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Abstract

Although solitary or sensory cilia are present in most cells of the body and their existence

has been known since the sixties, very little is known about their functions. One suspected

function is fluid flow sensing- physical bending of cilia produces an influx of Ca++, which can

then result in a variety of activated signaling pathways. Defective cilia and ciliary-associ-

ated proteins have been shown to result in cystic diseases. Autosomal Dominant Polycystic

Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5th decade of

life and is one of the most common monogenetic inherited human diseases, affecting

approximately 600,000 people in the United States. Because the mechanical properties of

cilia impact their response to applied flow, we asked how the stiffness of cilia can be con-

trolled pharmacologically. We performed an experiment subjecting cilia to Taxol (a microtu-

bule stabilizer) and CoCl2 (a HIF stabilizer to model hypoxia). Madin-Darby Canine Kidney

(MDCK) cells were selected as our model system. After incubation with a selected pharma-

cological agent, cilia were optically trapped and the bending modulus measured. We found

that HIF stabilization significantly weakens cilia. These results illustrate a method to alter

the mechanical properties of primary cilia and potentially alter the flow sensing properties of

cilia.

Introduction

Primary cilia are slender hair-like structures, present on most mammalian cells that protrude
from the cell body into the extracellular space. Long considered vestigial structures, recent
work has conclusively demonstrated that the primary cilium is in fact a calcium signaling cen-
ter for the cell [1] organizing a large number of signaling pathways. Demonstrations that bend-
ing a primary cilium via fluid flow [2], optical tweezers [3], or micropipette [4] initiates
intracellular calcium release imply that physiologically, the primary cilium is a flow sensor.
However, the biological significance of this function remains unclear. While primary cilia have
been identified as the key organelle in the pathogenesis of Autosomal Dominant Polycystic
Disease (ADPKD) and there is evidence that altered flow sensing may contribute to ADPKD
progression [5, 6], the in vivo relationship between fluid flow sensing by the cilia and kidney
cyst formation and growth remains unclear, partly due to results supporting two independent
disease hypotheses: the “two-hit model” [7] and the “futile repair model” [8]. For example,
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there is clear evidence [9, 10] that loss of cilia results in either stimulation or inhibition of cyst
growth depending on the presence or absence of functional polycystins prior to loss of cilia.

In brief, the two-hit model primarily focuses on the role of defective polycystin gene prod-
ucts polycystin 1 and polycystin 2 [5] and polycystin related proteins PKD1L1 and PKD2L1
[1]. The futile-repairmodel accounts for similar features betweenADPKD and renal injury
responses by directly positing the flow sensing function of primary cilia and, when pathological
function occurs, aberrant activation of a variety of cell responses follows. While both models
enjoy experimental support, both models also suffer from unresolved objections, suggesting
that some currently unidentified cilia-dependent signaling pathway may be required to pro-
mote cyst growth [11].

Our driving question here concerns the sensitivity of the sensor, which we show below is a
combination of bendingmodulus EI and cilium length L.We have previously shown that expo-
sure of ciliated cells to fluid flow changes the length of the cilium [12] and others have shown
that cilia become elongated after injury [13–15], so we now examine the possibility of altering
EI through pharmacological agents. Previous work has demonstrated a link between cilium
length and hypoxia-inducible mechanisms [14], so we considered a similar approach to modi-
fying the bendingmodulus.

Previous results have connected hypoxia to ciliary properties via the HIF-pVHL system.
Ciliogenesis is regulated by pVHL [16], pVHL and glycogen synthase kinase-3β (GSK3β)
together regulate ciliummaintenance [17], and pVHL has been shown to act as a microtubule
stabilizer [18]. Even so, it remains unclear if these functions of pVHL are HIF-regulation inde-
pendent, as recent knockout experiments have shown that HIF-1α is not involved in renal cyst
growth [19]. Regarding potential direct interactions betweenHIF and cilia, recent results show
that prolyl hydroxylase inhibition of HIF-2α leads to HIF-2α accumulation within the cilia
[20] and deubiquintination of HIF-1α is essential for ciliogenesis [21]. As expected, the major-
ity of direct effects of hypoxia/hyperoxia on cilia have focused on motile cilia in the airway,
where hyperoxia was shown to denude bronchial cells of motile cilia [22]. In [23] it was
observed that hypoxic conditions stimulate the growth of cilia in Tetrahymena thermophilae. It
is hoped that the results presented here call attention to the need for additional experiments
that carefully assess any causal link between hypoxia and cilia.

Here, we consider the primary cilium as a passive mechanical structure capable of trans-
ducing kinetic energy of flowing fluid into elastic stress (bending) energy. Bending the cilium
seems to be required to initiate calcium signaling [2], and the amount of bending in response
to applied flow can be best characterized by the bendingmodulus [24]. We measured the bend-
ing modulus of primary cilia cultured in the presence or absence of the pharmacologic HIF sta-
bilizer CoCl2 as well as taxol, a microtubule stabilizer, by optically trapping the distal end of the
cilium and measuring the maximum distance the cilium tip could be displaced before breaking
free of the optical trap. Measurements of the tip displacement, in combination with knowing
how much force was applied by the optical trap, allows our computational model to output the
bendingmodulus.

Because alterations to the bendingmodulus will result in altered ciliary bending in response
to fluid flow, an essential element of the futile-repairmodel is the hypothesis that altering the
mechanical properties of the ciliumwill result in altered flow-initiated ciliary signaling path-
ways. Primary cilium structure consists of 9 microtubule doublets anchored in the basal body,
which itself is a highly organized structure comprising the centrosomes (microtubule triplets),
transition fibers, a rootlet, and the basal foot [25] known collectively as the microtubule orga-
nizing center. We hypothesize that the mechanosensing function of cilia can occur by straining
these microtubule structural elements in a similar manner to actin-mediatedmechanosensa-
tion [26]. Preliminary results indicate that the basal bodymay have a role in differentiating
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mechanosensation from chemosensation [2, 27, 28]. The results presented here form an initial
step towards clarifying the connection between cilia and cyst by determining and quantifying
pharmacological-inducedchanges to the ciliary bendingmodulus. Once we know how to
manipulate the mechanical properties of a cilium, we can design experiments to examine any
causally-related altered flow responses.

Hypoxia is associated with the inability of pVHL to target hydroxylated HIF for degredation
[29]. Consequently, an established alternative to performing cell culture within a hypoxia
chamber is block hydroxylation of critical HIF prolyl residues with either Cobalt [30] or an
iron chelator such as desferrioxamine [31].

Ciliary axonemes consist of 9 microtubule doublets, so the axoneme is susceptible to stabili-
zation by Taxol [32]. Because the action of Taxol on microtubule mechanics is well known [32,
33], we used Taxol as a control.

Results

Cells tolerated pharmacologic treatments

Fig 1 shows phase-contrast live cell images of MDCKmonolayers subjected to our pharmaco-
logic treatments. As seen in the images, the cells tolerated all drugs well, with no evidence of

Fig 1. Live cell images of treated MDCK cultures. Images are of confluent ciliated MDCK monolayers at day 4: 3 days of serum starvation

followed by 24 hours of media supplemented by the indicated pharmacologic agent. Images taken using a 10X phase objective, scale bars = 30

microns throughout. Cells treated with CoCl2 display altered morphology- cells appear larger and packing is relatively disorganized- but the

monolayer remains confluent and cells express cilia. There was no evidence of increased apoptosis or shedding from the monolayer.

doi:10.1371/journal.pone.0165907.g001
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apoptosis, blebbing, or other maladaptive responses. CoCl2 does appear to modify tissue mor-
phology, but there was no change in cell viability and the fraction of ciliated cells was indistin-
guishable from other cultures. In all cases, when serumwas reduced for differentiation, intact
tissue survived for 6 days before cells began to lift off the culture surface. Thus, we performed
experiments on cells that had been serum starved for a total of 4 days.

Cilium mechanical properties

Dynamic regulation of cilia length is an essential adaptive response to fluid flow [12, 34] yet its
regulation is not well characterized in vertebrates. Signaling pathways known to be involved
with dynamic control of cilium length include cAMP-dependent protein kinase A (PKA) acti-
vation [34, 35] and ros cross-hybridizing kinases (RCKs) [36]. While measurements of cilium
lengths are subject to fixation errors [37] as many fixatives grossly deform cilia morphology,
few reports of measured cilium lengths using live cilia exist. In contrast to reports showing
fixed cilia are of uniform (or nearly uniform) length, we observed that live cilium lengths
within a single culture varied widely, ranging from 4 μm to longer than 25μm, in agreement
with an earlier careful study [38]. Although we measured the length for each of the trapped
cilia (sample size N ranged between 3 and 6, see Fig 2), we intentionally selected cilia with simi-
lar lengths (between 4 and 6 μm) to avoid potential confounding effects. Becausemultiple stud-
ies indicate cilium length alterations occur in a variety of contexts, the issue of cilium length
measurements should be re-visited.

Ciliummechanicalproperties are independent of culture support. In vivo, epithelial tis-
sue is polarized and generates directed transport of salt and water. Epithelial tissue grown on
impermeable supports cannot transport fluid and studies using MDCK cultures occasionally
report the formation of ‘domes’, most likely created when the transported fluid lifts tissue off
the support. We wanted to check for any possible confounding effect due to growing cells on

Fig 2. Bending modulus of cilia subjected to pharmacologic treatments. Asterisks indicate statistical

significance p < 0.01 with respect to untreated cilia. Fig 2a shows that the bending modulus of cilia decreases

in the presence of Taxol in a concentration-dependent manner. Fig 2b shows that addition of CoCl2 or

desferrioxamine also causes cilia to be more flexible. Sample sizes: Untreated N = 6; 100 μM CoCl2 N = 3;

100 μM desferrioxamine N = 3.

doi:10.1371/journal.pone.0165907.g002
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impermeable supports. Our data (not shown) indicates that cells grown on impermeable sup-
ports (plastic or glass) do not express cilia with mechanical properties different from cells cul-
tured on permeable supports.

Ciliummechanicalproperties are independent of measurementmethod. The bending
modulus of untreated cilia was separately determined by two methods; the deformed cantilever
and beam bucklingmethods (seeMethods section). For the deformed cantilever method, we
obtained a bendingmodulus EI = (1.73 ± 0.29) �10−23 Nm2 while for the beam buckling
method we obtained a bendingmodulus EI = (1.96 ± 0.13) �10−23 Nm2. As expected, both
methods yield the same bendingmodulus.

Ciliummechanicalproperties varywith biochemical control. By comparing the applied
force from the optical trap to the cilium tip deflection the bendingmodulus may be calculated
from Eq 7 (below). Fig 2 presents our results. As expected, addition of Taxol lowers the bending
modulus in a concentration-dependentmanner as reported elsewhere [32, 33]. Similarly, addi-
tion of CoCl2 lowered the bendingmodulus, but it is not clear from our data if the action of
CoCl2 with respect to Taxol is independent or compensatory.

We wished to determine if the weakening of the primary ciliumwas due to Cobalt, indepen-
dent of HIF, so we incubated a culture in the presence of 100 μM desferrioxamine and mea-
sured the bendingmodulusImage analysis of desferrioxamine-treated cilia buckled with the
optical trap results in EI = 0.9 ± 0.2�10−23 Nm2, similar to CoCl2 data.

Discussion

Our effort to determine the mechanical properties of the primary cilium is based on the idea that
the primary cilium is a mechanical flow sensor, the mechanical response of the cilium to fluid
shear is thus a measure of the sensor sensitivity. The importance of ‘sensor sensitivity’ is based on
the idea that flow sensing by the cilium is an essential regulatory element of overall cell, tissue,
and organ function.Understanding ways to control or otherwise alter the sensor sensitivity can
then be viewed as a potential therapeutic activity, both for ciliopathies and injury recovery.

Ciliummechanical properties were primarily determined by modeling the cilium as a modi-
fied cantilever as shown in the ‘Methods’ section. By measuring the force applied by an optical
trap to the cilium tip, the corresponding tip displacement, and the cilium length, the bending
modulus can be determined. Comparison of our untreated cilia with previous results [24, 39]
shows we are in agreement. Similarly, comparing our results with previous work applying
Taxol to microtubules [33, 40] shows agreement.

The results presented here are to be primarily viewedwithin the context of a broader effort to
develop therapeutic strategies for ADPKD, which to date remains non-treatable. Our approach is
based on the futile-repair hypothesis and considers fluid conditions present within a kidney cyst
or ruptured tubule as a causal agent. In addition to containing elevated levels of inflammatory
cytokines [41], cyst fluid is stagnant and the tissue hypoxic [42]. Similarly, fluid within a ruptured
tubule or within an explanted organ is stagnant and the environment hypoxic. Therefore, treat-
ment of Acute Kidney Injury (AKI) is a second potential application for this work, as models
have shown [13] that the cilium length is altered in AKI. A third potential application is the
development of improved perfusion protocols to improve kidney transplant success rates by pre-
venting Ischemia Reperfusion Injury [43]. Indeed, recent results [15] show that removal of one
kidney results in increased levels of reactive oxygen species and elongated cilia in the remaining
kidney. This is relevant because hypoxia can be associatedwith increased levels of reactive oxygen
species, although the literature [44–46] indicates the connection is still unclear. Our driving ques-
tion concerned the sensitivity of the primary cilium as a fluid flow sensor, which is a combination
of bendingmodulus EI and cilium length L. It is known that exposing ciliated cells to fluid flow
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shortens the cilium and that cilia become elongated after cessation of fluid flow, so we examined
the possibility of altering EI as an additional sensor parameter. Because it is known that hypoxic
conditions induce cilia to lengthen, we selected pharmacological agents that act to stabilize HIF
and have determined that whenHIF is stabilized, EI decreases.While it is possible that the phar-
macological compounds themselves could be responsible for the increased flexibility, a more
likely explanation is that the mechanical properties of the primary cilium are somehow regulated
as part of the HIF-pVHL system. Indeed, pVHL has been shown to stabilize microtubules [17,
18], but there is evidence that the stabilizing function of pVHL function is HIF-independent
[17], implying additional experiments are required to clearly demonstrate a causal link between
hypoxia and ciliary alternations.

In the context of our overall research program, our results demonstrate that the bending
modulus can be altered pharmacologically, providing an additional degree of freedom in our
studies of primary cilium function.We can now independently control cilium length (via flow)
and bendingmodulus (via pharmacology), expanding quantitative investigations of flow sensi-
tivity by the primary cilium and determining a rational basis for the flow sensing function of
primary cilia.

Sources of Error

Cilium length ‘L’

Cilium lengths were measured on live cells, avoiding the well-documenteddegradation that
occurs during chemical fixation [37]. Even so, the length determination depends on the depth
of focus of the microscope objective, which is ± 0.4 μm. The uncertainty in length creates
uncertainty in our analytical model, which scales as L3, and as we will show, this uncertainty is
the largest source of error. The fractional uncertainty in L (ΔL/L) creates up to 30% fractional
uncertainty in EI, which is largest for the shortest cilia used (4 μm) in this study.

Applied trap force ‘F’

The QPD data itself presents approximately 10% uncertainty in the applied force. However,
because our data processing algorithm [47], while insensitive to the shape of a trapped object,
was checked only for free objects, the fact that trapped cilia are anchored at one end could
potentially invalidate our data processing method.We checked this by applying the trap to dif-
ferent locations along the ciliary axoneme.With the cilium in a neutral position (oriented verti-
cally), the trap was applied to various and QPD data acquired. The calculated spring constant
(applied force) did not varymore than 10%, and so we are confident that our data processing
algorithm provides valid force data.

Conclusions

Ciliummechanical properties were determined by modeling the cilium as a modified cantilever
as shown above. By measuring the force applied by an optical trap to the cilium tip, the maxi-
mum tip displacement, and the cilium length, the bendingmodulus can be determined. Com-
parison of our untreated cilia with previous results [24, 39] shows we are in agreement.
Similarly, comparison with previous work applying taxol to microtubules shows a general soft-
ening trend, as shown previously [33, 40].

Our primary finding is that cilia expressed by HIF-stabilized tissue are more flexible as com-
pared to wildtype. Analysis shows that more flexible cilia should be associated with longer cilia,
in agreement with previous observations.We thus conclude that the cell may regulate the
length of a cilium to maintain a constant ‘setpoint’ of sensor sensitivity.
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Methods

Analytical model of primary cilium

Deformed cantilever. Following [39, 48], we model the cilium as a 1-D nonlinear uniform
cantilevered beam. This basic model for a primary cilium treats a cilium as a homogeneous
flexible cylindrical beam, anchored at the basal end and free to move at the distal end. Because
primary cilia, unlike motile cilia, do not actively generate internal forces, we can model the pri-
mary cilium in terms of a passive beam: there is no generation of forces and/or moments within
the cilium. Because the slenderness (length/diameter) of the cilium is large, we may neglect
both rotatory inertia and transverse shear and approximately describe the cilium shape in
terms of a 1-D object, the so-called neutral axis [49]. Under the conditions described above, the
time-independent shape Y(s) of the neutral axis of a cilium is given by the linearized Euler-Ber-
noulli law for pure bending:

EI
@4Y
@s4
¼ w ð1Þ

Where ‘w’ is the externally applied distributed force per length, ‘E’ is the Young’s modulus
of the cilium, ‘I’ the area moment of inertia (for a cylinder of radius ‘a’, I = πa4/4), and EI
together referred to as the ‘flexural rigidity’ or ‘bendingmodulus’, having units of Force�area.

Because our measurement method creates static deformations, there is no fluid drag acting
on the cilium (w = 0). The relevant boundary conditions for the fixed (basal) end and free end
are:

1. The fixed end cannot move:

Yð0Þ ¼ 0 ð2Þ

2. The fixed end has a bendingmoment modeled as a nonlinear spring:

d2Yð0Þ
ds2

�
L
EI

k
dYð0Þ

ds
þ a

dYð0Þ
ds

� �2
 !

¼ 0 ð3Þ

3. At the free end (s = L), the bendingmoment vanishes:

d2YðLÞ
ds2

¼ 0: ð4Þ

4. The free end is subject to a shear load from the optical trap:

d3YðLÞ
ds3

¼ �
Ftrap

EI
: ð5Þ
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The Euler-Bernoulli equation with these boundary conditions has a closed-form solution:

Y sð Þ ¼
s½sFtrapð3L � sÞa � 3 EIðkþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4Ftrapa

q
Þ�

6 EI a
ð6Þ

With corresponding tip displacement:

Y Lð Þ ¼
L½2L2Ftrapa � 3 EIðkþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4Ftrapa

q
Þ�

6 EI a
ð7Þ

and basal curvature, corresponding to the developed local elastic stress energy:

d2Yð0Þ
ds2

¼
L
EI

Ftrap ð8Þ

Eq 7 is used to calculate the bendingmodulus.When the cilium escapes the optical trap, the
cilium tip reached the maximum displacement Y(L) and the restoring force of the bent axo-
neme is equal to the applied trap force. Table 1 provides a summary of the parameters used in
this model.

Beam buckling. An independent method of determining the bendingmodulus uses the
optical trap to apply a compressive force to the cilium, rather than a shearing force as described
above. Application of a compressive (buckling) force [50] provides an independent method to
estimate the bendingmodulus [50] and relies on fewer parameters than application of a shear-
ing force. A slender filament will bend in response to a compressive force F = EI/2R2, where EI
is the bendingmodulus and R is the radius of curvature of the bend (see, for example, [51]).
Application of the optical trap to the distal end of a cilium then moving the trap towards the
basal end results in compressive bending of the cilium (see Fig 3). The bending radius is mea-
sured from the acquired image, and when combined with the calculated applied force, the
bendingmodulus is obtained.

Fig 3 presents images of the beam bucklingmethod used to calculate the bendingmodulus.

Cell culture

Experiments were carried using the MDCK cell line (American Type Culture CollectionCCL-
34), free from contamination and from young stock. Cells were maintained on several different
substrates: collagen coated 35mm diameter glass bottom petri dishes (MatTek Corporation,
Ashland MA, product # P35G-1.5-14-C), 60mm plastic petri dishes (Celltreat products, prod-
uct # 229660, tissue culture treated), and collagen-coatedMillicell-CM inserts (inner diameter
25 mm, permeable support area 0.6 cm2; Millipore Corp, Billerica,MA). Cells were grown and
maintained at 37°C, 5% CO2. Growth medium consisted of the following (final concentra-
tions): Dulbecco'sModified EagleMedium w/o glucose and Ham’s F12 at a 1:1 ratio, 5 mM

Table 1. Values of model parameters.

Model parameter Value

Cilium length L As per measurement

Applied trap force Ftrap As per measurement

Maximum tip displacement Y(L) As per measurement

Bending modulus EI What is being determined

Linear rotatory spring constant k 4.6 *10−12 N/rad

Nonlinear rotatory spring constant α -1.0 *10−10 N/rad2

doi:10.1371/journal.pone.0165907.t001

HIF Stabilization Weakens Primary Cilia

PLOS ONE | DOI:10.1371/journal.pone.0165907 November 3, 2016 8 / 15



glucose, 15 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 0.06%
NaHCO3, 2 mM L-glutamine, 10% fetal bovine serum (FBS). For differentiation, FBS was
reduced to 1%. The amount of mediumwas restricted so that the apical fluid was thin enough
to allow sufficient O2 to diffuse to the monolayer.

Pharmacologic treatments

After 3 days of serum starvation, some cultures were incubated for 24 hours in media supple-
mented with 100 μm CoCl2, 100 μm desferrioxamine, or taxol (various concentrations). CoCl2
was supplied by MP Biomedicals as cobalt chloride hexahydrate, in crystalline form. Taxol and
desferrioxaminewere supplied by Santa Cruz Biotechnology (Dallas, TX), certified>99% pure,
in solid form.

Microscopy

Imaging and manipulations of terminally differentiated epithelial monolayers were carried out
using a Leica DM 6000 upright microscope equipped with a heated and CO2 controlled

Fig 3. Application of the optical trap to induce buckling of an untreated cilium. Scale bar = 5 microns, arrow indicates location of the optical

trap. Rightmost panel indicates radius of curvature R.

doi:10.1371/journal.pone.0165907.g003

Fig 4. Optically trapping and bending a cilium exposed to 100 μM CoCl2 for 24 h. Circle identifies location of the trap.

The right panel shows the cilium at maximum deflection Y(L), the left shows the cilium after it escaped from the trap and has

fully returned to its equilibrium configuration.

doi:10.1371/journal.pone.0165907.g004
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incubation chamber (Solent Scientific). The microscope stage (Prior ScientificH30XY2) was
accurate to ±0.04 μm. Brightfield image acquisition and optical trap monitoring were per-
formed by a Point Grey Instruments ‘Flea’ digital video-rate camera.

Optical tweezers

As described elsewhere, the source for the single-beam3D trap was a Crystalaserdiode-
pumped Nd:YAG continuous-wave single mode laser providing 0.5W optical power from a
10W electrical power supply. The optical tweezer was constructed using Qoptiq Microbench1

optomechanical mounts. The objective lens used was a Leica 63X NA 0.9 U-V-I HCX long
working distance plan apochromat dipping objective with a 2.2 millimeter working distance.
The tweezer couples into the microscope through an existing lateral port. A side-looking
dichroic mirror (Chroma) mounted within the fluorescence turret provides the ability to per-
form normal microscope viewingwhile the tweezers are operating. The fixed-position optical
trap has a beamwaist 0.3 μm and Rayleigh length 0.4 μm.

Objects held within the trap diffract the trapping beam. The spatial dynamics of the dif-
fracted beamwere recorded using a quadrant photodiode (QPD) and the data analyzed as per
[47].

Applying the trap to a primary cilium proceeded as follows. First, the trap location was pre-
cisely determined by trapping a small piece of floating cell debris. Turning the trapping laser
off and using brightfield illumination, a ciliumwas moved to the location of the trap and focus
adjusted to align the trapping plane to the cilium tip. The optical trap was turned on and QPD
data acquired for several seconds. After QPD data acquisition, the Flea camera acquired video
(30 fps) and the stage slowly laterally translated the cilium until it broke free of the trap (See
Figs 4 and 5). The final displacement was recorded, the trap turned off, another ciliummoved
into position, and the procedure repeated. Each trapped cilium yielded approximately 6 inde-
pendent measurements of Ftrap,

Statistical Analysis

Data is presented with +/- 1 standard deviation error bars.
Statistical analysis was done using an online one-way ANOVA with post-hoc Tukey HSD

test calculator [52]. Values of p< 0.01 are considered significant.

Supporting Information

S1 File. Table A. Numbers and provenance data for trapped cilia. Data includes: Applied trap
force (‘F’), in units of pN; lateral displacement of trap location from untrapped axoneme (‘d’),
in units of microns; best fit bendingmodulus (‘EI’), in units of N�m2.
(DOC)
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