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Abstract: The “black box” model defines the enhancement, E the polarization modulus, C∗/Co

and the intrinsic enhancement, Eo without knowing the transport mechanism in the membrane.
This study expresses the above-mentioned characteristic parameters, simultaneously taking into
account the mass transport expressions developed for both the polarization and the membrane layers.
Two membrane models are studied here, namely a solution-diffusion model characterizing solute
transport through a dense membrane and a solution-diffusion plus convection model characterizing
transport through a porous membrane due to transmembrane pressure difference. It is shown
that the characteristic parameters of the “black box” model (E, Eo or C∗/Co) can be expressed as a
function of the transport parameters and independently from each other using two-layer models.
Thus, membrane performance could be predicted by means of the transport parameters. Several
figures show how enhancement and the polarization modulus varied as a function of the membrane
Peclet number and the solubility coefficient. Enhancement strongly increased up to its maximum
value when H > 1, in the case of transport through a porous membrane, whereas its change remained
before unity in the case of a dense membrane. When the value of H < 1, the value of E gradually
decreased with increasing values of the membrane Peclet number.

Keywords: “black box” model; two-layer transport; solution-diffusion model; diffusive plus
convective flow; dense membrane; porous membrane; enhancement; polarization modulus

1. Introduction

With rising numbers of various membrane separation processes, working with different
transport principles, efforts for describing transport processes through the membrane layer have
been substantially increased. The model description is generally based on different approaches,
e.g., phenomenological ones (such as the so-called “black-box” model [1,2]), mechanistic models
(which relate separation with structural membrane parameters, e.g., the solution-diffusion model
(for nonporous, dense membrane layers)) [3–5], or non-equilibrium thermodynamics [6–8]. The “black
box” model does not give any information on the transport process through a membrane separation
unit. Its usage is especially advantageous when there is no real data on the structure of the membrane
and accordingly its transport mechanism is not known [9–11]. For characterization of the separation
process in this case, it uses additionally the measured outlet concentration value for description of the
separation, which is considered to be a response of the membrane separation unit to the inlet parameter
values. This “black box” model has often been used for characterization of the membrane separation
process (e.g., reverse osmosis [8] or pervaporation [12,13]) in the starting time period of the membranes’
application for component separation. This model mostly characterizes membrane separation by the
enhancement factor (this means the ratio of the outlet and inlet bulk solute concentrations), intrinsic
enhancement (the ratio of the outlet concentration and that of the inlet membrane concentration), and

Membranes 2019, 9, 18; doi:10.3390/membranes9020018 www.mdpi.com/journal/membranes

http://www.mdpi.com/journal/membranes
http://www.mdpi.com
https://orcid.org/0000-0002-3863-4194
http://dx.doi.org/10.3390/membranes9020018
http://www.mdpi.com/journal/membranes
http://www.mdpi.com/2077-0375/9/2/18?type=check_update&version=2


Membranes 2019, 9, 18 2 of 15

the polarization modulus (the ratio of the inlet membrane concentration and inlet bulk concentration),
applying the diffusion plus convection flows for the inlet polarization layer as well as the outlet
convective flow [1,10,11,14].

The starting points of a simple mathematical model for a nonporous membrane layer, involving
the terms of driving force, flux, and diffusion, are Fickian equations [4]. Accordingly, the flux
is determined by the diffusion coefficient, the solubility coefficient, and also the driving force.
This transport model is called the solution-diffusion transport model, and is often applied in, e.g.,
pervaporation and membrane gas separation processes [3,11]: It is also used for reverse osmosis in
case of a nonporous active membrane layer [10]. In the case of mass transport through a porous
membrane layer mostly involving both diffusive and convective flows [7], where often the convective
one dominates the flow, the bulk flow is mostly negligible in transport through a nonporous membrane
layer [5]. A solution-diffusion-imperfection model takes into account flow through small pores,
depending on the hydraulic pressure difference, and was introduced by Sherwood et al. [15] for a
reverse osmosis process and then was widely applied in the literature [16]. A typical example of
the diffusion plus convection membrane process is nanofiltration as a pressure-driven membrane
process, whose mass transport through a membrane was described by Bowen and Welfoot [17].
The bulk transport rate of the solvent phase through pores or a porous layer can be predicted
by a Hagen-Poiseuille [11] (pp. 351–353), [18] (pp. 44–46) for straight line pores, or by Darcy
equations [10,11,13,19], in which the solvent bulk velocity is expressed as linear dependence on
the transmembrane pressure difference.

The solute transfer rate is through a membrane in these kinds of membrane separation systems
(e.g., nanofiltration, pressure-retarded osmosis, and forward osmosis), and in them the diffusion flux
rate is comparable to values of convective transport rates and can be given as a sum of the diffusive
and convective fluxes [11,17,20–22]. Diffusion plus convection mass transport can easily be extended
to those accompanied by chemical or biochemical reactions [23–26]. When investigating membrane
performance in the presence of convective velocity, the importance of the absence or presence of the
sweeping phase on the permeation side of the membrane [11] (pp. 237–282) should be emphasized.
Without the sweeping phase, the concentration gradient inside of the membrane layer can be generated
only by a chemical or biochemical reaction. Namely, when the removal of the solute compound on
the permeate side takes place through the convective velocity of the solvent phase, then the outlet
concentration gradient, and also that inside of the membrane layer, is zero [11] (pp. 230–232). Only
this latter type of membrane separation is discussed here.

The aim of this paper is to define characteristic parameters of the “black box” model, namely
enhancement, intrinsic enhancement factors, and the polarization modulus, independently from
each other, contrary to what is defined in the membrane “black box” models, as a function of the
transport parameters, both of the polarization and the membrane layers. As membrane models, the
solution-diffusion model and also the solution-diffusion plus convection models are applied, without
the sweep phase on the permeate side. Such expressions are missing in the literature to our knowledge.
Additionally, the overall mass transfer rate’s expressions are also expressed.

2. Theory

In this section, we survey expressions of parameters used in the literature for applications of
the “black box” model, namely the enhancement, the intrinsic enhancement, and the polarization
modulus, and then the expressions developed by the authors for description of simultaneous
transport through the polarization and membrane layers. The membrane transport expressions
presented involve the solution-diffusion model and the solution-diffusion plus convection model with
parameters of enhancement, intrinsic enhancement, a polarization modulus, and also overall mass
transfer rate equations.
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2.1. “Black Box” Model

The concentration distribution in the feed-side polarization layer is illustrated in Figure 1 for a
rejected component (Figure 1a) and also for an enriched component (Figure 1b) [10,11]. These solute
transport curves permit both the diffusive (directed to the bulk feed phase, Figure 1b, or directed to
the permeate phase, Figure 1b) and convective flows (this latter flow transports the solute into the
permeated phase [11] (p. 499)). The differential mass balance equation can be defined for both of these
transports as [11] (p. 201)

− D
d2C
dy2 + υ

dC
dy

= 0, (1)

whereas the mass transfer rate for the polarization layer is [1,10,11]

Jo = υC− D
dC
dy

. (2)

The general solution of Equation (1) is (see for details Reference [11] (pp. 185–225))

φ = TePe + S, (3)

where
Pe =

υδ

D
≡ υ

ko ; ko =
D
δ

.

Parameters T and S can be obtained by means of suitable boundary conditions as (Y = y/δ),

Y = 0, then, φ = φ∗, (4)

Y = 1, then, φ = φ∗δ. (5)

The concentration distribution then is obtained as

φ =
φ∗ −φ∗δ
1− ePe ePeY +

φ∗δ − ePeφ∗

1− ePe . (6)

The mass transfer rate, using Equation (2), is then

Jo = βo
(
φ∗ − e−Peφ∗δ

)
, (7)

where,

βo =
υePe

1− ePe ≡ koPe
1

e−Pe − 1
. (8)

In order to express the previously defined parameters in the “black box” model as enhancement,
intrinsic enhancement, or a polarization modulus, the convective outlet flow rate (note if there is no
feeding, inert phase (the so-called sweep phase) on the permeate side, then there is no diffusive flux
into the permeate phase), and thus the solute permeate flux, should be given as

Jo = υCp = ko
LPeLCp. (9)

This solute transfer rate then should be equal to the inlet solute rate defined by Equation (7).
It is easy to get from the equality of Equations (7) and (9) the following, regularly applied, literature
expression [1]:

C∗ − Cp

Co − Cp
= ePeL . (10)
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Let us express the generally used definition for enrichment, E, (E = Cp/Co), and intrinsic
enrichment, Eo (Eo = Cp/C∗), as well as the polarization modulus (= C∗/Co). Values of E can
vary from unity up to very big values (in the case of enriched solute) or from unity down to zero
(in the case of rejected solute). Similarly, the polarization modulus can be higher or lower than unity
(see Figure 1 for this). By application of Equation (10) and the values of intrinsic enhancement, the
enhancement factor can be expressed as a function of the intrinsic enhancement as [10]

Cp

Co = E =
EoePeL

1 + (ePeL − 1)Eo
. (11)

From this, one can predict the value of the polarization modulus, namely

C∗

Co =
E
Eo

=
ePeL

1 + Eo(ePeL − 1)
. (12)

On the other hand, the intrinsic enhancement, which cannot separately be determined, can be
given as a function of the value of E as

Eo =
E

E(1− ePeL) + ePeL
. (13)

Equations (11)–(13) unambiguously show that neither the enhancement factor and the
intrinsic enhancement factor nor the polarization modulus can independently be expressed
(through application of the “black box” model) independently from each other as a function of
measurable transport parameters without knowing the transport properties within the permselective
membrane layer.
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Figure 1. Concentration distribution in the polarization modulus assuming the membrane layer
(right-side layer) to be “black box” with unknown mass transport properties. The diffusive and
convective transports are in reverse (a) or concurrent directions (b).

2.2. Solute Transport Using the Solution-Diffusion Model for the Membrane Layer

Solute transport through the dense membrane is mostly described by the solution-diffusion model,
as it is the case, e.g., during pervaporation [27], membrane gas separation [28,29], or pressure-retarded
osmosis [30]. In the first two cases, there is no sweep phase on the permeate side: A vacuum in the
outlet phase continuously moves the permeated compound(s) away from the outlet membrane surface.
Due to this, the concentration of the permeated compound is close to zero on the outlet membrane
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surface. Thus, its value can be much less than that of an equilibrium concentration with a condensed
permeate phase. The concentration distribution in the two transport layers is illustrated in Figure 2.
Accordingly, a simple solution-diffusion mass transfer process takes place through the dense (selective)
membrane layer. Thus, the solute flux for the membrane layer is

Jo = ko(φ∗ −φ∗δ) ≡ ko H
(
C∗ − Cp

)
. (14)

The two fluxes, namely those given for the boundary layer and for the membrane layer, given by
Equations (7) and (14), respectively, are equal to each other, and thus the overall mass transfer rate can
be expressed using this equality. Accordingly, it is (φ∗ = HC∗ and HCp = φ∗δ) [11],

Jo
ov = βo

ov

(
Co − e−PeL Cp

)
, (15)

where

βo
ov =

ko
LPeL

1 + e−PeL(N − 1)
, (16)

with

N =
ko

LPeL

Hko ≡
υ

Hko ≡
υδ

HD
. (17)

Note that it is assumed in Equation (15) that the outlet membrane concentration and the
neighboring fluid concentration are in equilibrium. Parameter N expresses the ratio of the convective
velocity in the boundary layer to the product of the solubility coefficient and the membrane diffusive
mass transfer coefficient. Now let us express the enhancement, the intrinsic enhancement, and the
polarization modulus independently from each other, contrary to what is given in the “black box”
model, by using the mass transport parameters of the polarization and the dense membrane layers.

For prediction of the concentration distribution inside the transport layers, the interface
concentration of the layers should be determined. Applying Equations (7) and (15), it can be written

− βo
L

(
Co − e−PeL C∗

)
= βo

ov

(
Co − e−PeL Cp

)
. (18)

Expressing C∗ from Equation (18), one gets the concentration polarization modulus
as [11] (pp. 210–213)

C∗

Co = ePeL +
βo

ov
βo

L

(
Cp

Co − ePeL

)
. (19)

After transformation of Equation (19), one gets (N = ko
LPeL/Hko),

C∗

Co =

(
1− e−PeL

)Cp
Co + N

1 + e−PeL(N − 1)
. (20)

The enhancement factor can easily be expressed by using the equality of the outlet and
inlet streams,

ko
LPeLCp = −βo

ov

(
Co − e−PeL Cp

)
≡ koPeL

1 + e−PeL(N − 1)

(
Co − e−PeL Cp

)
. (21)

Thus, this is
Cp

Co =
βo

ov
ko

LPeL + βo
ove−PeL

, (22)

or after rearrangement,

E =
Cp

Co =
1

1 + Ne−PeL
. (23)
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Replacing the value of E from Equation (23) into Equation (20), one gets the polarization modulus,
taking into account the solute transfer rate in the membrane layer, as

C∗

Co =

(
1− e−PeL

) 1
1+Ne−PeL

+ N

1 + e−PeL(N − 1)
. (24)

Taking into account that C∗/Co = E/Eo and Equations (20) and (23), the intrinsic enhancement is

Eo =
1 + e−PeL(N − 1)

1− e−PeL + N(1 + e−PeL N)
. (25)

The value of the intrinsic enhancement can be obtained without taking into account the transport
rate inside the membrane. Thus, its value can be obtained by equality of the outlet flow (Equation (7))
and inlet flow, expressed by the boundary layer resistance (Equation (9)) only. Thus, one gets for the
polarization modulus [11] (pp. 213–214)

C∗

Co =
1 + N

1 + Ne−PeL
, (26)

and one gets for the intrinsic enhancement

Eo =
1

1− e−PeL

(
Co

C∗
− e−PeL

)
. (27)

Replacing the reciprocal value of the polarization modulus into Equation (27), the value of Eo is

Eo =
1

1 + N
. (28)

It is obvious that the values of the polarization modulus given by Equations (25) and (28) are
equal to each other in a special case only, because Equation (28) has a restriction caused by the
membrane transport resistance. It is easy to get that the equality of these two equations is fulfilled only
when [11]

N =
ePeL(1− E)

E
. (29)

This equation follows from Equation (23) as well.
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2.3. Two-Layer Transport with Diffusion Plus Convection for Both the Transport Layers

The concentration distributions and nominations are illustrated in Figure 3. The mass transfer
rate for the boundary layer is expressed by Equation (7), while that for the membrane layer is

Jo = υS ≡ βo
(
φ∗ − e−Peφ∗δ

)
, (30)

with
βo = koPe

1
e−Pe − 1

. (31)

The overall mass transfer rate, obtained through equality of these two transfer rates, namely
Equations (7) and (30), is

Jo
ov = βo

ov

(
Co

L − e−(Pe+PeL)Cp

)
, (32)

with
1
βo

ov
=

e−PeL

Hβo +
1
βo

L
. (33)

Another form of the overall mass transfer coefficient is

βo
ov =

ko
LPeLPe

Pe(e−PeL − 1) + (e−Pe − 1)Ne−PeL
. (34)

Through equality of the transport rate for the polarization layer and the overall solute transfer
rate, the polarization modulus can be expressed as

βo
L

(
Co − e−PeL C∗

)
= βo

ov

(
Co − e−(Pe+PeL)Cp

)
. (35)
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Thus, the polarization modulus is then obtained from Equation (35) as [11] (pp. 204–207)

C∗

Co =
Pe

(
e−PeL − 1

)
e−Pe Cp

Co
+

(
e−Pe − 1

)
N

Pe(e−PeL − 1) + (e−Pe − 1)Ne−PeL
. (36)
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The enhancement factor can be expressed (similarly to Equation (21)), applying its equality here
with Equation (32), as the overall mass transfer rate:

E ≡
Cp

Co =
Pe

Pee−(Pe+PeL)−〈Pe(e−PeL−1)+(e−Pe−1)Ne−PeL 〉
. (37)

Knowing the value of C∗/Co (Equation (36)) and the enhancement factor, the intrinsic
enhancement factor is given as

Eo =
E
{

Pe
(
e−PeL − 1

)
+ Ne−PeL

(
e−Pe − 1

)}
N(e−Pe − 1) + Ee−Pe(e−PeL − 1)Pe

. (38)

Replacing the value of the enhancement (Equation (37)) into Equation (38), the intrinsic
enhancement can also be given as a function of the mass transport parameters, namely
N (N = ko

LPeL/Hko), Pe, and PeL.
Let us look at, in the following sections, how the defined characteristic parameters E, Eo C∗/Co

change as a function of the transport parameters.

3. Results and Discussion

The main point of this study is to show how the most popular, characteristic parameters of
membrane separations (enhancement, intrinsic enhancement, and the polarization modulus) can be
predicted, taking into account not only the transport parameters of the feed boundary (polarization)
layer (diffusive and convective flows as well as the solubility coefficient between the fluid and
the membrane phases), but also the transport parameters of the membrane layer. Nowadays,
the expressions of mass transport through both the dense and porous membrane layers are well
elaborated [9–12]. How the characteristic parameters of the “black box” model can be predicted
independently from each other as a function of the transport parameters of both the transport layers
has not been discussed in the literature yet to the authors’ knowledge. Thus, the discussion of how
the enhancement, intrinsic enhancement factors, and polarization modulus vary as a function of the
simultaneous effect of two-layer solute transports can be useful and instructive, and it can significantly
contribute to a better understanding of the real meaning of membrane separation properties. It can
also help in the prediction of the performance of planned membrane processes.

The transport mechanisms in membrane layers are very complex, but are widely discussed
processes. They strongly depend on both the membrane and the solute/solvent properties. Here,
two main types of transport, namely diffusive and diffusive plus convective transport, were considered
depending on the membrane structure properties. The solution-diffusion transport model was used
for transport through dense membranes, and the solution-diffusion plus convection model was
used for describing transport through a porous membrane layer. All transport parameters, namely
diffusion coefficients in the fluid and solid membrane layers, convective velocity, and the solubility
coefficient, were assumed to be constant. How these parameters depend on operating conditions
(e.g., transmembrane pressure) or on fluid/membrane properties (e.g., physical or chemical properties,
membrane structure) were not topics of this study.

It is worth noting that parameters defined by the “black box” (Equations (11)–(13)) are correct,
real values. Their only insufficiency is that the parameters are not expressed independently from
each other, and thus their absolute values cannot be given by expressions obtained by the “black box”
model. In order to do this, the transport process in the membrane layer should also be involved, which
enables users to express these parameters as a function of transport parameters only, independently
from each other.
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3.1. Transport with Dense Membranes

The application of such membranes, mostly asymmetric membranes with very thin, dense,
selective layers, is typical in the case of, e.g., pervaporation, membrane gas separation, or pressure
driven separation processes. In this study, focusing on the characteristic parameters E, Eo and
polarization modulus (C∗/Co = E/Eo), the simultaneous effect of the dense membrane layer and feed
side polarization layer were taken into account, defined by Equations (23), (25), and (24), respectively.
Both parameters, namely E and Eo were expressed as a function of the N parameter (N = υ/Hko;
see Equation (17)) and of the boundary layer’s convective velocity, or more exactly, of PeL Variables
N and PeL involve the diffusive mass transfer coefficient of the transport layers, the convective bulk
velocity in the polarization layer, and the solubility coefficient, H (H = φ/C), as well. Let us show the
change in the enhancement factor (Figure 4) as a function of the fluid phase Peclet number at different
values of H and, consequently, at different values of N.
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Figure 4. Enhancement as a function of PeL at different values of the membrane solubility coefficient.
It was assumed that to get the enhancement, the outlet convective flow was equal to the overall solute
transfer rate (Equation (21)); ko

L = 5 × 10−5 m/s; ko = ko
L/10.

According to Equation (23), it is obvious that the value of the enhancement factor could not be
higher than unity. This means that the value of the outlet solute concentration was not higher than its
inlet one. This is perhaps surprising, because according to Figure 1b, the value of Cp should be higher
than the inlet value in the feed phase at high values (higher than unity) of solubility. On the other hand,
for the case of Cp/Co > 1, the polarization modulus should be lower than unity. As we can see later
in Figure 5, this condition was also not fulfilled. How, then, can real enhancement be achieved by a
nonporous, dense membrane, where there are no pores with enough size, and thus bulk fluid transport
cannot be created? This not-desired phenomenon should have been caused by our assumption that the
outlet membrane concentration was in equilibrium with the outlet fluid concentration, i.e., φ∗δ = HCp.
To reach real enrichment of the outlet solute component, the outlet membrane concentration should
be less than its equilibrium concentration, i.e., φ∗δ = HCp. This assumption was fulfilled during
pervaporation through the application of vacuum pressure on the permeate side (this case is discussed
in detail in Reference [11] (pp. 217–219)), and also during membrane gas separation using lower
pressure on the permeate side than on the inlet side.

On the other hand, let us briefly discuss the curves (broken lines in Figure 4) when H < 1.
For this case, the shape of the enhancement curves was as expected. With a decrease in the solubility
coefficient, the outlet solute concentration also decreased, increasing the separation efficiency of the
membrane process. The curves had minimum values as a function of the convective velocity, which
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did not induce component separation. The minimum of the curves fell to approximatelyPeL = 1.
Further increasing the convective velocity gradually decreased the separation performance, and the
enhancement values gradually approached unity.
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Figure 5. Polarization modulus as a function of the Peclet number of the polarization layer, at different
values of the solubility, calculated by Equation (24); ko

L = 5 × 10−5 m/s; ko = 0.1ko
L.

Let us show how the value of the polarization modulus changed as a function of PeL (Figure 5),
using the same values for the transport parameters as used in Figure 4. As was expected, the value of
the inlet membrane concentration increased as a function of the bulk phase velocity, in harmony with
the enhancement data plotted in Figure 4. High values (higher than unity) of the polarization modulus
at H > 1 might mean that the resulting convective transport rate (subtracting the reverse diffusive
flow from the convective one) was still high, comparing it to the diffusive one in the membrane
layer. This resulted in an increase of the C∗ value to equalize inlet flow rate with that occurring in
the membrane layer. Obviously, the higher value of C∗/Co lowered to unity with the increase of the
membrane diffusive mass transfer coefficient (not shown here), but its value could not decrease below
unity, according to Equation (24).

Note that by placing the values of enhancement or intrinsic enhancement (obtained by
Equations (23) or (25)) into those obtained by the “black box” model (given in Equations (11)
and (13), respectively) (e.g., the E value obtained by Equation (23) is placed into Equation (13) for
calculation of the intrinsic enhancement factor), one gets back exactly the same values as were obtained
by Equations (23) or (24). Let us look at an example with the following parameters: ko

L = 5× 10−5m/s;
ko = ko

L/10; H = 0.1; PeL = 0.01, and thus N = 1. The calculated values of the presented models
are E = 0.5025 (Equation (23)), Eo = 0.5000 (Equation (25)). Placing the value of E into Equation (13)
(obtained by the “black box” model), the value of intrinsic enhancement Eo is equal to 0.4999. Placing
Eo = 0.5000 into Equation (11), we can get E = 0.5025, which is equal to that obtained by the presented
model. This proves that both model expressions are correct if one of them is accepted to describe
correctly the real transport process. Accordingly, knowing the transport parameters of the layers
(mass transfer coefficients, solubility, convection velocity), the above model can be used to predict
the separation performance of, e.g., pervaporation or membrane gas separation, whose processes use
dense membrane layer for separation.
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Comparing the results plotted in the above figures to those given by Baker [10] (pp. 177–179),
there might be a stated qualitative difference between their information contents. The presented model
gives direct data on the effect of the two-layer transport process, while the literature ones can give
connection values between the enhancement and the intrinsic enhancement or polarization model only.

The methodology presented here can also be used in the case of variable membrane diffusion
coefficients or solubility coefficients. In this case, the transport rate through the membrane should also
be contained by their dependency on, e.g., the concentration and temperature. This problem can be an
object of another study.

3.2. Transport with Convection in a Porous Membrane Layer

This section is important for pressure-driven membrane separation processes (e.g., nanofiltration,
ultrafiltration) using porous membranes. Separation of the transport components by these so-called
filtration processes depends mainly on particle and pore sizes. The bulk convective flow can mostly
be predicted by Darcy’s law [10–12]. The transport equations given for these membrane processes
are listed in Section 2.3. The characteristic parameters, namely enhancement, intrinsic enhancement,
and the polarization modulus, are defined by Equations (37), (38), and (36), respectively. These three
equations tend toward those ones defined by the solution-diffusion models (Equation (23)–(25)) when
the convective velocity is eliminated, i.e., when Pe→ 0.
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Figure 6. Enhancement as a function of the membrane Peclet number, Pe, at different values of the
solubility coefficient (PeL = Peko/ko

L; ko
L = 5 × 10−5 m/s; ko = 0.1ko

L).

Let us look at some predicted results obtained for values of enhancement and the polarization
modulus. The intrinsic enhancement is not an independent parameter, namely Eo = E/(C∗/Co),
and thus its value is not plotted here. Figure 6 shows the change of enhancement, predicted by
Equation (35), as a function of the membrane Peclet number. The solubility coefficient (according to the
value of N) was chosen to be higher (continuous lines) or lower (broken lines) than unity. The change of
the outlet concentration (E = Cp/Co), as expected, strongly depended on the value of the solubility
coefficient, H. At values of H > 1, the E value gradually increased to a value of the membrane
convective velocity. With further increases of the membrane convective velocity, the value of E started to
gradually decrease down to unity. This means that the membrane separation property gradually lost
its separation efficiency due to the nonselective convective velocity. With increasing values of H,
the outlet concentration also increased depending on the value of the membrane Peclet number, Pe.
At a value of H = 1, there was now separation of the solute, and the outlet solute concentration was
equal to the inlet one. When the solubility value was less then unity, this was the solubility range of
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solute rejection (see Figure 1a), and the outlet concentration decreased as a function of the membrane
convective velocity, increasing the membrane separation efficiency. When Pe > 1, the E value started to
increase slowly, after its minimum. This means that the separation efficiency decreased in this Pe range
(Pe > 1).

The change of the polarization modulus (= C∗/Co) is plotted in Figure 7 as a function of the
membrane Peclet number. The values of the parameters ko, ko

L, H were chosen to be the same as they
were in Figure 6. The polarization modulus was calculated by Equation (36). Obviously, trends of
its changes were in harmony with the results plotted in Figure 6 and also with the curves plotted in
Figure 1a (H < 1; in Figure 7, broken lines) and Figure 1b (H > 1; here, continuous line). Values of
the polarization modulus continuously lowered as a function of the membrane convective velocity
in the membrane Peclet regime investigated. At values of H ≥ 100, its value was close to zero.
Obviously, the value of N also changed as a function of Pe, because the absolute value of the convective
velocity in the polarization layer was the same as that in the membrane layer due to the assumed
expression of PeL = Peko/ko

L. Obviously, the slopes of the curves strongly depended on the ratio of
the diffusive mass transfer coefficients. Increasing the membrane mass transfer coefficient, ko at a
constant value of ko

L its value increased and the values of the polarization modulus were lower (in the
enrichment solute regime) or higher (in the case of rejected solute) (not shown here). These two figures,
namely Figures 6 and 7, clearly prove that the methodology shown for prediction of the characteristic
membrane parameters defined in the “black box” model can be correctly used for two-layer transport
processes with convective flow in both the polarization and porous membrane layers as well.
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Figure 7. Polarization modulus as a function of the membrane Peclet number, calculated by
Equation (36), at different values of the solubility coefficient, H. Values of the mass transfer coefficient
and of the PeL of the polarization layer are the same as in Figure 6, namely (PeL = Peko/ko

L;
ko

L = 5 × 10−5 m/s; ko = 0.1ko
L).

It might also be interesting for readers to see how the concentration distribution changed in
the two transport layers (Figure 8), applying values obtained for the feed-side membrane interface
concentration (values taken from the polarization modulus obtained) and for the outlet ones (using
enhancement data). The values of the polarization modulus obtained were 0.545, 0.635, 1.546, and
2.163, and the values of the enhancement obtained were 1.26, 1.083, 0.682, and 0.323 at H = 10, 3, 1/3,
and 0.1, respectively. At H = 1, both parameters got values of unity (continuous red line in Figure 8).
It can be said that the curves’ curvatures were typical. The curves were concave and convex for
cases of H < 1 and H > 1, respectively. On the other hand, the role of convective velocity was crucially
important. Its value could strongly increase the separation efficiency with increases or decreases in the
values of E, i.e., with increases or decreases in the outlet solute concentration. Thus, by checking or
adjusting the transmembrane hydraulic or osmotic pressure difference and other operating conditions,
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an optimal or desired separation efficiency can be reached, whose advance could be very essential in
separation performance, as is well illustrated in Figure 6. With knowledge of the transport parameters
(the diffusive mass transfer coefficients, the convective velocity, and solubility), the desired separation
properties can be predicted by the expressions presented in this study.
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Figure 8. Concentration distribution in the feed side polarization layer and the membrane layer at a
given value of the convective velocity and the diffusive mass transfer coefficient as well as at different
values of the solubility coefficient; (PeL = Pe = 1; ko

L = 5 × 10−5 m/s; ko = ko
L).

The methodology presented can also be applied to the separation of colloids, oil droplets in water,
macromolecules, etc., by applying pressure-driven separation processes (e.g., nanofiltration, ultrafiltration).

4. Conclusions

The solute transport process developed by the “black box” model, which was published several
decades ago, was extended for two-layer transport, taking into account the transport “mechanisms” of
the membrane layers as well. Transport expressions for membranes have already been given in the
literature depending on the membrane structure and properties. It was shown in this study that
completing the boundary layer’s transport expression with that given for the membrane layer, the
more important characteristic parameters (enhancement, intrinsic enhancement, and polarization
modulus) can be expressed independently from each other as a function of the diffusive mass transfer
coefficient, convective velocity (if it exists in the membrane at all), and the solubility coefficient between
the fluid and membrane phases (if it exists). This extension was done and discussed in this study
using solution-diffusion (i.e., pervaporation, membrane gas separation) and solution-diffusion plus
convection transport in a porous membrane layer (i.e., nanofiltration, ultrafiltration). It was shown
that the solution-diffusion membrane model did not give higher than unity enhancement values at
H > 1, applying the usually used outlet boundary condition, whereas it gave expected results when
H < 1. The values of enhancement and the polarization modulus, using the diffusion-convection
model for transport in a porous membrane, changed as was expected. The independent expressions of
enhancement and the polarization modulus enable users to predict separation performance as a
function of two-layer transport parameters (diffusion coefficients, convective velocity, solubility
coefficient), which can significantly contribute toward being chosen as operating conditions that can
provide desired separation efficiency.
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Nomenclature

C concentration in the fluid phase, kg/m3

D diffusion coefficient, m2/s
E enhancement, -
Eo intrinsic enhancement, -
H solubility coefficient, kg/kg
Jo mass transfer rate, kg/m2s
ko membrane diffusive mass transfer coefficient, m/s
ko

L diffusion coefficient in the feed fluid phase, m/s
Pe Peclet number (Equation (3))
y local coordinate, m
β mass transfer coefficient in presence of convective velocity, m/s
φ solute concentration in the membrane, kg/kg

Superscript:
* interface
o inlet

Subscript:
L fluid phase
p outlet
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