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Analyzing integrated network
of methylation and gene
expression profiles in lung
squamous cell carcinoma

Yusri Dwi Heryanto'™, Kotoe Katayama? & Seiya Imoto'2

Gene expression, DNA methylation, and their organizational relationships are commonly altered in
lung squamous cell carcinoma (LUSC). To elucidate these complex interactions, we reconstructed

a differentially expressed gene network and a differentially methylated cytosine (DMC) network

by partial information decomposition and an inverse correlation algorithm, respectively. Then, we
performed graph union to integrate the networks. Community detection and enrichment analysis of
the integrated network revealed close interactions between the cell cycle, keratinization, immune
system, and xenobiotic metabolism gene sets in LUSC. DMC analysis showed that hypomethylation
targeted the gene sets responsible for cell cycle, keratinization, and NRF2 pathways. On the other
hand, hypermethylated genes affected circulatory system development, the immune system,
extracellular matrix organization, and cilium organization. By centrality measurement, we identified
NCAPG2, PSMG3, and FADD as hub genes that were highly connected to other nodes and might play
important roles in LUSC gene dysregulation. We also found that the genes with high betweenness
centrality are more likely to affect patients’ survival than those with low betweenness centrality.
These results showed that the integrated network analysis enabled us to obtain a global view of the
interactions and regulations in LUSC.

Lung squamous cell carcinoma (LUSC) is the second most common subtype of lung cancer after lung adenocar-
cinoma, accounting for 20% of all lung cancer diagnoses'. It is characterized by keratinization and/or intercellular
bridges of lung epithelial cells?. The progressive accumulation of mutations and epigenetic abnormalities are
common and drive LUSC progression®. Progress in LUSC research has revealed the roles of genetic abnormali-
ties of TP53, PI3KCA, FGFRI and others in LUSC pathogenesis and treatments*. Epigenetic studies on LUSC
also found important drivers of cancer, such as the methylation of NFE2L2, SOX2, and TP63>¢. However, only a
few studies have explored and analyzed the organizational and hierarchical interactions between these drivers in
LUSC. Studies of the interactions between the genes and their regulators are vital to understand the pathogenesis
and aid the management of LUSC.

Network-based modeling is a powerful approach for analyzing the interactions between variables. A network
or graph is a mathematical structure made up of vertices (or nodes) connected by edges (or links). The vertices
and edges might have some properties that describe their characteristics. Network-based modeling has been used
to study gene and cytosine methylation relationships. For example, a network study in leukemia found that both
gene expression and methylation consistently affected the Ras, PI3K-Akt, and Rap1 signaling pathways’. Another
study identified novel cancer-related pathways by integrating methylation data and protein-protein interaction
networks®. These studies used the networks that were obtained from open-source databases.

In our study, we computationally reconstructed and integrated the differentially expressed gene (DEG) net-
work and the differentially methylated cytosine (DMC) network. The advantage of this approach is that it ena-
bles us to find novel interactions that have not been included in the existing databases. This integrated graph
can provide a blueprint of the gene-gene and methylation-gene interactions in cancer. We can obtain much
information by analyzing the graph topology, for example, the identification of important regulatory genes by
centrality measurements”® and the clustering of similar nodes using community detection analysis'’. By integrat-
ing the DMC network and DEG network, we could study the coordination of cellular systems at the gene and
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Figure 1. Flowchart of the analysis steps in our study.

methylation levels simultaneously. Our analysis may provide a basis for the identification of novel interactions
and core regulatory genes in LUSC.

Results

Network characteristics. Using the data derived from the Genomic Data Commons-The Cancer Genome
Atlas Lung Squamous Cell Carcinoma (GDC-TCGA-LUSC) datasets, we performed differential expression
analyses of gene expression and cytosine methylation. Then, we used the partial information decomposition and
context (PIDC) and enhancer linking by methylation/expression relationships (ELMER) algorithms to recon-
struct the DEG and DMC networks, respectively. In brief, partial information decomposition decomposes the
mutual information between genes into unique, redundant, and synergistic components. PIDC calculates the
relationship between genes as the mean proportion of unique components. Then, PIDC will return all possible
edges between genes and its ranks. The edges in the DEG network represent the highest 1% of the PIDC rank.
For the methylation network, the ELMER algorithm selects the closest 10 upstream genes and the closest 10
downstream genes for each DMC. Then, the inverse correlation between DMC methylation and gene expression
is tested. The edges in the DMC network represent the significant (adjusted-P < 0.01) inverse correlations. Next,
we took the union of both graphs and extracted the giant component of the graphs. The flowchart in Fig. 1 sum-
marizes the analysis steps of our study.

The final result of the integrated network had 9748 nodes and 228246 edges. Out of 9748 nodes, 7903 were
identified as DEGs, and the remaining 1845 were DMC probes. The edges consisted of 224149 gene-gene and
4097 probe-gene interaction edges (3369 hypomethylated and 728 hypermethylated edges) (Fig. 2). We listed
all the nodes and edges in Supplementary Tables S1 and S3.

Community identification analysis. Using the Leiden algorithm'’, we identified the 10 largest com-
munities that had at least 200 nodes and accounted for approximately 50% of the total nodes. We named and
ranked each of the communities based on the number of nodes in the community (e.g., the largest community is
Community 1, the second largest is Community 2) (Fig. 3). Gene set enrichment analysis revealed the functional
classes of each community. For example, the largest community, Community 1, mainly included genes for DNA
replication and the cell cycle. The next largest communities, Communities 2, 3, and 4, included genes that were
responsible for keratinization, the immune system, and complement-coagulation cascade pathways, respectively.
We listed the 10 largest communities and some of their functional classes in Table 1. The complete list is shown
in Supplementary Table S3.

Figure 3 helps visualize the interaction between communities. We used ForceAtlas2 as a network layout algo-
rithm to display the network in a 2-dimensional image'?. ForceAtlas2 is a force-directed layout algorithm where
nodes repulse each other like charged particles, while edges attract their nodes, like springs. In this algorithm,
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Figure 2. Integrated network of cytosine methylation and gene expression. Green nodes are the genes,
and red nodes are the methylation probes. Blue edges, red edges, and gray edges are the hypomethylation,
hypermethylation, and gene-gene relationships, respectively.
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Figure 3. Interaction of the 10 largest communities in the network. We included only nodes that have a degree
of at least 15 to simplify the illustration. The size of the nodes is correlated with the betweenness centrality. The
gray nodes are the nodes that are not members of any of the 10 major communities. We also listed some of the
functional classes of each community.
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Community Source | Term name Term size | Intersection size | Adjusted-P
Community_1 REAC | Cell Cycle 679 181 2.42¢-86
Community_1 REAC Cell Cycle, Mitotic 549 154 3.22e-75
Community_1 REAC | Cell Cycle Checkpoints 290 96 8.81e-52
Community_2 REAC | Formation of the cornified envelope 128 65 1.52e-55
Community_2 REAC Keratinization 215 66 2.75e-39
Communiy 2 |wp | fan Ellde Dt e
Community_3 REAC | Immune System 2038 217 6.93e-60
Community_3 REAC | Innate Immune System 1090 127 2.69e-33
Community_3 REAC | Neutrophil degranulation 476 76 6.74e-27
Community_4 KEGG | Complement and coagulation cascades 85 19 2.86e-10
Community_4 REAC Surfactant metabolism 29 11 6.02e-8
Community_4 REAC | Diseases associated with surfactant metabolism | 9 7 1.82e-7
Community_5 REAC Glucuronidation 25 7 3.02e-6
Community_5 KEGG | Neuroactive ligand-receptor interaction 340 20 3.66e-6
Community_5 WP miRNAs involved in DNA damage response 50 9 1.29¢-5
Community_6 REAC Extracellular matrix organization 298 47 5.96e-26
Community_6 REAC | Collagen formation 89 20 4.83e-13
Community_6 REAC | Collagen degradation 64 16 6.40e-11
Community_7 WP NRE2 pathway 145 28 3.35e-16
Community_7 KEGG | Glutathione metabolism 56 13 8.42e-9
Community_7 WP Nuclear Receptors Meta-Pathway 321 30 9.68e-9
Community_8 REAC | tRNA modification in the mitochondrion 8 3 1.01e-2
Community_8 KEGG Serotonergic synapse 112 6 1.99e-2
Community_9 WP Dopaminergic Neurogenesis 30 7 1.69¢e-5
Community 9 | REAC ;F;"(‘i“:g‘i:o"afc‘:“i‘;;gi’é‘:;;g;";:s/ anions 105 8 4.63e-3
Community_9 REAC | SLC-mediated transmembrane transport 248 11 1.80e-2
Community_10 | WP Ciliopathies 184 27 1.24e-30
Community_10 | KEGG | Huntington disease 306 10 1.29¢-5
Community_10 | KEGG | Amyotrophic lateral sclerosis 363 10 6.30e-5

Table 1. Gene set enrichment analysis revealed the enriched pathways in each community. In this table, we
only showed the Reactome (REAC), Kyoto Encyclopedia of Genes and Genomes (KEGG), and WikiPathways
(WP) as the gene set data sources. We used the g:SCS method to adjust the P value for multiple testing
correction in this enrichment analysis!!.

the stronger the interaction between the communities, the closer they are. For example, Community 3 has a
closer relationship to Communities 6 and 4 than to Community 8. To quantitatively measure the strength of the
interaction, we calculated C,(y), which is the ratio of the links connected between Communities x and y to the
total number of intercommunity links on Community x. The intercommunity links are the links that connect
one community to another community. Figure 4 shows the heatmap of the ratio C,(y) from source community
X to target community y. We used Community 3 as an example. As shown in the heatmap, Community 3 in row
3 has most of its intercommunity links connected to Community 4 (26%) and Community 6 (14%). We tested
the significance of C, (y) using a network randomization test. We found that every Cy(y) value in Fig. 4 was not
random (Supplementary Table S4).

Centrality measure analysis. Centrality measure analysis was used to investigate the roles of some nodes
and their impact on the networks. There are various centrality measurements, such as degree centrality, closeness
centrality, and betweenness centrality. Here, we focused on betweenness centrality. The betweenness centrality
of a node measures the number of shortest paths that pass through that node. In the gene regulation network,
sometimes the most important nodes in the system are not the ones with the highest number of edges but
the middleman that connects groups or the ones that have the most control over the flow of the information.
Betweenness centrality measures the amount of influence a node has over the flow of information and is math-
ematically formulated as follows:

Bw) = Y ou(u)/oy
SEUFEL

where u is a node, oy is the total number of shortest paths between nodes s and ¢, and oy (1) is the number of
shortest paths between nodes s and ¢ that pass node u. Betweenness centrality has been used to identify genes
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Figure 4. Heatmap of the ratio C,(y). Each row of the heatmap shows the relative proportion Cy (y) of the
intercommunity links from the source community x (vertical axis) to the target community y (horizontal axis).
Every Cy (y) value in the figure is not random by network randomization test.

that have a high impact on leukemia patient survival” and core regulators in breast cancer cells’. We calculated
the betweenness centrality of every node (Supplementary Table S1). The three genes with the highest between-
ness centrality are NCAPG2, PSMG3, and FADD.

In our study, we investigated the correlation between the number of genes that affect survival and the between-
ness centrality. We divided the genes into 10 groups based on the deciles of the betweenness centrality. Then,
we performed univariate Kaplan-Meier survival analysis for each gene (Supplementary Table S5). A gene with
FDR-adjusted-P < 0.25is considered to significantly affect survival. We found a positive correlation (Spearman
correlation coefficient p = 0.71, P = 0.0275) between the number of genes that affect survival and the between-
ness centrality (Fig. 5).

Methylation analysis. There were 1842 hypomethylated genes and 313 hypermethylated genes in our net-
works. Hypomethylated genes and probes were dominant in Communities 1, 2, 7, and 8, which regulate the cell
cycle, keratinization, NRF2 pathway, and tRNA modification in the mitochondrion, respectively. In contrast, the
hypermethylated genes and probes were dominant in Communities 3 (immune system), 4 (tube development
and blood vessel morphogenesis), 6 (circulatory system development and extracellular matrix (ECM) organiza-
tion), and 10 (cilium movement and organization) (Fig. 6).

When a group of DMCs acts as an enhancer or a silencer in a specific sample subset, this is often the result
of an altered upstream master regulator transcription factor (TF)’. By using the get.enriched.motif and get.TFs
functions in the ELMER package, we identified the enriched motifs and master regulators of methylation changes
in LUSC. For the hypomethylated probes, the top enriched motifs were FOSL2, FOSB, FOSL1, and FOS. We
identified ZNF74, TP63, KLF5, TFAP4, and ZFP64 as master regulator TFs of the hypomethylated genes. For
the hypermethylated probes, ZBT14, E2F2, SP1, and SP2 were the top enriched motifs, and CREB3L1, CXXC5,
and ETS1 were the master regulators. We also investigated the TFs for each community. Only communities that
had at least 10 DMC probes connected to it were considered (Table 2). All of the top enriched motifs and master
regulator TFs at the global and community levels are listed in Supplementary Tables S6 and S7, respectively.

Discussion
In this study, we performed network-based modeling to study the interaction between genomic and methyl-
omic profiles in LUSC. Because the nature of the methylation and gene expression data are different, we used
2 different methods to reconstruct the DEG and DMC networks, which are the PIDC and ELMER algorithms,
respectively. The PIDC and ELMER algorithms are well tested and have been used as network inference methods
in many studies>>!,

Many network inference methods, such as GENIE3'5, partial correlation'é, and SINCERITIES", can also
reconstruct DEG networks. However, we chose PIDC because it has a strong mathematical background, can
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Figure 5. Significant positive correlation between the number of the genes that affect survival and the
betweenness centrality.
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Figure 6. Numbers of differentially hypomethylated/hypermethylated genes and probes in each community.
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Community | Methylation type | Top motif Top common TFs

Global hypomethylation | FOSL2, FOSB, FOSL1, FOS | ZNF74, TP63, KLF5, TFAP4, ZFP64
1 hypomethylation | FOSB, P63, P53, FOS ZNF74, TFAP4, KLF5, TP63, ZFP64
2 hypomethylation FOSL2, FOSL1, FOS, P53 TP63, KLF5, SOX15

5 hypomethylation | P53 TP63,50X2,KLF5

7 hypomethylation | P73, P53, P63 TP63, SOX2

8 hypomethylation P53, ANDR, P63, P73 TP63, TFAP4

Global hypermethylation | ZBT14, E2F2, SP1, SP2 CREB3L1, CXXC5, FOXP1, ETS1

1 hypermethylation | BHE41 VENTX, CXXC5, TBX5

3 hypermethylation | GMEB2, ZBT14, SP2 FLI1, SPI1, IRF4, MEF2C

4 hypermethylation | SP2, SP1, HME2 FOXP1, ETS1, FLI1, IRF4

5 hypermethylation | CENPB, SP1, MBD2 HNFI1B, RORC, NFE2

6 hypermethy]ation VEZF1, E2F5, ZF64A ETSI1, FLI1

Table 2. Community top motifs and master regulators. Only communities that have at least 10 DMCs
probe connected to it were considered. Global refers to the master regulator TFs of all hypomethylated or
hypermethylated probes.

detect noisy or nonlinear relationships, is reasonably fast, and does not need time series data to reconstruct
gene networks'>!8, The PIDC algorithm uses multivariate information measures to identify the relationship
between genes. The information measurements can quantify the dependence between variables without making
assumptions about the nature of the dependencies®. It is ideal for the noisy and nonlinear relationships that are
usually seen in cancer transcriptomic datasets. PIDC divides the information between variables into redundant,
unique, and synergistic categories. By doing so, PIDC can distinguish between unique information from a pair
of variables within the group and redundant information shared by multiple variables'®. The PIDC algorithm
has been shown to have more accuracy, stability, and efficiency than other network inference methods". The
limitations of PIDC are that it does not provide information on the edge direction or the effect of the relationship
(e.g., inhibitory or excitatory). We advise researchers who need edge direction and node sign information to use
other network inference methods (e.g., GENIE3 for directed graphs or partial correlations for signed networks).
In real-world clinical setting, the PIDC has been used to study the regulatory network of acute lymphoblastic
leukaemia?, T-cell from SARS-CoV-2 patients?!, and the breast cancers treated with endocrine therapy?.

ELMER uses methylation changes at cis-regulatory modules in tumors as the central hub of the DMC net-
work. Then, correlation analysis is used to associate them with both upstream regulator TFs and downstream
target genes®. Thus, ELMER can not only reconstruct the methylation network but also infer the master regula-
tor TFs that bind to the methylation motif binding site. The ELMER algorithm has been used in some studies
to investigate the methylation landscape of many cancers>'*. It has also been used in clinical and experimental
study for transcription factor analysis in thyroid cancer?, squamous cell carcinoma®, meningioma®, and pro-
geria syndrome?.

The integration was performed at the network level by performing graph union of the DEG and DMC net-
works. We performed community identification, centrality measurement, and gene set enrichment analysis to
discover the relationship patterns in the integrated network.

The community detection analysis revealed the subnetwork communities, which have stronger interactions
between nodes in the same community than nodes in different groups. Using functional enrichment analy-
sis, we found that each community targeted specific biological processes or pathways. The DNA replication,
cell cycle, ECM organization, and immune system pathways are common pathways altered in many cancers?.
Keratinization, cilium organization, and surfactant metabolism are LUSC and lung cell characteristics. The
complement-coagulation cascade pathway reflects the importance of complement in regulating the tumor
microenvironment***° and the risk of coagulation disorder in LUSC®'. We hypothesized that the genes in the
major communities were heavily dysregulated in LUSC.

Another important finding is that 2 of 10 major communities are related to detoxification-related pathways:
Community 5 with the glucuronidation pathway and Community 7 with the NRF2 and glutathione metabolism
pathways. The glucuronidation and glutathione metabolism pathways are related to phase II enzymes for metabo-
lizing xenobiotics®?. The NRF2 pathways are master regulators of the antioxidant response®®. The primary risk
factor for cancer, smoking, may provide an explanation for the cause of altered detoxification-related pathways*.
Altered detoxification-related pathways also contribute to increased drug resistance®>.

The network visualization in Fig. 3 revealed how the different communities interact in LUSC. Then, we used
the term Connection x — y to describe the interaction between Communities x and y. For example, we explored
the relationship between Communities 2 and 7 or Connections 2-7. Community 2 affects keratinization, and
Community 7 has roles in detoxification, such as the NRF2 and glutathione metabolism pathways. In Fig. 3,
we can see that the position of Community 2 is very close to that of Community 7. The majority of intercom-
munity links (£23%) in Community 2 connect to Community 7. The converse is also true. Most of the Com-
munity 7 intercommunity links (£34%) connect to Community 2. This indicates the close interaction between
the two communities. In a well-written review by Ishitsuka et al., they discussed the extensive importance of
NRF2 in keratinization®. They stated that the KEAP1/NRF2 pathway plays important roles in the regulation
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of keratinization, squamous epithelial tissue external responses, and detoxification. Based on our findings, we
hypothesized that the high number of edges in Connections 2-7 showed the dysregulation of the capability of lung
epithelial cells to respond to external or toxic stimuli. This is supported by studies showing that NRF2 deficiency
leads to chemical carcinogen susceptibility’” and that smoking alters the NRF2 and glutathione pathways**3.

Another example is the interaction between Community 3 of the immune system, Community 4 of the
complement-coagulation cascade, and Community 6 of ECM organization. The ratios C3(4) and C3(6) are 0.26
and 0.14, respectively. The complement system is one of the key actors in innate immunity and the coagulation
system. On the other hand, immune system cells, such as tumor-associated macrophages (TAMs) and tumor-
associated neutrophils (TANSs), have major roles in reshaping the tumor ECM**°. Many studies have been
conducted to investigate ECM-immune cell-complement interactions in lung cancer. Complement C1q proteins
can activate and recruit TAMs*!. C9 is downregulated in alveolar TAMs, leading to lung cancer progression*.
Macrophages can also regulate C3-independent C5a generation, which promotes squamous carcinogenesis®.
Other studies on TANs showed that C5a could recruit TANs by stimulating the release of leukotriene B4 and
the production of IL-1*4*, It was also shown that C3aR-dependent neutrophil extracellular traps (NETs) could
accumulate TANs*. Some studies have demonstrated that lung cancer cells have higher concentrations and
expression of C3a and C5a than nonmalignant lung cells*%.

The next step was to identify the highly connected nodes/genes or hub genes using centrality measurement.
In graph theory, the removal of hub nodes in a network increases the proportion of unreachable groups of nodes
compared with the removal of non-hub genes. Hence, hub nodes are important for maintaining the global
network structure. In many organisms, the removal of hub genes is more likely to be lethal than the removal
of non-hub genes. This is known as the centrality-lethality rule**°. Examples of centrality measurements are
degree centrality, closeness centrality, and betweenness centrality. Studies have shown that betweenness cen-
trality and degree centrality are better than closeness centrality for identifying hub genes®*'. We counted the
number of genes that significantly affect survival within each decile of betweenness centrality. We used FDR-
adjusted-P < 0.25 as the rejection threshold of the survival analysis. This is because we want to find the relevant
genes that have modest survival differences relative to the noise inherent to the gene expression data. We found a
positive correlation between the number of genes that affect the survival and the betweenness centrality (Fig. 5).
This result supports the centrality-lethality rule. The expressions of the genes with high betweenness centrality in
our network are more likely to affect the survival of the LUSC patient than those with low betweenness centrality.

NCAPG2, PSMG3, and FADD were the three genes with the highest betweenness centrality in our integrated
network. The NCAPG2 protein is a subunit of the condensin II complex, which has roles in mitotic chromo-
some assembly and segregation. The upregulation of NCAPG2 promotes the proliferation of lung cancer cells®.
PSMG3 is a chaperone protein that promotes the assembly of the 20S proteasome. To the authors’ knowledge,
no papers have investigated the effect of PSMG3 dysregulation on LUSC. However, the antisense long noncod-
ing RNA of PSMG3, PSMG3-AS1, is highly expressed in LUSC, and its inhibition reduces invasiveness*. In
our study, we found that the expression of PSMG3 was significantly associated with the patient survival (Sup-
plementary Table S5). Fas-associated death domain protein (FADD) transmits the apoptotic signal delivered by
death receptors. The release of FADD by non-small cell lung cancer cells is correlated with aggressiveness and
metastasis®. MYADM is another gene that was found to have high betweenness centrality and to be associated
with survival in our study. MYADM had the smallest P value in the Kaplan-Meier survival analysis in the top
10th percentile of genes by betweenness centrality. It regulates the connection between the plasma membrane
and the cortical cytoskeleton in the endothelial inflammatory response®. It also contributes to smooth muscle
alteration in pulmonary artery hypertension and tuberculosis tracheobronchial stenosis***”. However, its roles
in lung cancer are not well studied. Further study of PSMG3 and MYADM may lead to them becoming potential
LUSC prognostic markers or therapeutic targets in the future.

The methylation analysis of the network showed that the hypomethylated probes targeted the cell cycle
(Community 1), the NRF2 and glutathione metabolism pathways (Community 7), keratinization (Community
2), and tRNA modification in the mitochondrial pathway (Community 8). The upregulation of these pathways
has been linked to invasiveness, therapy resistance, smoking, and poor prognosis in many studies?>*#3%5_In
contrast, the hypermethylated DMC probes downregulated pathways related to cancer inhibition and normal
development/differentiation of tissue, such as the immune system (Community 3), tube development and blood
vessel morphogenesis (Community 4), circulatory system development and ECM organization (Community 6),
and cilium organization (Community 10).

The gain (for hypomethylated probes) or loss (for hypermethylated probes) of master regulator TFs can
change the methylation status of DMCs. We used the ELMER package to identify these upstream master regu-
lator TFs. In our study, we found that TP63, KLF5, and SOX2 were overexpressed and became the top TFs
for hypomethylated probes at both the global and community levels. This result is supported by a previous
chromatin immunoprecipitation sequencing study that found that TP63, SOX2, and KLF5 were core regulators
that determined chromatin accessibility, epigenetic modifications, and gene expression patterns in esophageal
squamous cell carcinoma®. In contrast, we found that the suppressed expression of CXXC5 and FOXP1 acted
as regulators of hypermethylation. CXXCS5 is a nuclear zinc-finger protein comprising DNA methyltransferases,
DNA demethylases, histone methyltransferases, and histone demethylases that contributes to transcriptional
regulation by preferentially binding to unmethylated CpG islands®'. CXXC5 is a negative-feedback regulator
of the Wnt/beta-catenin pathway®* and an inhibitor of liver cancer that promotes TGF-beta-induced cell cycle
arrest®®; moreover, it is required for DNA damage-induced p53 activation®. FOXP1 is a TF that belongs to the
P subfamily of the forkhead box family. FOXP1 is a prostate cancer suppressor that regulates androgen receptor
and FOXA1%. FOXP1I is also associated with improved survival in lung cancer®.

Taken together, all the findings of our study suggest that integrating the DMC network and DEG network
has the potential to reveal complex interactions between genes and their regulators (e.g., TFs and methylated
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cytosines). Our analysis workflow can be used not only in LUSC but also in other cancers and diseases. We believe
that a deeper understanding of the global organizational structure of the gene regulatory network will assist in
LUSC diagnosis and therapeutic management.

Methods

We computationally reconstructed the DEG network and DMC network in LUSC using the PIDC'® and ELMER
algorithms?, respectively. Then, we combined the DEG and DMC networks and extracted the giant component
of the graph. This graph consists of nodes that represent genes or methylation probes and undirected edges that
represent the regulatory connections.

Lung cancer datasets preparation. The HTSeq-FPKM-UQ gene expression data of 502 LUSC pri-
mary tumor samples and 49 normal tissue samples were downloaded from the NCI Genomic Data Commons
(GDC) data portal using the Bioconductor package TCGAbiolinks”. The gene expression data were processed
using the TCGAbiolinks workflow from Silva et al.®8. In short, we removed outliers, failed hybridizations, or
mistracked samples by performing Array-Array Intensity Correlation using the TCGAanalyze_Preprocessing
function. Next, we normalized mRNA transcripts and filtered genes with low signal across samples using the
TCGAanalyze_Normalization and TCGAanalyze_Filtering functions, respectively. We selected the genes that
were differentially expressed twofold by TCGA analysis_DEA. Then, we performed log(1 + x) transformation
and standardization of the expression of the selected genes.

TCGA level 3 DNA methylation data based on the Illumina Infinium HumanMethylation450 (HM450) Bea-
dArray platform from the same sample were downloaded using the get TCGA function in the ELMER package?.

Networks reconstruction. We used the PIDC algorithm to reconstruct the DEG network. In PIDC, we
examined every gene triplet, for example, Source;, Source,, and Target. The PIDC algorithm divides the informa-
tion between Source; and Target into three categories: redundant, unique, and synergistic. Redundant informa-
tion is the portion of information about Target that either Source; or Source; can provide. The unique information
is uniquely contributed from Source; or Source; only. The synergistic information is the portion of information
from both Source; and Source,. Then, the direct functional relationship between Source; and Target is calculated
by using the mean proportion of the unique information between Source; and Target over all Source,'®.

We used the PIDC algorithm implemented in the package NetworkInference.jl's. The Bayesian blocks algo-
rithm and maximum likelihood were used as the discretizer algorithm and estimator parameter, respectively.
It returns all possible edges between genes and their ranks. Finally, a DEG network was defined by keeping the
highest 1% of ranked edges from the PIDC algorithm results.

DMC network reconstruction was performed using the ELMER package. ELMER network reconstruction
has 3 main steps:

1. Identifying distal methylation probes on the HM450 platform,

2. Selecting distal probes with significantly different DNA methylation levels between normal and tumor groups
(i.e., both hypermethylation and hypomethylation),

3. Connect putative target genes and their DMC probes.

This process will return the probe-gene pairs that have a significant (adjusted-P < 0.01) inverse correlation
between the methylation of the probe and the expression of the gene.

Motif and transcription factor identification. To identify TFs that act as upstream master regulators by
binding to TF binding motif DNA methylation, we performed two additional steps:

1. Identify enriched motifs in the differentially methylated probes and
2. Identify regulatory TFs whose expression is associated with TF binding motif DNA methylation

We performed all the steps from DMC network reconstruction until TF identification using the TCGA.pipe
function on unsupervised modes in the ELMER package.

Networks integration. To combine the DMC and DEG networks, we performed a graph union operation.
Thus, the vertices and edges in the integrated network are the union of the vertices and edges from the DMC and
DEG networks. Then, we extracted the subgraph that has the largest number of connected components or the
giant component of the graph.

Network analysis. We performed community identification, gene set enrichment analysis, and between-
ness centrality measurement on the integrated network. Community detection of the network was performed
using the Leiden algorithm!® through the Python package leidenalg (https://github.com/vtraag/leidenalg). In
this function, we used CPMVertexPartition as the objective function parameter and 0.0085 as the value of
the resolution parameter. The gene set enrichment analysis of each of the communities was performed using
g:Profiler®. We used Kyoto Encyclopedia of Genes and Genomes, Reactome, WikiPathways, and Gene Ontology
(molecular function, cellular component, and biological process) as data sources in g:Profiler. The betweenness
centrality was calculated using the package Graph.jl’®. We used the g:SCS algorithm to adjust the P value in gene
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set enrichment analysis. The g:SCS method is the default method in g:Profiler for computing multiple testing
correction'!.

To analyze the intercommunity interactions, we visualized the network in Gephi using ForceAtlas2 as a net-
work layout algorithm!?”!. Then, we calculated a ratio Cy(y), which measures the proportion of the links that are
connected between Source Community x and Target Community y to the total of the links on Source Community
x that are not connected to the Source Community itself (e.g., intercommunity links). It is formulated as follows:

Ly (y)
> ztx Lx(2)

where Ly (y) is the number of links that connect Community x and Community y. By definition, L, (y) is equal
to Ly(x). The denominator of C, () is the sum of the number of links that connected Community x to other
communities except Community x itself.

We performed network randomization tests to determine whether the ratio Cy (y) occurs by random chance.
The steps of the network randomization tests are shown in Algorithm 1

C(y) =

Data: Original network, number of iteration N = 5000;
Result: L = An array with length N of C,(y) matrix (K x K)
Count k < the number of the unique community, ;
Count Ejser +— number of intercommunity links;
n<+0;
L <—empty list;
while n < N do
n<—n+1;
Networke,py <— copy of the original network;
delete all intercommunity links in Networkeopy;
e+ 0;
while ¢ < Ej., do
e+e+1;
Pick 2 random nodes from different community in Networkc,,y and create a link between them;
end
Calculate Cy(y) for every pair of community x and y in Network,py;
Store the result on a K x K matrix;
Append the matrix on the L;
end

Algorithm 1: Network randomization procedure

We then performed the one-sample t test on the observed Cx (y) and the Cy (y) from the network randomiza-
tion procedure. We adjusted the P values using Bonferroni correction.

Survival analysis.  We split the genes into 10 equal groups based on the deciles of the betweenness central-
ity. Then, we performed univariate Kaplan-Meier survival analysis for each gene. We used the 33th-percentile
and 67th-percentile as the quantile threshold to identify samples with low and high expression of a gene. We
used TCGAanalyze_SurvivalKM in the TCGAbiolinks package to perform survival analysis. The false discovery
rate (FDR) was computed to correct for multiple hypothesis testing, and the result was only accepted as sig-
nificant in the case of FDR-adjusted P < 0.25. We counted the number of the significant genes in each group.
Spearman correlation test was performed to find the correlation between the number of significant genes and
the betweenness centrality.

The source code to perform and replicate all analyses in our study is available at the GitHub repository
(https://github.com/yusri-dh/LUSC_integrated_network/).

Data availability

We downloaded the publicly available LUSC dataset in: The National Cancer Institute (NCI) Genomic Data Com-
mons (GDC) TCGA https://gdc.cancer.gov/access-data/gdc-data-portal by using TCGAbiolinks and ELMER
package.
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