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Abstract

Mine safety assessment is a precondition for ensuring orderly and safety in production. The

main purpose of this study was to prevent mine accidents more effectively by proposing a

composite risk analysis model. First, the weights of the assessment indicators were deter-

mined by the revised integrated weight method, in which the objective weights were deter-

mined by a variation coefficient method and the subjective weights determined by the Delphi

method. A new formula was then adopted to calculate the integrated weights based on the

subjective and objective weights. Second, after the assessment indicator weights were

determined, gray relational analysis was used to evaluate the safety of mine enterprises.

Mine enterprise safety was ranked according to the gray relational degree, and weak links of

mine safety practices identified based on gray relational analysis. Third, to validate the

revised integrated weight method adopted in the process of gray relational analysis, the

fuzzy evaluation method was used to the safety assessment of mine enterprises. Fourth, for

first time, bow tie model was adopted to identify the causes and consequences of weak links

and allow corresponding safety measures to be taken to guarantee the mine’s safe produc-

tion. A case study of mine safety assessment was presented to demonstrate the effective-

ness and rationality of the proposed composite risk analysis model, which can be applied to

other related industries for safety evaluation.

1. Introduction

Mine production provides the necessary material foundation for the economic and social

development of China [1–3], but, at the same time, it also causes many accidental deaths [4–6].

Therefore, mine safety plays an important role in protecting and fostering the rapid develop-

ment of the national economy [7–9]. To prevent mine accidents, risk assessments first need to

be performed.

Some scholars focus on a variety of risk assessment methods, such as the fuzzy evaluation

method [10–12], neural network [13,14], set pair analysis [15–17], cloud model [18–20] and

gray system theory [21,22]. Niknejad [10] had set up a fuzzy arithmetic for strategic risk man-

agement in global production networks, and the risk impacts on the inoperability of alternative

global production network configurations, considering different risk scenarios, had been ana-

lyzed. Zhang [14] had established a comprehensive assessment model based on a fuzzy neural

network to evaluate the environmental impact of mining areas, and the results showed that
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7.5% of the studied regional mine sites were heavily damaged. Wang [15] had applied a set pair

analysis for risk assessment for inrushing water, and the risk level of water intrusion in the

Jigongling tunnel is high. Liu [19] had evaluated the stability of a rock slope based on a cloud

model, and the most unfavorable factors were the behaviors of discontinuous materials, slope

height and angle. Gray system theory is an uncertain method of studying the less data and poor

information, especially suitable for data that are not easy to obtain [22]. Since the mine still

belongs to the extensive production, some data are not easy to get, therefore gray system theory

is applied to evaluate the mine safety. In the safety assessment fields, different assessment indica-

tor weights might have influence on evaluation results [23–27]. Therefore, to determine the

safety evaluation results exactly, assessment indicator weights first need to be calculated.

The methods for determining the weight of assessment indicators can be divided into the

subjective, objective and integrated weight methods. The subjective weight method principally

includes analytic hierarchy process [23] and Delphi method [24], which are mainly based on

experts’ subjective judgments rather than real data. The subjective weight method might take

full advantage of the experts, but different evaluation results might be obtained from different

experts. The objective weight method principally includes principal components analysis [25],

entropy weight method [26] and variation coefficient method [27], which are mainly based on

real data rather then expert judgments. The objective weight method uses the objectivity of

real data but might not match the physical truth. The integrated weight method combines

these two types of methods into one, which not only reflects expert judgments but also real

data. In our intuitional understanding, the value of integrated weight should fall in between

subjective and objective weights, but the results did not match in some reports [28–31], which

will be discussed further below. To solve this problem, a new formula for integrated weight

was adopted in this study.

After the assessment indicator weights were achieved, gray relational analysis was used to

evaluate mine safety. Gray relational analysis is an important part of gray system theory [32],

which has become very popular in many areas, such as green supplier selection [33], energy

consumption, economic growth [34], and decision-making [35]. The relative importance of

energy components on gross domestic product for Turkey had been obtained based on gray

relational analysis, and the results showed that the most important energy sources for Turkey

were oil and renewables [34].

The traditional safety assessment methods, such as the fuzzy evaluation method [10–12],

neural network [13,14], set pair analysis [15–17] and cloud model [18–20], also including gray

relational analysis [32], these methods can only identify the risk level and weak links of the

evaluation object through the risk analysis, but cannot offer specific rectification measures for

identified weak links. as they do not take advantage of evaluation results to promote effective,

safe production. Therefore, an effective method needs to be found to analyze the weak links.

Bow tie model is also used widely as a risk analysis tool, which integrates basic causes, possi-

ble consequences, and corresponding safety measures of an accident in a transparent diagram.

This model has been applied to many aspects of risk analysis, such as risk control [36], assess-

ment [37], and management [38,39]. De Dianous [36] had applied bow tie model to risk con-

trol on site, and major accidents and barriers were identified using bow tie. Yazdi [39] had

analyzed and estimated weak and strong points caused by H2S hazards based on the bow tie

model. In this study, bow tie model was for the first time applied to analyze the weak links of

mine safety practices.

The goal of this study was to build a composite risk analysis model for mine safety practices,

using gray relational analysis and bow tie model and regard it as an extension to previous studies

of grey relational analysis [40–42]. In addition, a new formula of integrated weight was adopted

and, for the first time, the weak links of mine safety practices analyzed using the bow tie model.

Safety assessment using gray relational analysis and bow tie model
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This study was organized as follows: The fundamental theories of the composite risk analy-

sis model were summarized in Section 2. The applicability of this composite risk analysis

model was illustrated, using a case study of mine safety practices, in Section 3. Discussion of

the results was presented in Section 4 and conclusions presented in Section 5.

2. Methods

Theoretical knowledge of the basic model of the variation coefficient method and gray rela-

tional analysis and bow tie model included in the present composite risk analysis model are

presented in this section.

2.1. Gray relational analysis

Gray relational analysis is an important part of gray system theory [32], which is used to mea-

sure the gray relational degree between different factors. The greater the gray relational degree

between two factors is, the greater the correlation degree. The less the gray relational degree

between two factors is, the less the correlation degree. Calculation of the gray relational degree

is the core of gray relational analysis and the process as described below.

Let m be the number of programs evaluated, n be the number of assessment indicators of

each program evaluated, and the original data matrix of the programs evaluated is

A ¼

d1 d2 � � � dn

a11 a12 � � � a1n

..

. ..
. ..

.

am1 am2 � � � amn

2

6
6
6
6
6
4

3

7
7
7
7
7
5

where aij is the original data of the jth assessment indicator of the ith program evaluated.

The matrix D = [d1 d2 � � � dn] is the optimal index set, where dj is the optimal value of the jth
assessment indicator of programs evaluated. For the larger, the better assessment indicators, dj

is the maximum of the assessment indicators; for the smaller, the better assessment indicator,

dj is the minimum of the assessment indicators.

If all the assessment indicators of a program being evaluated reached their optimal state, the

program evaluated was the optimal index set and the best program. However, in reality, assess-

ment indicators of each program evaluated did not reach optimal values at the same time and

gray relational analysis was then used to evaluate the programs.

In the evaluation process, due to the different dimensions of assessment indicators, differ-

ences in numerical values in the original data might be large, such that gray relational analysis

cannot be directly applied. Therefore, the assessment indicators needed to be rendered dimen-

sionless. Here, a mean transformation was applied to nondimensionalize the assessment indi-

cators, using formulas 1 and 2:

aj
�
¼

Xm

i¼1

aij

m
j ¼ 1; 2; � � � ; n ð1Þ

bij ¼
aij

aj
�

ð2Þ
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After yielding assessment indicators dimensionless, the original data matrix was transferred

B ¼

b11 b12 � � � b1n

b21 b22 � � � b2n

..

. ..
. ..

.

bm1 bm2 � � � bmn

2

6
6
6
6
6
4

3

7
7
7
7
7
5

The optimal index set was transfered into D� = [d1
� d2

� � � � dn
�]. Then, with the optimal

index set D� the reference sequence and B the sequence compared, the gray relational coeffi-

cient of the jth assessment indicator of the ith program evaluated was achieved according to

gray relational analysis, and formula 3 was

xij ¼

min
1�i�m
1�j�n

jdj
� � bijj þ r max

1�i�m
1�j�n

jdj
� � bijj

jdj
� � bijj þ r max

1�i�m
1�j�n

jdj
� � bijj

ð3Þ

The significant differences between the gray relational coefficients was improved by weak-

ening the influence on the data, due to the maximum absolute value being too large, through

the addition of the resolution coefficient ρ in formula 3 and usually set to ρ = 0.5.

Let the weights of assessment indicators of the programs be evaluated by W = [w1,w2,� � �,wn].

Thus far, the gray relational degree of programs evaluated was achieved according to formula 4:

ri ¼
Xn

j¼1

xij � wj i ¼ 1; 2; � � � ;m ð4Þ

The larger the gray relational degree ri, the closer the ith program evaluated was to the opti-

mal index set D�. Accordingly, the order of the programs evaluated was determined.

2.2. Variation coefficient method

The gray relational degree of the programs evaluated was achieved by first determining the

assessment indicator weights. In determining these weights, the evaluation results deviated

because of the influence of subjective factors in the subjective weight method. The variation

coefficient method is an objective weight method [27], in which the weight is obtained based

on original data, reflecting objective changes in the index information. A larger variation

degree in the assessment indicators indicates that the programs evaluated have good unique-

ness in this regard and, thus, a larger weight should be given to these assessment indicators;

otherwise, a smaller weight should be given to the indicators. The process of calculating assess-

ment indicator weights according to variation coefficient method is described below.

The expectation and standard deviation of assessment indicators were calculated based on

formulas 5 and 6:

mj ¼
1

m

Xm

i¼1

aij j ¼ 1; 2; � � � ; n ð5Þ

sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1

ðaij � mjÞ
2

s

ð6Þ
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The variation coefficient of assessment indicators was achieved based on formula 7:

dj ¼
sj

mj
ð7Þ

The weight of assessment indicators was obtained by normalization of the variation coeffi-

cient based on formula 8:

wj ¼
dj

Xn

j¼1

dj

ð8Þ

2.3. Bow tie model

Bow tie model is a safety assessment method that consists of a fault tree on the left side and an

event tree on the right side and centered in it is a basic event (Fig 1). The causes of an event are

indicated on the left of the bow tie and consequences on the right. The causes are the events that

might lead to accidents and the consequences are the losses (including health and property)

through accidents. To prevent basic accidents, safety barriers should be adopted. Preventive safety

measures are set on the fault side and, thus, come before the basic event. At the same time, mitiga-

tive safety measures are set on the event tree side and, thus, come after the basic event.

3. Results

Assessment indicator weights are first calculated based on the variation coefficient method in

this section and, then, gray relational analysis applied to evaluate mine safety practices.

3.1. Application

The primary critical factors in mine can be divided as follows according to the classification

for casualty accidents of enterprise staff and workers: object strike, mechanical injury, electric

Fig 1. Bow tie model.

https://doi.org/10.1371/journal.pone.0193576.g001
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shock, crashing from the high, roof fall and wall collapse, blasting, gas explosion, poisoning

and asphyxia, vehicle injury, crane injury, fire hazard, collapse, permeable, gunpowder explo-

sion and so on.

The above accidents can cause serious injury and death, and the accidental injury and death

rate can best reflect mine safety practices and is affected by various factors, mainly including

staff training rate, post variation rate, safety management ability, and safety input from the

safety management perspective. The staff training rate is the proportion of the number of staff

who received job training to the total number of staff enrolled within the same year; post varia-

tion rate is the proportion of the number of staff who changed the post to the total number of

staff enrolled within the same year; safety management ability refers to the knowledge and abil-

ity that safety administration should have, also including that whether the safety management

organization and the rules and regulations are perfect, which can be determined according to

the experts’ scoring; safety input includes security costs, staff training costs and so on. Four

mine enterprises [40] have been chosen for program evaluation and their basic information

shown in Table 1.

3.2. Computational process and results

The staff training rate, safety management ability, and safety input were the larger and, clearly,

the better assessment indicators (Table 1). The assessment indicator of the post variation rate

indicated both positive and negative impacts on mine enterprises. A reasonable and appropri-

ate post variation rate can introduce new ideas and thoughts for an enterprise, thus preventing

an inherent management model and rigidity of thinking, are conductive for maintaining

enterprise vitality. Managers can reallocate staff work according to employee characteristics

and outstanding staff can be absorbed to pursue creative work. From these points of view, the

post variation rate should be the larger, the better assessment indicator. However, when the

post variation rate is beyond normal range, the normal operation of enterprises is affected and

management costs increased, resulting in negative effects. To be consistent with the original

paper [40] and more easily compare the present evaluation results, here, the post variation rate

was considered as the smaller but better assessment indicator. The original data matrix was

shown as follows according to Table 1

A ¼

0:18 0:0029 96 22

0:18 0:014 80 14:5

0:14 0:014 86 22

0:15 0:0029 94 10

0:17 0:0036 96 9

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

The expectation, standard deviation, variation coefficient, and assessment indicator weights

were shown in Table 2 according to formulas 5–8.

Table 1. Basic information of mine enterprises.

Mine enterprises Staff training rate Post variation rate Safety management ability Safety input

MA 0.18 0.014 80 14.5

MB 0.14 0.014 86 22

MC 0.15 0.0029 94 10

MD 0.17 0.0036 96 9

where the unit of safety input is ten thousand yuan.

https://doi.org/10.1371/journal.pone.0193576.t001
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A nondimensionalized original data matrix of assessment indicators follows according to

formulas 1 and 2.

B ¼

1:125 0:3372 1:0787 1:5856

1:125 1:6279 0:8989 1:045

0:875 1:6279 0:9663 1:5856

0:9375 0:3372 1:0562 0:7207

1:0625 0:4186 1:0787 0:6486

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

Now, the optimal index set was D� = [1.125 0.3372 1.0787 1.5856]. The gray relational coef-

ficient was obtained according to formula 3

E ¼

1 0:3333 0:7821 0:5442

0:7208 0:3333 0:8517 1

0:7749 1 0:9663 0:4273

0:9117 0:888 1 0:4078

2

6
6
6
6
4

3

7
7
7
7
5

The gray relational degrees of mine enterprises were obtained based on the gray relational

coefficient and assessment indicator weights according to formula 4

R ¼ E �W ¼

1 0:3333 0:7821 0:5442

0:7208 0:3333 0:8517 1

0:7749 1 0:9663 0:4273

0:9117 0:888 1 0:4078

2

6
6
6
6
4

3

7
7
7
7
5
�

0:0846

0:5375

0:0615

0:3164

2

6
6
6
6
4

3

7
7
7
7
5
¼

0:484

0:609

0:798

0:745

2

6
6
6
6
4

3

7
7
7
7
5

According to the gray relational degree, mine safety from high to low was MC, MD, MB

and MA, respectively.

4. Discussion

4.1. Weight determined by other methods

4.1.1. Delphi method. Assessment indicator weights were determined by Delphi method

in the original paper [40]. Delphi method is inviting experts in related fields to make com-

ments on certain issues. Then the views of experts are scientifically integrated, collated and

summarized, anonymously feedback the results to each expert to consult again. After many

rounds of consult until the views of experts tend to be focused, getting a more consistent and

reliable opinion. The assessment indicator weight determined by Delphi method was: [staff

training rate, post variation rate, safety management ability, safety input] = [0.24, 0.19, 0.31,

0.26], and the gray relational degree of mine enterprises in the original paper [40] was: [MA,

MB, MC, MD] = [0.710, 0.774, 0.812, 0.820], and mine safety from high to low was MD, MC,

MB, and MA.

Table 2. Weight calculated with the variation coefficient method.

Process Staff training rate Post variation rate Safety management ability Safety input

Expectation 0.16 0.0086 89 13.875

Standard deviation 0.0158 0.0054 6.4031 5.128

Variation coefficient 0.0988 0.6279 0.0719 0.3696

Weight 0.0846 0.5375 0.0615 0.3164

https://doi.org/10.1371/journal.pone.0193576.t002
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Comparison of evaluation results from the two different methods were observed not to be

consistent. MD has been evaluated to have the highest safety, followed by MC, based on the

subjective weight method in the original paper [40]. Here, MC was evaluated to have the high-

est safety, followed by MD, based on the objective weight method. The main reason for this

difference was different weight assignments of assessment indicators. For example, the weight

of post variation rate was the largest based on the objective weight method, while it was the

smallest based on the subjective weight method. In addition, the original paper did not com-

pare evaluation results with the actual safety of mine enterprises. Therefore, to reduce the

error caused by the subjective and objective weight methods in evaluation results, it was neces-

sary to combine the two methods together to evaluate mine enterprise safety.

4.1.2. Traditional integrated weight method. Integrated weight formula 9 is usually used

in these studies [28–31].

li ¼
wiyi

Xn

i¼1

wiyi

i ¼ 1; 2; � � � ; n ð9Þ

where wi is the subjective weight of the ith assessment indicator, θi the objective weight of the

ith assessment indicator, λi the integrated weight of the ith assessment indicator, and n the

number of assessment indicators.

There is a problem with the traditional integrated weight calculated by formula 9. If the sub-

jective weight was not equal to the objective weight, the integrated weight should fall in be-

tween the subjective and objective weight. In particular, if the subjective and objective weights

were equal, the integrated weight should be equal to these weights. However, the integrated

weight calculated by formula 9 was outside the range of the subjective to objective weight or

objective to subjective weight. For example, one program that was evaluated had three assess-

ment indicators, with subjective weights at w1 = 0.5, w2 = 0.3 and w3 = 0.2 and the objective

weights at θ1 = 0.6, θ2 = 0.15 and θ3 = 0.25. The reasonable integrated weights of assessment

indicators should have been λ1 2 [0.5, 0.6], λ2 2 [0.15, 0.3] and λ3 2 [0.2, 0.25]. However, the

integrated weights calculated by formula 9 were λ1 = 0.76, λ2 = 0.11 and λ3 = 0.13, all outside

of the ranges between subjective and objective weights.

4.1.3. Revised integrated weight method. To solve this problem, the formula for calculat-

ing integrated weight was revised as follow.

li ¼ dwi þ ð1 � dÞyi i ¼ 1; 2; � � � ; n ð10Þ

where δ 2 [0,1] is the preference coefficient, with δ! 0 indicating that the integrated weight

was mainly determined by the objective weight, and δ! 1 indicating that the integrated

weight was mainly determined by the subjective weight. In practical application, if δ = 0.5, the

integrated weight was in the range expected from the subjective and objective weights. Thus,

the formula for calculating integrated weight was transformed into formula 11 [43]:

li ¼
wi þ yi

2
ð11Þ

The assessment indicator weights determined by subjective Delphi method and objective

variation coefficient method were: [staff training rate, post variation rate, safety management

ability, safety input] = [0.24, 0.19, 0.31, 0.26] and [0.0846, 0.5375, 0.0615, 0.3164] respectively.

Therefore, the integrated weight was achieved based on the subjective and objective weights

according to formula 11, and the result was: [staff training rate, post variation rate, safety man-

agement ability, safety input] = [0.1623, 0.3638, 0.1857, 0.2882]. The gray relational degree of

Safety assessment using gray relational analysis and bow tie model
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mine enterprises was: [MA, MB, MC, MD] = [0.586, 0.685, 0.792, 0.774]. The evaluation results

based on revised integrated weights also indicated MC as having the highest safety, followed by

MD, but the difference value of gray relational degree between MC and MD was smaller than

with the objective variation coefficient method. Therefore, it was concluded that the evaluation

result had a deviation in terms of the actual safety of mine enterprises in the original paper [40].

4.2. Compare with fuzzy evaluation method

To validate the revised integrated weight method adopted in the process of gray relational

analysis, this section compare the results of safety assessment with fuzzy evaluation method

[44]. The brief procedure of fuzzy evaluation method was as follows.

The nondimensionalize of the original data is calculated based on formulas 12 and 13.

cs
ij ¼

min
1�i�m

aij

aij
j ¼ 1; 2; � � � ; n ð12Þ

cl
ij ¼

aij

max
1�i�m

aij
j ¼ 1; 2; � � � ; n ð13Þ

where formula 12 is used for the smaller the better assessment indicators; formula 13 is used

for the larger the better assessment indicators.

After nondimensionalize, the membership of mine enterprises can be calculated based on

the dimensionless data and revised integrated weight as follow.

F ¼

1 0:2071 0:8333 0:6591

0:7778 0:2071 0:8958 1

0:8333 1 0:9792 0:4545

0:9444 0:8056 1 0:4091

2

6
6
6
6
4

3

7
7
7
7
5
�

0:1623

0:3638

0:1857

0:2882

2

6
6
6
6
4

3

7
7
7
7
5
¼

0:5823

0:6561

0:8119

0:75

2

6
6
6
6
4

3

7
7
7
7
5

According to the fuzzy evaluation method, mine safety from high to low was MC, MD, MB

and MA, respectively.

The safety assessment results of mine enterprises using fuzzy evaluation method were the

same to the gray relational analysis, in which the assessment indicators weights were deter-

mined by revised integrated weight method, proved that the safety assessment method pro-

posed in this paper was feasible.

4.3. Bow tie analysis of weak links

It can be seen from the above analysis that evaluation results based on the objective and inte-

grated weight methods were not consistent with the subjective weight method, mainly because

the weight of the post variation rate was not assigned in the same manner. Post variation is an

important factor affecting mine safety, having great influence on evaluation results. In previous

studies, only a simple analysis of the identified weak links have been carried out after the safety

evaluation of mine enterprises, which failed to identify the causes and consequences of the

weak links and could not effectively improve the safety situation of these enterprises [40–42].

Therefore, post variation was taken as the basic event for bow tie analysis (Fig 2), identifying

the causes and consequences led by post variation and taking corresponding safety measures

to prevent the basic event.

The left of a bow tie was a fault tree analysis that included five causes that can lead to

post variation and the right of the bow tie was an event tree analysis that included four

Safety assessment using gray relational analysis and bow tie model
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consequences of post variation (Fig 2). Twelve preventive safety measures were set on the left

to prevent the occurrence of post variation and eight mitigative safety measures set on the

right to mitigate the consequences of post variation. The risk of post variation was thus further

reduced by this bow tie analysis.

4.4. Brief summary of discussion

The present results confirmed that the composite risk analysis model proposed here was suc-

cessfully applied to the assessment of mine safety practices, in which a new formula for inte-

grated weight was adopted and identified weak links analyzed by bow tie analysis for the first

time. The advantages of the composite risk analysis model proposed in this paper were as fol-

lows. First, the safety of mines was evaluated so as to compare the safety of different mines.

Second, the objective variation coefficient method was first applied to calculate the weight of

assessment indicators, avoiding the interference of human factors and also saving a lot of man-

power. Third, the bow tie analysis can identify the causes and consequences of the weak links,

Fig 2. Bow tie analysis of post variation.

https://doi.org/10.1371/journal.pone.0193576.g002
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which is easy to understand the critical event in-depth and provide reasonable suggestions for

the safe production of mine. Also, to validate the revised integrated weight method adopted in

the process of gray relational analysis, the fuzzy evaluation method was used to the safety

assessment of mine enterprises.

Motivated by the previous studies on gray relational analysis [32–35] and bow tie model

[36–39], these two methods were used for the safety assessment of mine for the first time. In

order to eliminate the influence of human factors, such as subjective weight method, the

objective variation coefficient method [27] was adopted in the process of gray relational anal-

ysis, which also saves a lot of manpower. In previous studies [28–31], formula 9 for calculat-

ing integrated weight had a problem in which the integrated weight was outside the ranges of

paired subjective and objective weights. To solve this problem, an expectation formula that

ameliorated this problem was adopted. In addition, only a simple analysis of the identified

weak links have been carried out after the safety evaluation of mine enterprises [40–42],

which failed to identify the causes and consequences of the weak links and could not effec-

tively improve the safety situation of these enterprises. Therefore, post variation was taken as

the basic event for bow tie analysis for the first time, identifying the causes and consequences

led by post variation and taking corresponding safety measures to prevent the basic event.

The approach proposed in this paper can be applied to other related industries for safety

evaluations.

To simplify the discussion, the perference coefficient δ in formula 10 was chosen as only

0.5. Future research should focus on the influence of this preference coefficient in safety evalu-

ation results.

5. Conclusion

A composite risk analysis model of mine safety practices based on gray relational analysis and

bow tie model was proposed. The main conclusions were as follows.

First, assessment indicator weights were determined by the objective variation coefficient

method, and the safety evaluation results for mine enterprises were obtained based on gray

relational analysis, mine safety from high to low was MC, MD, MB and MA, respectively.

Second, a new formula was adopted to calculate the integrated weights, and mine safety

from high to low was also MC, MD, MB and MA. The evaluation results based on integrated

weights also indicated MC as having the highest safety, followed by MD, but the difference

value of gray relational degree between MC and MD was smaller than with the objective

weight method.

Third, to validate the revised integrated weight method adopted in the process of gray rela-

tional analysis, the fuzzy evaluation method was used to the safety assessment of mine enter-

prises. Both methods had the same safety assessment results, showed that the safety assessment

method proposed in this paper was feasible.

Fourth, the identified weak link post variation was analyzed using bow tie model for the

first time, in which twelve preventive safety measures were set on the left to prevent the occur-

rence of post variation and eight mitigative safety measures set on the right to mitigate the con-

sequences of post variation. The risk of post variation was thus further reduced by this bow tie

analysis.
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