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Abstract

Motivation: Unique sequence regions are associated with genetic function in vertebrate genomes.

However, measuring uniqueness, or absence of long repeats, along a genome is conceptually and com-

putationally difficult. Here we use a variant of the Lempel-Ziv complexity, the match complexity, Cm,

and augment it by deriving its null distribution for random sequences. We then apply Cm to the human

and mouse genomes to investigate the relationship between sequence complexity and function.

Results: We implemented Cm in the program macle and show through simulation that the newly

derived null distribution of Cm is accurate. This allows us to delineate high-complexity regions in

the human and mouse genomes. Using our program macle2go, we find that these regions are two-

fold enriched for genes. Moreover, the genes contained in these regions are more than 10-fold

enriched for developmental functions.

Availability and implementation: Source code for macle and macle2go is available from www.

github.com/evolbioinf/macle and www.github.com/evolbioinf/macle2go, respectively;

Cm browser tracks from guanine.evolbio.mgp.de/complexity.

Contact: haubold@evolbio.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Since the 1960s DNA reassociation kinetics have been used to quan-

tify the repetitiveness of DNA. In a pioneering study of the reassoci-

ation kinetics of CpG islands, Bird et al. (1985) discovered that the

1% of the mouse genome making up such islands was unique in the

sense that it had no matches elsewhere in the genome. In subsequent

years, CpG islands attracted a huge amount of interest as they are

associated with the promoters of housekeeping genes (Bird, 1986;

The ENCODE Project Consortium, 2012) and influence chromatin

structure (Wachter et al., 2014). In addition, Elango and Yi (2011)

found that promoters containing CpG islands longer than 2 kb were

enriched for developmental genes. In the present study we directly

search for unique regions by delineating intervals where exact

matches to other parts of the genome are short.

Uniqueness and repetitiveness are complementary, and Haubold

and Wiehe (2006) proposed an early measure of genome repetitive-

ness, the Ir. This was based on the lengths of matches starting at every

position in the genome. Regions with similarity elsewhere in the gen-

ome were characterized by long matches, unique regions by short

matches. In a sliding window analysis they found that some regions in

the human genome including the Hox clusters were characterized by

extremely low Ir. The Hox genes encode transcriptional regulators

that specify the anterior/posterior axis in all animals (Raff, 1996).

Moreover, in the publication of the first draft of the human genome

the Hox clusters had been singled out as containing very few trans-

poson insertions compared to the rest of the genome (International

Human Genome Sequencing Consortium, 2001). Recent transposon

insertions would create long exact matches and hence increase the Ir.
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As a statistic, the Ir has two disadvantages: Its distribution is un-

known, and its implementation too slow for convenient genomics.

When Haubold et al. (2009) derived the null distribution of match

lengths for a random sequence, where all bases are independently

drawn given the GC content, this opened the way for constructing a

match-based statistic with known null distribution.

The classical match-based statistic for strings is the Lempel-Ziv

complexity (Lempel and Ziv, 1976). It is computed from the decom-

position of a string, S, into a set of substrings, S½i . . . j�, where S½i . . . j�
is the longest substring that has an exact match to the left of S½i�.
The number of such maximal matches divided by the length of S is

the Lempel-Ziv complexity. In a refinement of this measure,

Odenthal-Hesse et al. (2016) proposed the match complexity, Cm,

where maximal matches of S½i . . . j� can occur to the left and the right

of S½i�. In contrast to the Ir and the Lempel-Ziv complexity, Cm has

known bounds. Its lower bound is 0 for sequences with the min-

imum number of two matches and its upper bound is reached in

long random sequences, for which the expectation of Cm is 1.

Here we derive the null distribution of Cm, which allows us to

delineate unique genomic regions. These are defined as regions

where the Cm is indistinguishable from that found in random

sequences. The computation of Cm, like that of the Ir and the

Lempel-Ziv complexity, is based on suffix arrays (Ohlebusch, 2013,

p. 59ff). A suffix array is essentially an index to some text, in this

case the nucleotide sequence of a genome. A standard method for

ensuring programs based on this technology are fast, is to separate

index computation, which may take hours, from index querying,

which is often a matter of seconds. Our implementation of Cm,

macle for MAtch CompLExity, makes use of this separation lead-

ing to querying times for the complete human genome of half a mi-

nute or less.

We apply macle to the human and mouse genomes. Since we

are particularly interested in regions unique within these

genomes, we first need to establish by simulation that the newly

derived null distribution of Cm is accurate. Next, we scan the human

and mouse genomes and ask two questions: First, are highly com-

plex regions enriched for promoters? Second, are the genes with pro-

moters in high-complexity regions enriched for particular functions?

We find that high-complexity regions are mildly enriched for pro-

moters, but that these promoters are strongly enriched for develop-

mental genes.

2 Methods and data

2.1 The match complexity
The match complexity, Cm, was first described by Odenthal-Hesse

et al. (2016). Consider a string S ¼ S½1 . . .L� and extend it by

S½Lþ 1� ¼ $, where $ is a unique character. Given the first match

factor S½1 . . .F1�, where F1 ¼ maxfk : S½1 . . .k� matches elsewhere in

S}, we define recursively the nth match factor S½Fn�1 þ 1 . . .Fn�,
which ends at Fn ¼ maxfk : S½Fn�1 þ 1 . . .k� matches elsewhere in

S}. We stop with the Nth match factor if FN ¼ L and set NL :¼ N.

For example, S ¼ CGGGCGGGCT has NL ¼ 3 factors, CGGGC:GGGC:T.

Following Odenthal-Hesse et al. (2016), the match decompos-

ition of a string is computed from its sorted suffixes. Table 1 shows

the sorted suffixes of S as column suf½i�. The suffix array, sa½i�,
abstracts from this the starting positions. It is ‘enhanced’ by the larg-

est common prefix array, lcp½i�, which denotes the length of the lon-

gest prefix match between suf½i� and suf½i� 1�; lcp½1� ¼ �1, as there

is no suffix to compare with (Ohlebusch, 2013, p. 79ff). To decom-

pose S, the lcp array is traversed in the order in which the suffixes

appear in S. The mapping between positions in S and in sa is the in-

verse suffix array, isa½sa½i�� ¼ i. As summarized in Algorithm 1, the

longest match starting at position i is determined by looking up

lcp½isa½i�� and lcp½isa½i� þ 1�. The greater of these is the length of the

desired match factor. The algorithm reports the factor, skips it and

repeats until it has traversed the entire sequence.

If we apply Algorithm 1 to the enhanced suffix array of S in

Table 1, we first look up lcp½isa½1�� ¼ lcp½1�, which is �1, and lcp½2�,
which is 5. Hence the first match factor S½1 . . . 5� is reported and the

algorithm repeats by looking up lcp½isa½6�� ¼ lcp½9� ¼ 4 and

lcp½10� ¼ 0. The second factor S½6 . . . 9� is reported, and so on.

Computation of the lcp array is carried out in time proportional

to the length of the corresponding sa by first computing its isa

(Ohlebusch, 2013, p. 79ff). In practice, suffix array construction

consumes the bulk of the resources necessary for match

decomposition.

In order to define Cm, we need the following three quantities for

a sequence, S, of length L: First, Co ¼ NL=L is the observed number

of match factors per base; second, Ci ¼ 2=L is the theoretical min-

imum; third, Ca is the expected match count per base in a random

sequence of length L with the same GC-content as S, which we ex-

plain below. With these quantities, we define

Cm ¼
Co � Ci

Ca �Ci
:

Subtraction of Ci ensures that Cm is bounded by 0 and an expect-

ation of 1.

Table 1. Enhanced suffix array of S ¼ CGGGCGGGCT

i sa½i� lcp½i� isa½i� suf½i�

1 1 �1 1 CGGGCGGGCT

2 5 5 8 CGGGCT

3 9 1 6 CT

4 4 0 4 GCGGGCT

5 8 2 2 GCT

6 3 1 9 GGCGGGCT

7 7 3 7 GGCT

8 2 2 5 GGGCGGGCT

9 6 4 3 GGGCT

10 10 0 10 T

Algorithm 1 Computing the match factor decomposition

Require: S {input sequence}

Require: lcp {longest common prefix array of S}

Require: isa {inverse suffix array of S}

Require: n {length of S}

Ensure: Match decomposition

1: i 1 {set index to first position in S}

2: lcp½nþ 1�  0 {prevent out of bounds error}

3: while i � n do

4: l1  lcp½isa½i��
5: l2  lcp½isa½i� þ 1�
6: j iþmaxðl1; l2; 1Þ � 1

7: reportMatchFactorðS½i . . . j�Þ
8: i jþ 1
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To compute Ca, we use the distribution of the lengths, Y�i , of the

longest matches starting at position i in a random sequence of GC-

content 2p (Haubold et al., 2009):

PðY�i < xÞ �
X

k

x
k

� �
pk ð1� pk ÞL: (1)

Here, k is the vector of nucleotide counts, k ¼ ðkA;kC; kG;kTÞ,
which sum to the threshold length, x ¼ kA þ kC þ kG þ kT ; and p is

the vector of nucleotide frequencies, p ¼ ð0:5� p; p; p;0:5� pÞ.
From Equation (1) we compute the mean, l, and variance, r2, of the

match length distribution:

l :¼ 1=Ca ¼ E½Y�i � ¼
XL

x¼1

xðPðY�i < xþ 1Þ � PðY�i < xÞÞ;

r2 :¼ V½Y�i �

¼
XL

x¼1

x2ðPðY�i < xÞ � PðY�i < x� 1ÞÞ � ðE½Y�i � þ 1Þ2:

Given the match decomposition of, say, the human genome, we

wish to compute local values of Cm by sliding a window of length W

across the decomposition, and computing Co; Ci and Ca with respect

to the current window: Co ¼ NW=W, Ci ¼ 2=W and Ca ¼ 1=l.

We define highly complex regions as those that are indistinguish-

able from random. In order to detect such regions, we need to calcu-

late appropriate threshold values, or quantiles, of Cm. For this

purpose we model the null distribution of Cm by a normal distribu-

tion. This is justified by assuming that L�W � 1. Now let Ni de-

note the number of factors up to position i. Then ðNiÞi¼0;1;2;... is a

renewal process, since its increments are—by assumption—inde-

pendent and equally distributed according to the distribution of Y�i .

According to the central limit theorem for renewal processes

(Serfozo, 2009, Example 67),

NW �
W

l
þ BW ;

where BW is normally distributed with mean 0 and variance

Wr2=l3; BW � Nð0;r2W=l3Þ. This leads to

Cm �
l
W

NW � 1þ l
W

BW � N 1;
r2

lW

 !
; (2)

which allows us to approximate quantiles for Cm using the quantile

function

F�1ðpÞ ¼ 1þ
ffiffiffi
2
p r2

lW
erf�1ð2p� 1Þ;

where p is the probability covered up to that point, say 5%, and erf

is the error function.

2.2 Implementation
We used our program macle to compute Cm in sliding windows of

length 10 kb, which advanced in steps of 1 kb, thus generating sets of

overlapping windows. Macle is written in Cþþ and calls the soft-

ware library libdivsufsort (available from github) for suffix

array computation. This library implements one of the fastest suffix

sorting algorithms known, the divSufSoft algorithm recently

described by Fischer and Kurpicz (2017). Given the human genome in

FASTA format, it is first indexed, and can then be queried repeatedly.

We wrote the program macle2go in Go to annotate the output

of macle. Macle2go implements three functions, quantile,

annotate and enrichment.

Quantile implements the quantile computation outlined

above.

Annotate first identifies the n windows of a given minimum

Cm. It then finds the go genes whose promoters intersect one or

more of these n windows; we defined the promoter of a gene as the

4 kb interval centered on its transcription start site (Saxonov et al.,

2006). Annotate also repeatedly draws n random windows to de-

termine the number of genes expected by chance alone, ge. In add-

ition, it counts the number of times, f, that n windows are found

containing 	 go genes in i iterations. Then the P-value of H0 : go ¼
ge is P ¼ f=i, or P < 1=i, if f¼0.

Enrichment connects the genes found by annotate to the func-

tional categories of the gene ontology (GO) (The Gene Ontology

Consortium, 2000). The result is a list of GO terms and the number

of genes observed in that category. Enrichment also carries out a

randomization procedure similar to that used by annotate to test

the significance of finding more genes than expected in a particular

GO category.

2.3 Data
Human genome version GRCh38.p2 and mouse genome version

GRCm38.p3 were used throughout. The RefGene annotation data

for both organisms was downloaded from the UCSC genome brows-

er. To connect genes to GO-terms, we used the files

Homo_sapiens.gene_info, Mus_musculus.gene_info and

gene2go from the NCBI website. In addition, we downloaded CpG

islands from the UCSC genome browser. All the primary data files

mentioned here are posted together with our Cm browser tracks for

human and mouse.

3 Results

3.1 Null distribution
To check the accuracy of the null distribution in Equation (2), we

simulated a random 100 Mb sequence and carried out a sliding win-

dow analysis with 10 kb windows. Figure 1 shows the distribution

Fig. 1. The simulated and expected null distribution of Cm. The simulated dis-

tribution was computed from a 100 Mb random sequence with a 10 kb sliding

window. The expected distribution is given in Equation (2)

Genome complexity 1815

Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: D


of local Cm values compared to Equation (2). The fit is not perfect,

but reasonable.

3.2 Time and memory consumption
We investigated the resource consumption of macle using simulated

sequences. Our test computer ran Ubuntu 18.04 on Intel Xeon

2.10 GHz processors with 256 GB RAM. Macle first computes a

permanent index, which can then be queried repeatedly. Figure 2

shows that index construction is slightly more than linear in the

length of the input sequence. Still, 1 Mb per s can be taken as a rule

of thumb. Index traversal, on the other hand, is expected to take

time proportional to index length, which in turn is proportional to

sequence length. Figure 2 shows that querying the index by sliding a

window across the entire input sequence is indeed linear in sequence

length and takes 1.15 s for 256 Mb, while the corresponding index

construction takes 302.3 s, that is, over 250 times longer.

Memory consumption of index construction and querying is

strictly linear in the length of the input sequence (not shown).

Construction consumes approximately 35 MB per Mb, querying

four times less, 8.4 MB per Mb.

3.3 Application to the human and mouse genomes
Indexing the 3.1 Gb of the human genome took 1 h, 19 min, 3 s and

128.2 GB RAM. Similarly, indexing the 2.7 Gb of the mouse gen-

ome took 1 h, 8 min, 33 s and 111.1 GB RAM. The first thing we

calculated off these indexes was genome-wide Cm, which is 0.8071

in human and 0.7868 in mouse. In other words, the mouse genome

is overall slightly less complex, or more repetitive, than the human

genome. However, these genome-wide values hide a large diversity

of chromosome-specific complexity. Figure 3 shows the Cm for the

19 mouse autosomes, the 22 human autosomes and their sex chro-

mosomes. In humans the chromosome-wide complexity varies be-

tween 0.40 in the Y chromosome and 0.85 in chromosome 3.

Interestingly, shorter chromosomes have significantly lower com-

plexity than longer chromosomes with a correlation of r¼0.61

(P ¼ 1:5
 10�3). In mouse, Cm ranges from an extraordinarily low

Cm ¼ 0:06 in the Y chromosome to Cm ¼ 0:86 in chromosome 11.

In contrast to human, there is no correlation between chromosome

length and complexity (r¼0.17, P¼0.45). Notice also that in

mouse the X chromosome (Cm ¼ 0:68) has the second lowest com-

plexity, while the human X chromosome (Cm ¼ 0:76) has a com-

plexity similar to that of equally long autosomes.

We now zoom into the genomes by carrying out sliding window

analyses. Figure 4 shows the frequency distribution of Cm in 10 kb

sliding windows across the human and mouse genomes. This is bi-

modal with a large mode at 0.91 representing the bulk of both

Fig. 2. Run time of macle as a function of sequence length. Measurements

made from single random sequences

Fig. 3. Match complexity of human and mouse chromosomes as a function of

their length. Some labels are superimposed, especially human chromosomes

10, 11 and 12, and mouse chromosomes 8 and 10

Fig. 4. Histogram of Cm values across the human and mouse genomes for

10 kb sliding windows
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genomes, and a smaller mode at 0.05 for highly repetitive regions.

Notice that mouse has a larger proportion of low-complexity

regions than human, presumably due to the extremely low complex-

ity of its Y chromosome (Fig. 3).

Next, we investigate how the Cm values summarized in Figure 4

are distributed along individual chromosomes. Figure 5 shows Cm

along human chromosome 2, which contains one of the four human

Hox clusters, HoxD, at 176.2 Mb. The green horizontal line at

Cm ¼ 0:9954 is the 5% quantile of the Cm distribution in random

sequences obtained from Equation (2) and delineates high-

complexity regions. There are 79 such regions ranging from 10 kb to

77 kb and totaling 1.2 Mb, or 0.50% of chromosome 2. Figure 5

depicts these regions as vertical lines. At the other extreme of the Cm

distribution is the centromere, which is characterized by 4 Mb of

very low Cm.

In order to visualize how Cm highlights genes, Figure 6 shows

our Cm results integrated with the UCSC genome browser in the

HoxD region. Notice the two 100 kb-spanning regions of high com-

plexity. These overlap a large portion of the HoxD genes shown as

the ‘GENCODE’ track. They also correspond to a high density of

CpG islands and a low density of RepeatMasker elements.

In total, the human genome contains 1234 high-complexity

intervals constructed by merging the overlapping elements among

5867 high Cm windows (Supplementary Table S1). They range in

length from 10 kb to 77 kb, totaling 17.3 Mb or 0.56% of the gen-

ome. The three longest regions, chr2: 176 066 579–176 143 578,

chr7: 27 135 698–27 208 697 and chr12: 53 948 018–54 010 017 are

centered on HoxD, HoxA and HoxC, respectively. The remaining

Hox cluster, HoxB, is covered by two intervals, chr17: 48 573 129–

48 608 128 and chr17: 48 609 129–48 634 128. The 1234 intervals

contain 1443 genes, while the expected number of genes based on

repeatedly drawing 5867 random windows is 876.55. This 1.65-fold

gene enrichment is highly significant (P < 10�4).

In mouse there are 2908 high-complexity windows that merge

into 772 distinct intervals (Supplementary Table S2). These range in

length from 10 to 56 kb totaling 10.1 Mb or 0.37% of the mouse gen-

ome. We were surprised to find that the 56 kb interval chr2: 76 703

660–76 759 659 contains no promoter. It does, however, intersect the

gene encoding titin, Ttn, a component of muscles (chr2: 76 703 983–

76 982 547). Homozygous mutations in Ttn lead to developmental

defects and premature death (www.informatics.jacx.org). In

total, the promoters of 958 genes are found in these intervals, com-

pared to an expectation of 401.94. This amounts to a 2.38-fold en-

richment of genes, which include members of HoxA, HoxB and

HoxD; HoxC is missing, as its Cm remains slightly below the cutoff.

3.4 Functional enrichment
The 1443 human promoters in high-complexity regions cluster in

211 biological processes with at least 10 members. We ran our

Monte-Carlo procedure to test whether the observed number of

genes in a particular GO category is larger than expected by chance

alone with 108 iterations. This resulted in 45 categories enriched

with maximal significance (P < 10�8). When Bonferroni-corrected

for the 211 tests, this amounts to P < 2:1
 10�6. The degree of en-

richment ranged from 18.7 to 2.1 (Supplementary Table S3). The

enriched categories are involved in cell differentiation,

morphogenesis and organ development. Table 2 lists the top 10

enriched categories. The genes underlying these functional catego-

ries contain many well-known transcription factors, including Lhx

in the category ‘spinal cord association neuron differentiation’, Fox

in ‘dopaminergic neuron differentiation’ and Hox in ‘anterior/pos-

terior pattern specification’ (Supplementary Table S3).

Fig. 5. Match complexity, Cm, in 10 kb sliding windows along human chromosome 2. The green horizontal line marks the complexity threshold [Equation (2)] and

the vertical bars the regions with complexity greater or equal to that threshold. C, centromere; HoxD, location of the HoxD gene cluster (Color version of this

figure is available at Bioinformatics online.)

Fig. 6. High-complexity regions and Cm in sliding windows (red), CpG islands (green), condensed genes (blue) and RepeatMasker annotations around the human

HoxD cluster, chr2: 176 000 000–176 300 000, rendered in the UCSC genome browser (Color version of this figure is available at Bioinformatics online.)
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The 958 mouse genes in high-complexity regions cluster in 173

processes with at least 10 members, of which 51 are maximally signifi-

cant (P < 10�8 
 173 ¼ 1:7
 10�6) with enrichment factors ranging

from 14.4 to 2.8 (Supplementary Table S4). Again, they are involved

in a broad range of developmental processes. Table 3 lists the top 10

enriched categories. As in the case of human, the genes underlying

these functional categories contain numerous widely studied transcrip-

tion factors, such as Pax in ‘cell fate determination’, Gata in ‘tissue

development’ and Hox in ‘embryonic skeletal system morphogenesis’.

Elango and Yi (2011) reported that CpG islands longer than 2 kb

are also associated with developmental genes. So we asked, whether

our high-complexity regions coincided with CpG islands in general,

and specifically with long CpG islands. In human, 88% of high-

complexity regions intersect one or more of the 30 477 CpG islands.

In mouse almost the same proportion, 87%, of high-complexity

regions intersect one or more of its 16 023 CpG islands. This propor-

tion drops if we restrict the analysis to long CpG islands, of which the

human genome contains 1426. Only 35% of high-complexity regions

intersect a member of this class of CpG islands. Similarly, in mouse

only 19% of high-complexity regions intersect a long CpG island.

4 Discussion

The relationship between raw nucleotide sequence and its biological

function has been at the center of molecular biology since the

discovery of the double helix. An early insight was that the genomes

of eukaryotes are riddled with non-functional sequences, especially

transposons. Devising fast methods for finding repetitive elements

has been a major concern of bioinformatics, as genomes are routine-

ly delivered with repeats annotated (Fig. 6) or masked (Bao et al.,

2015). In human, approximately half the genome is masked.

Instead of identifying repeats, we have concentrated on finding

repeat-free regions, because uniqueness as defined by reassociation

kinetics has been linked to CpG islands for decades (Bird et al.,

1985), and CpG islands are functional markers in vertebrate

genomes. We measure uniqueness using the match complexity, Cm

(Odenthal-Hesse et al., 2016), thereby effectively carrying out an in

silico reassociation experiment. Cm is calculated by augmenting suf-

fix array techniques (Algorithm 1) with the mathematics of the

match length distribution summarized in Equation (2). This equa-

tion is based on the assumption that the number of factors in a long

window is approximately normally distributed, which fits the simu-

lations (Fig. 1). Equipped with this formalism we computed Cm

across the human and mouse genomes, and connected the results

with genes and their functions.

Our program macle is designed for efficiency. The enhanced

suffix array it computes is written to disk in binary form to allow

querying of arbitrary regions hundreds of times more quickly than

the one-off index construction (Fig. 2). However, further speedup of

index computation might be forthcoming due to the recent publica-

tion of a parallel version of the divSufSort algorithm on which

macle is based (Labeit et al., 2016). In contrast, the hypothesis test-

ing in macle2go already runs in parallel, as the problem of repeat-

edly drawing sets of windows easily lends itself to this type of

optimization.

When querying individual chromosomes, the Cm values for

human in Figure 3 are more widely scattered than for mouse. The

one exception to this rule is the mouse Y chromosome, which is a

true outlier among the chromosomes studied with Cm ¼ 0:06.

Correspondingly, the sliding window graph of this chromosome

contains long stretches of low Cm and looks different from all other

chromosomes (see online browser tracks). This might come as a sur-

prise since the male-specific region of the Y chromosome is 99.9%

euchromatic and contains approximately 700 protein-coding genes

(Soh et al., 2014). However, these genes form an ‘ampliconic’ struc-

ture consisting of recently duplicated copies of genes involved in

spermatogenesis.

The mouse Y chromosome illustrates a peculiarity of the Cm:

Regions with low complexity are usually assumed to be gene-poor

and heterhochromatic. The mouse Y chromosome shows that this

need not be the case. A low Cm merely indicates a recent duplica-

tion, regardless of the length of the region involved, or its copy

number.

In contrast, high Cm, the focus of this study, has an unambiguous

interpretation: It indicates the absence of recent duplication, perhaps

due to selection against it. Approximately 0.50% of chromosome 2

is high-complexity (Fig. 5), which is close to the 0.56% high-

complexity across the entire human genome. Haubold and Wiehe

(2006) had previously observed in a less systematic fashion that such

regions contained developmental genes such as members of the four

Hox clusters.

We carried out a comprehensive sliding window analysis to

study this rigorously. Its most basic parameter is window length,

which we arbitrarily set to 10 kb, as the enrichment for developmen-

tal genes remains highly significant in mouse and human regardless

of whether windows of 5, 10 or 20 kb are analyzed: In humans the

most highly enriched categories for 5 and 20 kb windows are ‘spinal

Table 3. Functional enrichment in mouse high-complexity regions,

P < 1:7
 10�6

# Process C O E O / E

1 Cell fate determination 18 10 0.7 14.4

2 Dopaminergic neuron diff. 29 13 1.1 11.8

3 Tissue dev. 27 11 1.0 11.3

4 Anatomical structure formation. . . 27 12 1.1 11.3

5 Ventricular septum morph. 38 16 1.4 11.1

6 Branching. . .in blood vessel morph. 40 16 1.5 10.8

7 Embryonic forelimb morph. 36 15 1.4 10.5

8 Embryonic skeletal system dev. 43 17 1.7 10.2

9 Embryonic skeletal system morph. 56 20 2.0 9.9

10 Metanephros dev. 37 13 1.3 9.8

C, count of genes in genome; O, observed number of genes; E, expected

number of genes; diff., differentiation; morph., morphogenesis; dev.,

development.

Table 2. Functional enrichment in human high-complexity regions,

P < 2:1
 10�6

# Process C O E O / E

1 Spinal cord association neuron diff. 13 11 0.6 18.7

2 Dopaminergic neuron diff. 21 14 1.0 14.0

3 Neuron fate spec. 15 11 0.8 13.8

4 Cell fate determination 17 12 0.9 13.4

5 Middle ear morph. 20 10 1.0 10.5

6 Anterior/posterior pattern spec. 80 41 4.0 10.2

7 Embryonic skeletal system morph. 38 20 2.0 10.1

8 Thyroid gland dev. 24 13 1.3 10.1

9 . . .branching. . .in ureteric bud morph. 19 10 1.0 10.1

10 Branching. . .in ureteric bud morph. 43 21 2.2 9.7

C, count of genes in genome; O, observed number of genes; E, expected

number of genes; diff., differentiation; spec., specification; morph., morpho-

genesis; dev., development.
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cord association neuron differentiation’, and ‘proximal/distal pat-

tern formation’, respectively (Supplementary Tables S5 and S6),

which fits with the top category for 10 kb windows, which like for

5 kb windows is ‘spinal cord association neuron differentiation’

(Table 2). Similarly, in mouse the most highly enriched category

detected with 5 kb windows is ‘embryonic skeletal system devel-

opment’, and with 20 kb windows ‘anterior/posterior pattern speci-

fication’ (Supplementary Tables S7 and S8). These developmental

categories fit the category most highly enriched using 10 kb win-

dows, ‘cell fate determination’ (Table 3).

However, with increasing window length the high-complexity

fraction of the genome decreases. In human, 5 kb windows cover

63.8 Mb, 10 kb windows 17.3 Mb and 20 kb windows cover merely

4.7 Mb (for raw data see Supplementary Tables S1, S9 and S10).

Similarly, in mouse, 5 kb windows cover 47.8 Mb, 10 kb windows

10.1 Mb and 20 kb windows cover merely 1.0 Mb (Supplementary

Tables S2, S11 and S12). So the numerical details of our analysis de-

pend strongly on the window size, but not the general conclusion

that high-complexity regions in human and mouse are enriched for

developmental genes.

Another potential issue with our analysis is our decision to count

promoters intersecting the high-complexity regions rather than

whole genes. However, we have programmed our annotation tool,

macle2go, such that it can also use whole genes as the unit of com-

parison. Again, the choice makes no qualitative difference (not

shown).

Finally, we investigated the relationship between high-

complexity regions and CpG islands. Over 85% of high-complexity

regions in human and mouse contain CpG islands. The preponder-

ance of high-complexity regions in GC-rich regions is perhaps not

surprising, because fewer matches are found in regions where the

local GC content is significantly higher than the global GC content,

as is the case in CpG islands. ‘General’ CpG islands are not enriched

in developmental genes, while CpG islands longer than 2 kb are

(Elango and Yi, 2011). However, only between one fifth and one

third of our high-complexity regions intersect long CpG islands, and

the high-complexity region in mouse Ttn contains neither short nor

long CpG islands. Still, we suspect that both attributes, high-

complexity and CpG enrichment, are tied to the same phenomenon,

biological function; the difference being that high match complexity

captures a particular subset of functions, those sensitive to trans-

poson insertion and copy number variation.

We conclude that the match complexity can be used to identify

genomic regions highly enriched in developmental genes. The type

of analysis established in this study is applicable to any genome with

complete sequence and reasonably comprehensive annotation. We

therefore plan to analyze the high-complexity regions in other mam-

mals and then across the vertebrates. Genomes with less complete

annotations than human or mouse are likely to result in more

regions lacking annotation. Among these, those with the highest

complexity would be the most promising candidates for further,

functional study.
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