since Se and sulfur (S) belong
to the same element family (VI-A), the chemical properties of Se are very similar to S. Se is absorbed
as selenate or selenite, which is metabolized via the sulfur assimilation pathway in plants, leading
to biosynthesis of SeCys, SeMet, and other Se isologs of various S metabolites [78–82]. Se can be
transported by sulfur transporters to host plants, just like phosphate transported between mycorrhizal
fungi and their host plants, such as the high-affinity sulfate permease [83] and the high-affinity
sulfate transporters Sultr1:1 and Sultr1:2 [84–86]. The two sulfate transporters are proton-sulfate
symporters, such that for every molecule of selenate entry into root cells, three protons are taken
up. Sulfate transporters function in Se accumulation in food crops. Wheat genotype ‘Puelche’ is the
most Se-tolerant and has the greatest Se accumulation among the three wheat genotypes studied
(i.e., ‘Puelche’, ‘Tinto’, and ‘Kumpa’), such that its Se accumulation was related to the strongest transcript
level of the sulfate transporter TaeSultr4.1 in roots [87]. In addition, other transporters also take part
in Se transport, such as silicon transporters in rice [88] and tomato [89], phosphate/orthophosphate
transporters in wheat [90], rice [91–93], tomato [89], and yeast (Saccharomyces cerevisiae) [94,95],
and monocarboxylates transporters in yeast (S. cerevisiae) [96]. Thus, it is reasonable to explain the
experimental results that plant availability of selenate and selenite was influenced by the competing
ions phosphate and sulfate [97,98]. Competition between phosphate and Se uptake led to decrease
in Se accumulation translocation coefficients, and Se concentrations in wheat roots, stems, leaves,
and spikes when phosphate fertilizers were applied to selenite fertilized soil [99]. However, a different
case occurred. An investigation was carried out on sulfate and selenate uptake in Astragalus species
(two Se hyperaccumulators A. racemosus and A. bisulacatus and two closely related non-accumulators
A. glycyphyllos and A. drummondii), and results showed that sulfur deficiency increased Se accumulation,
and increased Se supply increased sulfate accumulation in both root and shoot tissues [100]. In certain
Astragalus species, the high expression of sulfate transporters led to enhanced ability of Se uptake and
translocation, and therefore contributed to the Se hyperaccumulation trait. At present, except for sulfate
and phosphate transporters, it is not clear whether other transporters have their homologous proteins
in mycorrhizal fungi. If these homologous proteins occur in mycorrhizal fungi, they could mediate
Se transport to host plants. On the other hand, decreases in sulfate bioavailability and mycorrhizal
symbiosis enhanced expression of sulfate transporters, resulting in increase in ability to absorb sulfate
and consequent uptake of Se [101–104]. Similarly, Se deficiency also enhances expression of sulfate
transporters, resulting in an increase in Se uptake, and mycorrhizal symbiosis also enhances Se uptake.

Table 1. Arbuscular mycorrhizal fungi (AMFs) and root endophytic fungi (REFs) often used for
Se biofortification.

Microbes Microbial Types Host Plants References

Funneliformis mosseae AMF Triticum aestivum, Lactuca sativa,
Asparagus officinalis, [105–108]

Glomus claroideum AMF Triticum aestivum [109]

Glomus fasciculatum AMF Allium sativum [110]

Glomus irtraradices AMF Allium sativum [55]

Glomus mosseae AMF Lolium perenne, Allium sativum,
Medicago sativa, Glycine max, Zea mays [110–112]

Glomus versiform AMF Triticum aestivum [105]
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Table 1. Cont.

Microbes Microbial Types Host Plants References

Rhizophagus intraradices AMF Lactuca sativa, Asparagus officinalis,
Lactuca sativa, Allium cepa [106–108,113]

Alternaria seleniiphila REF Stanleya pinnata [114]

Alternaria astragali REF Astragalus bisulcatus [114]

Aspergillus leporis REF Stanleya pinnata [114]

Fusarium acuminatum REF Astragalus racemosus [114]

Trichoderma harzianum REF Allium cepa [106]

Some evidence supports the role of mycorrhizal fungi in enhancing Se uptake in plants.
Wheat seedlings were inoculated with Glomusversiform or Funneliformis mosseaein hydroponic culture
medium for eight weeks, the two arbuscular mycorrhizal fungi significantly increased selenate and
selenite uptake by wheat root, but they did not show effect on uptake of SeMet [105]. Meanwhile,
compared to non-mycorrhizal roots, mycorrhizal roots showed significantly higher Vmax for selenate
and selenite uptake (179.6 vs. 55.93 nmol·g−1DW·h−1 for selenate and 1688.0 vs. 860.3 nmol·g−1DW·h−1

for selenite). Higher Se accumulation was carried out through up-regulating the expression of three
genes encoding sulfate transporters, i.e., TaSultr1:1, TaSultr1:3, and TaSultr2:1, in the mycorrhizal roots,
especially TaSultr1:1. In mycorrhizal roots with G. versiform and F. mosseae, the relative expressions of
TaSultr1:1 gene was significantly up-regulated by 2.18-fold and 2.12-fold, respectively. Garlic (Allium
sativum L.) is an important condimental species. This species ispopular all around the world because
of its diallyl disulfide, a component of garlic, which can inhibit proliferation of various cancer cells
(e.g., colon, lung, and skin cancer cells) and WEHI-3 leukemia cells [115–117]. Garlic is used for Se
biofortification with mycorrhizal fungi. A survey of applying selenate fertilizer and mycorrhizal
fungus Glomus irtraradices to soil was conducted, and the results showed mycorrhizal addition
increased the Se uptake of garlic by10-fold to 15 µg·g−1DW, and fertilization with selenate and
amendment of mycorrhizal fungi strongly increased the Se concentrations in garlic to around 1% [55].
Further analyses showed that the amendment of soil with the mycorrhizal fungus and/or selenate
increased selenate concentrations in garlic, but did not affect distribution of detected Se species in
garlic. In Se-contaminated soil, mycorrhizal fungi inoculation increased Se accumulation of plants.
Alfalfa, maize, and soybean seedlings were cultivated in the soil contaminated with different levels of
Se, and results showed that mycorrhizal fungi inoculation decreased Se accumulation in roots and
shoots of all the plants at low Se levels (0 or 2 mg·kg−1), but increased Se accumulation in alfalfa
shoots and maize roots and shoots at Se level of 20 mg·kg−1 [112]. Contrary results were observed
on ryegrass (Lolium perenne cv. ‘Barclay’) [111]. Their results showed that Se concentrations in roots
of ryegrass were not affected by mycorrhizal inoculation with the AMF G. mosseae, but mycorrhizal
inoculation significantly reduced Se concentrations in shoots [111], further decreasing Se uptake
in whole plants. Lettuce (Lactuca sativa L.) is one of the most consumed leaf vegetables in some
places around the world because of its good properties, such as high levels of antioxidants (such as
carotenoids, polyphenols, ascorbate, α-tocopherol) and dietary fiber [118–120], thus it is suitable for
Se biofortification to enhance dietary Se consumption. When two lettuce cultivars ‘Batavia Rubia
Munguia’ (BRM) and ‘Maravilla de Verano’ (MV) were treated with Se compounds (selenite, organic
Se compounds SeU and SeCH3) and AMFs (a mixture of Rhizophagus intraradices and Funneliformis
mosseae), their growths were continuously improved by AMFs, except for BRM under treatment of
SeCH3 [106]. The positive effect of AMFs on plant biomass was different among lettuce cultivars
and forms of seleno-compounds, and BRM lettuce plants showed the highest mycorrhizal efficiency
index (MEI) under treatment of SeU, MV lettuce plants with the highest MEI under SeCH3, suggesting
that the two lettuce cultivars possessed preference for different seleno-compounds when they were
inoculated with AMFs. Meanwhile, AMFs inoculation significantly affected mineral accumulation in
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the leaves of BRM lettuce. In general, mycorrhizal inoculation significantly increased levels of macro
and micronutrients, but significantly reduced Se levels in leaves of BRM lettuce. Significant interaction
occurred about Se levels in shoots of BRM lettuce between seleno-compounds and AMFs inoculation.
Similar status occurred on MV lettuce. Under treatment of selenite, AMFs inoculation reduced Se
concentrations in leaves of MV lettuce. In contrast, under treatment of organic seleno-compound
SeCH3, MV lettuce never accumulated detectable levels of Se in leaves, regardless of whether they
were inoculated with AMFsor not. Treatment of organic seleno-compound SeU slightly increased Se
concentrations in leaves of MV lettuce without AMFs inoculation [106]. Other research showed similar
results [108]. All the results suggest that combination of seleno-compounds and AMFs inoculation does
not increase Se levels in lettuce leaves, although it increases levels of some macro- and micronutrients
and antioxidants. Therefore, some AMFs are not suitable for Se biofortification in lettuce. Of course,
other AMFs should be chosen to examine their role in Se biofortification in lettuce under treatment of
seleno-compounds. At present, it is not clear whether lettuce symbioses with some ectomycorrhizal
fungi. Thus, more research is necessary for Se biofortification in lettuce.

Consversa et al. [107] investigated the effect of Se fern application and AMFs (Rhizophagus
intraradices and Funneliformis mosseae) inoculation on Se biofortification for two years, such that Se fern
application was carried out on green asparagus (Asparagus officinalis L.). Their experimental results
showed that Se levels in non-mycorrhizal A. officinaliscv. ‘Grande’ plants increased in trial A1 as
exogenous selenate levels increased. Under selenate treatment of 75 and 125 g·ha−1, Se concentrations
in spears increased 4.7 and 6.4-fold on a dry weight basis compared to control, respectively. Similar
results occurred in trail B1. In trail B1, Se concentrations in spears were significantly affected by the
interaction between Se amendment and AMFs inoculation. In spears of plants without Se amendment,
Se levels were similar in mycorrhizal and non-mycorrhizal plants. All the results suggest a combination
of Se amendment and mycorrhizal fungi greatly improve Se biofortification in A. officinalis and the
combination should be recommended in field by large scale. However, contrary results have also been
observed. When the AMF Glomus mosseae was used for inoculation with alfalfa (Medicago sativa L.
cv. ‘Chuangxin’), maize (Zea mays cv. ‘ND108′), and soybean (Glycine max cv. ‘Zhonghuang No. 17′),
mycorrhizal inoculation significantly decreased Se concentrations in roots with the highest reduction
for alfalfa (50–70%), while it was less than 40% for maize and soybean, Se concentrations in shoots
decreased by 7–38% for mycorrhizal treatment, and the difference caused by inoculation influence
was insignificant among the plant species [112]. When Se was added at the levels of 0 and 2 mg·kg−1,
the total Se accumulation in roots and shoots of all the three plant species were lower in mycorrhizal
than in non-mycorrhizal treatment, while the opposite pattern was observed in roots of maize and
shoots of alfalfa and maize when Se was applied at 20 mg·kg−1 [112]. These results show negative
effects on Se accumulation in these plant species when low levels of exogenous Se were added.

In addition, some ectomycorrhizal fungi can accumulate Se in their fruit bodies [121–123],
suggesting their ability to acquire Se. Some of these ectomycorrhizal fungi are edible, thus they are used
for biofortification of Se in fruit bodies. Few investigations on the role of REFs in Se biofortification have
beencarried out (Table 1). In general, REFs, especially members of the genus Trichoderma, can colonize
roots of some host plants, thus they can be widely used for Se biofortification. At present, there are not
reports on roles of dark septate fungi in Se biofortification of food crops.

Taken together, mycorrhizal inoculation might increase Se accumulation in some crop species,
leading to Se biofortification of crops. For some crop species, more investigations are needed, especially
for interactions between mycorrhizal fungi and crop species. For the abovementioned negative effects
of G. mosseae on Se accumulation in alfalfa, maize, and soybean, more mycorrhizal fungi and root
endophytic fungi should be used to investigation.

2.2. Se Biofortification by PGPRs

Plant growth-promoting rhizobacteria (PGPRs) are popular in improving nutrition uptake, plant
growth, and resistance to abiotic stresses [124–127]. Some of them possess the ability to solubilize
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phosphate in soil. Such ability could be used for Se biofortification (Table 2), because in some soil
agrotypes, such as volcanic Andisols in southern Chile, Se bioavailability is very low. On the one
hand, Se can form stable complexes with clays and/or can be strongly absorbed onto oxy-hydroxides of
aluminum, iron, or manganese, and remain low in terms of bioavailability to plants [128–130]. On the
other hand, oxyanions of Se, i.e., selenite and selenate, are bioavailable to plants. When selenate and
selenite are supplied to soil, they are rapidly reduced to insoluble forms (e.g., Se–metal ion complex),
leading to their low bioavailability (less than 10% only). The Se fertilizers that are not acquired by plant
roots readily after application are not bioavailable to plants in the next season or the next year [131]. Thus,
Se re-solubility in soil is very important. Although there are no report concernsregarding Se-solubilizing
PGPRs at present, some seleno-bacteria have been studied [30,35,109,132,133]. Trivedi et al. [35] isolated
and identified some endophytic seleno-bacteria from the various tissues of Ricinus communis plants
and molecular identification analyses showed that they were Paraburkholderia megapolitana, Alcaligenes
faecalis, and Stenotrophomonas maltophilia. Among the three bacteria, P. megapolitana was most effective
in improving the growth of Glycine max plants under drought and enhancing Se biofortification which
was 7.4-fold higher compared to control. The synergistic effect on Se biofortification and increased
drought tolerance is important for plants grown in arid and semi-arid places with Se deficiency. A great
number of people all around the world are dependent on wheat as their main component of diet,
thus it is important to fortify Se in wheat grains [30]. Many studies have been carried out on Se
biofortification in wheat. Durán et al. [109] evaluated the effects of Se acquisition by wheat plants
through the co-inoculation of native seleno-bacteria strains Stenotrophomonas sp. B19, Enterobacter sp.
B16, Bacillus sp. R12, and Pseudomnas sp. R8, both individually and in mixture, as a seleno-nanosphere
source with AMF Glomus claroideum. They found that Se concentrations in plant tissues in inoculated
plants were significantly higher than those of un-inoculated controls.Meantime, regardless of presence
of AMF G. claroideum, Se concentrations in grains of wheat plants inoculated with Enterobacter sp. B16
were higher than those of plants inoculated with the rest of the microbial strains. In addition, PGPRs
showed their synergistic role in improving Se concentrations with AMFs. When plants were inoculated
with the seleno-bacteria strains and G. claroideum, Se concentrations in grains were 23.5% higher
than those in non-mycorrhizal plants. The synergisms might be related to the relationship between
seleno-bacteria strains and AMFs, because the seleno-bacteria could acquire more nutrition from the
hyphae of their neighboring AMFs or ectomycorrhizal fungi [134–137]. Moreover, Durán et al. [132]
isolated two Se-tolerant endophytic bacteria Acinetobacters sp. E6.2 and Bacillus sp. E5. They studied
production of seleno-compounds (SeMet and seleno-methyl-selenocysteins (MeSeCys)) by the two
bacteria, but they did not study the effects of the two bacteria on Se biofortification. Co-application of
Se fertilizers and seleno-bacteria sometimes leads to changes in bacterial population. When Se-tolerant
bacteria and Se amendment were supplied to wheat in Andisols, Se amendment stimulated population
growth of two bacterial groups (Paenibacillaceae and Brucellaceae), but inhibited other bacterial groups
(Clostridia, Burkholderiales, Chitinophagaceae, and Oxalobacteraceae) [133]. Meanwhile, Se concentrations
in roots and leaves of wheat plants inoculated with Se-tolerant bacterial strains Pseudomonas sp. R8 and
Stenotrophomonas sp. B19 were significantly higher than those of the un-inoculated controls. Higher
Se biofortification is related to the Se tolerance of the two bacteria, because higher Se concentrations
in roots and leaves were also observed when wheat plants inoculated with Stenotrophomonas sp. B19
were grown at concentrations of 5 and 10 mM of selenite, compared to those grown at 2 mM [133].
The results suggested that Se in seleno-bacteria could be transferred into their host plants. Effects
of other Se-tolerant bacteria on Se biofortification were also investigated. When wheat plants were
inoculated with two Se-tolerant bacterial strains Bacillus cereus YAP6 and Bacillus licheniformis YAP7,
Se concentrations in the stems of the Se-treated wheat plants were increased up to 375%, and Se
concentrations in kernels increased up to 154% of those in un-inoculated Se-treated wheat plants [34].
Meanwhile, the Bacillus strains can produce auxin, leading to increased number of leaves and greater
biomass and shoot length [34]. When wheat plants were inoculated with Bacillus pichinotyi in the
presence of selenate, they posed significantly higher biomass, shoot length, and spike length compared
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to un-inoculated plants [33]. Meanwhile wheat plants inoculated with B. pichinotyi had significantly
higher Se concentrations in wheat kernels (167%) and stems (252%), compared to un-inoculated plants.
Overall, greater biomass means higher Se biofortification, which is important for crops cultivated
by large scale in field. Rhizobia not only fixes nitrogen, but also helps Se accumulation. Data from
Alford et al. [138] showed rhizobia significantly increased shoot biomass and Se accumulation in
shoots of the Se-hyperaccumulator Astragalus bisulcatus and the nonhyperaccumulator A. drummondii.
The dual roles of rhizobia are of significance for organic Se production.

Table 2. Plant growth-promoting rhizobacteria (PGPRs) often used for Se biofortification.

Microbes Host Plants References

Acinetobacters sp. E6.2 - [132]

Acinetobater sp. Triticum aestivum [139]

Alcaligenes faecalis Ricinus communis, Glycine max [35]

Anabaena sp. Triticum aestivum [30,140]

Bacillus amyloliquefaciens Arabidopsis thaliana [141]

Bacillus axarquiens Triticum aestivum [139]

Bacillus cereus Triticum aestivum [34]

Bacillus licheniformis Triticum aestivum [34]

Bacillus mycoides Brassica juncea [142]

Bacillus pichinotyi Triticum aestivum [33]

Bacillus sp. E5 - [132]

Bacillus sp. E6.1 Triticum aestivum [139]

Bacillus sp. R12 Triticum aestivum [109]

Bacillus subtilis Allium cepa [113]

Calothrix sp. Triticum aestivum [30,140]

Enterobacter ludwigii Triticum aestivum [139]

Enterobacter sp. B16 Triticum aestivum [109]

Klebsiella oxytoca Triticum aestivum [139]

Paraburkholderia megapolitana Ricinus communis, Glycine max [35]

Providencia sp. Triticum aestivum [30,140]

Pseudomnas sp. R8 Triticum aestivum [109,133]

Rhizobium sp. Astragalus bisulcatus, A. drummondii [138]

Rhizosphere bacteria Scirpus robustus, Polypogon monspeliensis [143]

Se-tolerant bacteria Brassica juncea [144]

Stenotrophomonas maltophilia Ricinus communis, Glycine max, Brassica juncea [35,142]

Stenotrophomonas sp. B19 Triticum aestivum [109,133]

Interestingly, volatile organic compounds (VOCs) released by PGPRs improve Se biofortification
of plants. VOCs from Bacillus amyloliquefaciens BF06 significantly increased photosynthesis and growth
of Arabidopsis plants and these VOCs led to an obvious increase in expressions of some genes encoding
sulfate transporters and Se concentrations in plants [141]. VOCs released by B. amyloliquefaciens
could not increase Se biofortification of Arabidopsis Sultr1:2 mutants. All the results suggested sulfate
transporters with high expression mediate Se uptake, as shown above. Meanwhile, the results indicate
an unknown mechanism that PGPRs improves Se biofortification. The question is inevitable, how do
the VOCs improve expression of sulfate transporters?
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Taken together, Se amendment could improve population growth of some Se-tolerant bacteria;
if these bacteria show synergistic effect on Se biofortification, they could be mixed in some biofilmed
biofertilizers specific to certain crops and vegetables, thus, their combinative amendment along with
Se fertilizers become a Se biofortification tool in sustainable agriculture [52,145].

3. Concluding Remarksand Perspectives

Since Se is essential for human health, Se biofortification must be carried out in Se-deficient places
by various ways on food crops, vegetables, fruits, and nuts. Foliar and soil fertilization are effective for
enhancing Se accumulation in crops. However, the two ways are expensive for large-scaled food crops,
especially in poor places. Moreover, the effect of the two ways is short-term and they easily cause area
source pollution. BMOs improve Se uptake and accumulation in food crops. Therefore, combination of
BMOs and soil fertilization is a good approach to Se biofortification of crop food. At present, for Se
biofortification by BMOs, there remain some questions to resolve. The first relates to the synergisms
among these beneficial microorganisms. Biofilmed biofertilizers often include many BMOs. As they
can compete for nutrition from their common host plants, some of them are possibly antagonistic.
Therefore, before they are mixed in biofilmed biofertilizers, the synergism should be examined in
detail. The second relates to Se biofortification and phytoremediation. Phytoremediation of Se is
popular in Se-rich places. The plants harvested in phytoremediation could be used as the organic
source of Se. However, attention must be paid to the fact that there are possibly other heavy metals in
the harvested plants. In addition, transgenic plant technology has been used for phytoremediation
and Se biofortification. Since some people are very sensitive to genetically modification of crop plants,
application of transgenic plants for Se biofortification should be careful. The third relates to theuse of Se
hyperaccumulators. Some Se hyperaccumulators, such as Stanleya pinnata and Astragalus bisulcatus and
Cardamine enshiensis, should be paid more attentions, especially C. enshiensis, because it is edible and
can be directly used in food. The forth relates to the use of Se nanoparticles. Relatively, Se nanoparticles
are less toxic and more eco-friendly for both humans and the environment. More researches are
necessary for use of Se nanoparticles, especially for the production of Se nanoparticles using plants
and fungi. The fifth relates to increased plant resistance to abiotic stresses. Exogenous Se compounds
and seleno-bacteria synergistically improve plant resistance to abiotic stresses, thus the synergism
should be well used for plant resistance to abiotic stresses, especially drought and salt stress. Finally,
the sixth relates to functions of root endophytic fungi and dark septate fungi. The two types of fungi
possess ecological functions similar to mycorrhizal fungi, and they often colonize many plant species.
However, very little attention has been paid to them.
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