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Infiltration of memory CD4+ T cells in synovial joints of Rheumatoid Arthritis (RA) patients

has been reported since decades. Moreover, several genome wide association studies

(GWAS) pinpointing a key genetic association between the HLA-DR locus and RA have

led to the generally agreed hypothesis that CD4+ T cells are directly implicated in

the disease. Still, RA is a heterogeneous disease and much effort has been made to

understand its different facets. T cell differentiation is driven by mechanisms including

antigen stimulation, co-stimulatory signals and cytokine milieu, all of which are abundant

in the rheumatic joint, implying that any T cells migrating into the joint may be further

affected locally. In parallel to the characterization and classification of T-cell subsets,

the contribution of different effector T cells to RA has been investigated in numerous

studies though sometimes with contradictory results. In particular, the frequency of

Th1 and Th17 cells has been assessed in the synovial joints with various results that

could, at least partly, be explained by the stage of the disease. For regulatory T cells,

it is largely accepted that they accumulate in RA synovial fluid and that the equilibrium

between regulatory T cells and effector cells is a key factor in controlling inflammation

processes involved in RA. Recent phenotypic studies describe the possible implication

of a novel subset of peripheral T helper cells (Tph) important for T-B cell cross talk and

plasma cell differentiation in the RA joint of ACPA+ (autoantibodies against citrullinated

proteins) RA patients. Finally, cytotoxic CD4+ T cells, historically described as increased

in the peripheral blood of RA patients have attracted new attention in the last years. In

view of the recently identified peripheral T-cell subsets, we will integrate immunological

data as well as information on genetic variants and therapeutic strategy outcomes

into our current understanding of the width of effector T cells. We will also integrate

tissue-resident memory T cell aspects, and discuss similarities and differences with

inflammatory conditions in skin (psoriasis) and mucosal organs (Crohn’s disease).
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INTRODUCTION

Rheumatoid Arthritis (RA) is a chronic inflammatory disease
targeting peripheral joints leading to bone erosion, impairment
of mobility, and decreased quality of life. It is affecting
0.5–1% of the population worldwide and is more prevalent
in women than in men (1). The pathogenesis of RA is
mainly localized in the synovial joint where immune cells
composed of T cells, B cells, macrophages, and dendritic cells
infiltrate the synovium. Moreover, fibroblast-like synoviocytes
present in the sublining layer of the synovium proliferate and
contribute to cartilage damage (2). Memory CD4+ T cells
are enriched in affected joints of RA patients (3) and highly
expanded CD4+ T cell clones are found in synovial tissue
of early disease (4) suggesting that T cell expansion could
be due to local antigen-induced proliferation. The efficiency
of co-stimulation blockade targeting CD80/CD86-CD28
interaction further illustrates the importance of T cells in the
pathogenesis of RA (5).

A central function of CD4+ T cells in RA has also been
deducted from genetic studies. An early report by Stastny (6)
identified an association between RA and HLA-DRB1 that was
further confirmed by genome-wide association studies (GWAS)
(7). This association led to the “shared epitope hypothesis”
whereby a five-amino acid sequence found in certain HLA-
DRB1 alleles was associated with increased susceptibility to
RA (8). In about 2/3 of RA patients, serum antibodies to
citrullinated protein antigens (ACPAs) are present and these
are associated with the HLA-DRB1 risk alleles (1). Altogether,
these findings have led to the hypothesis that citrullinated
peptides might be preferentially presented by HLA-DRB1
risk alleles (9). Such peptide presentation has indeed been
demonstrated both functionally (10) and by peptide-HLA crystal
structure determination (11). Several citrullinated candidate
peptides can be presented by HLA-DRB1∗04:01 and other
shared epitope alleles such as ∗04:04 and ∗10:01 (10, 12,
13) and the search for immunodominant T cell epitopes
is still an important area of investigation in the field of
RA. The relevance of antigen specificities has already been
discussed elsewhere (13) and will not be detailed in this
review but instead will be discussed in the context of effector
T cell functions.

Infiltration of CD4+ T cells at the site of inflammation
is a characteristic feature of several autoimmune syndromes.
In the scope of this review, we present and discuss up-
to-date understanding of effector functions of CD4+
T cells (Figure 1) present in the joint of RA patients.
Examples of CD4+ T cell effector functions from other
chronic inflammatory conditions (psoriasis and Crohn’s
disease) are selected to contrast and discuss our current
knowledge in the field of RA. In particular, many common
therapeutic strategies have been evaluated in RA, psoriasis
and Crohn’s disease with different outcomes that shed light
on the different pathways implicated in the pathogenesis
of these inflammatory disorders. Due to lack of space,
this review will be mainly dedicated to findings in human
inflammatory conditions.

TH1 CELLS AND ASSOCIATED EFFECTOR
FUNCTIONS

In 1986, Mosmann and Coffman proposed that mouse CD4+
helper T (Th) cells could be subdivided in Th1 or Th2 subsets
based on their differential capacity to secrete IFNγ, IL-2, and
TNF or IL-4, and IL-5, respectively (14). Subsequently, several
reports identified human T cell clones separating into Th1
and Th2 categories (15). Th1 CD4+ T cells are crucial in the
defense against intracellular pathogens such as mycobacteria (16)
whereas Th2 CD4+ T cells mediate the immune defense against
parasites such as helminths (17).

Th1 Cells in Circulation and at Site of
Inflammation
CD4+ T cells prone to secrete IFNγ (18, 19) were identified
in synovial fluids from RA patients while IL-4 production (18)
and IL-4+ T cell clones (19) were not increased in synovial
fluid compared to peripheral blood. RAwas subsequently defined
as a Th1-driven disease while Th2 immunity was proposed to
have a therapeutic potential in RA (20). CXCR3 was identified
as a surface marker for Th1 cells (21) and T-bet as a master
transcription factor (22). CXCR3 binds the two IFNγ-induced
chemokines CXCL9 and CXCL10 (23). CXCR3 expression on
CD4+ T cells (24) as well as CXCL9 and CXCL10 are enriched in
synovial fluids (25). Although the vast majority of CD4+ T cells
present in synovial joints are of memory phenotype (CD45RO+)
(3) and hence antigen-experienced, our insight into their antigen
specificity is scarce. Non-specific CD4+ T cells infiltrating the
inflamed joint are likely to bias the analysis of the phenotype of
relevant CD4+ T cells.

In that context, ex vivo peptide-HLA-DR-tetramer analysis
provides a more relevant picture of antigen-specific i.e.,
citrulline-reactive T cells. Hereby, around 40% of citrulline-
reactive CD4+ T cells were found to be CXCR3+ in the blood
of RA patients (26) pointing again toward a Th1 signature of
autoreactive T cells in RA. Presence of IL-12, IL-18, IFNγ, drivers
of Th1 differentiation has also been reported in the synovial
tissues of RA patients but not in osteoarthritis patients (Figure 1)
(27, 28). However, there is still a lack of information concerning
the phenotype of antigen-specific CD4+ T cells at the site of
inflammation. Finally, immunodominant T cells epitopes have
yet to be discovered in RA that will facilitate the more common
use of peptide-HLA-DR-tetramer.

Downstream Effects of Th1 Activity
Th1 cells classically induce macrophage activation (29)
characterized in the context of the synovial joint by an
increased capacity to produce pro-inflammatory cytokines such
as TNF (30). Long-lived resident macrophages are present in
synovial tissues from healthy donors (31) while inflammatory
macrophages are mainly derived from blood monocytes in active
RA (32). The interplay between Th1 cells and these two different
subsets of macrophages in the context of the synovial joint is
unknown. It will be particularly important to understand if Th1
cells can modify the properties of resident macrophages which
could then contribute to perpetuation of the disease (33). Th1

Frontiers in Immunology | www.frontiersin.org 2 March 2019 | Volume 10 | Article 353

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Chemin et al. T Cells in Rheumatoid Arthritis

FIGURE 1 | Important CD4+ T-cell subsets in Rheumatoid Arthritis (SF, Synovial Fluid; NETs, Neutrophil Extracellular Traps).

cells have been proposed to influence class switching toward
IgG1 and IgG3 in humans (20). In RA, polyclonal antibodies
against type II collagen are predominantly of IgG1 and IgG3
subclasses (34) and autoantibodies against citrullinated fibrin are
mainly IgG1 (35) suggesting previous interaction with IFNγ-
producing cells. Nevertheless, Ig class switching is probably
influenced by a multitude of other factors during the course
of inflammation and should not be oversimplified by a link
to a specific CD4+ T-cell subset. T helper cells also provide
help to CD8+ T cells as demonstrated in the context of cancer
immunology (36). Despite a reported presence of CD8+ T cells
in synovial joints (37), the influence of CD4+ T cells on their
activation is currently unknown.

Th1 Targeted Therapy
Evidences of pathogenic function of Th1 cells in RA were
contradicted by the lack of efficiency of therapeutic strategy
targeting IFNγ (Fontolizumab) initiated in a phase II clinical trial
in active RA. This clinical trial was terminated because the first
phase did not reach the goals of primary endpoint (38). In the
same line, in IFNγ receptor knock-out mice, collagen-induced
arthritis was accelerated (39). In this particular mouse model, it
has been proposed that IFNγ suppresses inflammation through
inhibition of Th17 responses (40). It is however currently
unknown if this hypothesis holds true in a human setting. It
should be mentioned that biologic therapies targeting TNF, a Th1

cytokine are successful treatments in RA (41). Hence, Th1 cells
could act on at least two opposing levels by directly contributing
to tissue damage through TNF production or by suppressing
Th17 responses.

Since Th1 cells were one of the first T helper cell subsets
described, their contribution to the pathogenesis of autoimmune
diseases has been investigated in numerous studies. This is also
the case both for psoriasis (42, 43) and Crohn’s disease (44)
that were both initially suggested to be Th1-driven diseases.
IFNγ-producing cells were indeed identified at the site of
inflammation in these two diseases (42, 45). However, in a
phase II clinical trial, Fontolizumab did not induce a robust
beneficial clinical effect in Crohn’s disease (46). Similarly, in a
small study, therapeutic targeting of IFNγ with a humanized
anti-IFNγ (HuZAF) showed no significant efficacy in psoriasis
patients (47). In these three diseases, despite the clear presence
of Th1 cells at the site of inflammation, therapeutic targeting of
IFNγ did not lead to beneficial results. IFNγ might be important
in the very early phases of the disease through, for instance, the
induction of TNF in macrophages (48). It has also been shown
that IFNγ induces the expression of vascular cellular adhesion
molecule-1 (VCAM-1) on endothelial cells (49) which facilitates
lymphocyte migration to the tissue. Finally, through reciprocal
regulation, Th1 cells might also suppress the generation of
pathogenic T cells such as Th17 cells that contribute to
tissue damage.
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TH17 CELLS AND ASSOCIATED
EFFECTOR FUNCTIONS

The Th1/Th2 hypothesis was revisited in 1995, when a third T-
cell subset named Th17 cells based on the production of the
newly identified cytokine IL-17 (50, 51) was discovered. The
IL-17 family comprises 6 members with IL-17A (historically
referred as IL-17) and IL-17F being the most closely related, in
addition to IL-17B, IL-17C, IL-17D, and IL-17E (52). Th17 cells
were initially described as co-expressing the chemokine receptors
CCR6 and CCR4 (53) and expressing the master transcription
factor RORγT (Figure 1) (54). In addition, CD161 was recently
described as a marker of all IL-17 producing cells (55). In
epithelial, endothelial and fibroblastic cells, IL-17A stimulates the
production of pro-inflammatory cytokines such as IL-6, IL-8, and
GM-CSF (56) and promotes neutrophil recruitment (57). Th17
cells are particularly important in protective immunity against
fungal and extracellular bacterial infections (Staphylococcus
aureus) (58).

Classic Th17 Responses and RA
Early on, production of IL-17 was demonstrated in synovial
tissues (59) and synovial fluid (60) of RA patients but not
in that of osteoarthritis patients. In addition, IL-17-producing
CD4+ T cells from synovial tissues from RA patients could
readily be identified (61). The reported frequency of Th17 cells
in peripheral blood of RA patients varies according to different
studies where either an increase (62, 63) or a status quo in
their frequency (64, 65) has been observed. Moreover, only
few citrulline-specific CD4+ T cells were CCR6+ positive in
peripheral blood of RA when analyzed by ex vivo peptide-HLA-
DR-tetramer analysis (26). Th17-inducing cytokines (IL-6 IL1-β,
IL-21, TGF-β, and IL-23) (66–69) are present in the synovial
joint (Figure 1). Further, synovial IL-17 from RA patients was
shown to induce bone resorption (70). Finally, IL-17 contributes
to neutrophil recruitment, a hallmark of RA synovial fluid (71).
In IL-17-deficient mice, collagen-induced arthritis was decreased
supporting the notion that Th17 cells play a pathogenic role in
the development of the arthritis (72). It was therefore unexpected
that therapeutic targeting of IL-17A (Secukinumab) or the IL-
17 receptor (brodalumab) in phase II studies was less successful
in RA than in other inflammatory conditions such as psoriasis
(73, 74). It was recently proposed that Th17 cells might migrate
to the synovium in CCP+ (anti-cyclic citrullinated peptide)
early RA patients (75). Hence, in RA, IL-17-producing T cells
might contribute during early stages of the disease or be more
prominent in a subtype of RA patients.

The Different Facets of IL-17- Anti vs.
Pro-inflammatory Features
Another level of complexity arises from evidence that Th17
cells are implicated in different immune responses depending
on co-expressed cytokines (76). Indeed, T cells co-expressing
IL-17 and IL-10 are thought to be important in mucosal
defense but not pathogenic as T cells co-expressing IL-17, IFNγ,
or GM-CSF are (66). After anti-TNF treatment, Th17 cells
were shown to acquire IL-10 production in RA (77) implying

that Th17 cells could also be protective and participate in
dampening inflammation in RA. While GM-CSF appears to be
a critical component of Th17 pathogenicity in the experimental
autoimmune encephalomyelitis (EAE) mouse model (78), it is
associated with the Th1 axis in multiple sclerosis (79). Likewise,
in synovial joints of RA patients, GM-CSF production is enriched
in Th1 cells and not in Th17 cells (80). Several clinical trials
targeting GM-CSF are ongoing in RA (81) and will shed light on
the pathogenic function of GM-CSF in the context of RA. It also
implies that additional markers for Th17 pathogenic subsets are
needed to predict which patients are more likely to respond to
such therapies.

Different Responses to Anti-IL-17
Blockade in Inflammatory Diseases
While the importance of Th17 cells seems to vary according to
the stage and subsets of RA, psoriasis vulgaris can currently be
defined as an IL-17-mediated inflammatory skin disease (82).
IL-17-secreting cells are found in psoriatic lesions and include
CD4+ (83), CD8+ (84), and γδ T cells (85). Phase III trials with
a human anti-IL-17A monoclonal antibody (Secukinumab) were
successful in psoriasis with response rates of 72–82% at week
12 (86). Th17 cells are also present in the gut of patients with
Crohn’s disease (87) but IL-17 blockade with Secukinumab was
not effective and adverse cases of fungal infections and worsening
of the disease were observed (88). In this case, IL-10-producing
Th17 cells having a regulatory function (89, 90) might have been
targeted contributing to the exacerbation of the disease.

Although early studies suggested that Th17 cells are crucial in
most of human inflammatory conditions, different responses to
IL-17 blockade contradict this hypothesis. Th17 cells are present
at the site of inflammation in RA, Crohn’s disease and psoriasis
but the difference in the response to anti-IL-17 therapies strongly
suggests that their direct implications in the pathogenesis of
these diseases differ and reflect different effector functions in
tissues. In psoriasis, blocking of IL-17 will alleviate the direct
effects of IL-17 on keratinocyte proliferation. In the gut, Th17
cells play an important role in mucosal host defense (58, 91),
which is reflected by the secondary effects observed in Crohn’s
patients under anti-IL-17A therapies. Th17 cells also produce
IL-22 which is involved in intestinal epithelial barrier integrity
(92). In active RA, targeting IL-17 might not be sufficient to
dampen the ongoing cytokine cascade and resorb migration of
neutrophils already sequestered in the synovial joint. Targeting
of IL-17 at earlier time points or in conjunction with other
anti-cytokine blockade might be more effective. Indeed, the
combination of IL-17 and TNF synergize to induce the expression
of P and E-selectins on endothelial cells that induce an influx of
neutrophils (93).

T CELLS PROVIDING B CELL HELP–TFH
and TPH

Local CD4+ T-cell help to B cells is likely to be a prominent
driver of humoral immunity in RA patients seropositive
for ACPA (anti-citrullinated protein antibodies) and/or RF
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(Rheumatoid Factor). About 60–70% of RA patients present
with ACPAs and 50-80% of patients are seropositive for RF
(94). Already in 1992, synovial T cells from RA patients were
shown to induce B cell Ig production in vitro (3). Moreover,
ectopic germinal centers are observed in synovial tissues of
some RA patients (95, 96). In 2000, a subset of follicular
CD4+ T cells (Tfh) expressing CXCR5 and specialized in
stimulating antibody responses was described in germinal centers
in secondary lymphoid organs (97). They typically express the
master transcription factor Bcl-6 as well as IL-21, PD-1, and
ICOS. IL-6 and ICOS triggering regulate their differentiation (98)
(Figure 1).

B Cell Helpers in Circulation
Circulating Tfh can be analyzed in peripheral blood where their
characteristics slightly differ from the follicular ones with a
lack of expression of Bcl-6 (98–100). Blood Tfh can be further
subdivided into Th1, Th2, Th17 cell subsets with Tfh2 and
Tfh17 being the only subsets capable of sustaining the B-cell
Ig switch (101). Several studies have described an increased
frequency of CXCR5+ICOS+CD4+ Tfh cells in peripheral
blood of RA patients which correlates with serological anti-CCP
titers and disease severity (102–105). This is accompanied by
increased concentrations of IL-21 in the serum of RA patients
when compared to healthy donors (102–106). Few reports have
investigated the frequency and function of CXCR5+ follicular T
cells in psoriasis and Crohn’s disease probably due to the lower
prevalence of humoral immunity in these patients as compared
to RA patients (107, 108). One study reported an increase of
Tfh17 CD4+ T cells in peripheral blood of psoriasis patients that
correlated with disease activity (109). An increased frequency of
Tfh1 and Tfh17 CD4+ T cells has been observed in peripheral
blood of patients with Crohn’s disease (110).

B Cell Helpers in Tissue
IL-6 (111) and ICOS expression on CD4+ T cells (112), inducers
of Tfh differentiation, have been reported in the rheumatic joint.
In synovial tissues, few CD4+ T cells express CXCR5 (113, 114)
which is surprising given the reported expression of CXCL13, the
ligand for CXCR5, in synovial fluids and tissues of RA patients
(115, 116). It has recently been proposed that another subset
of memory T cells, the peripheral T helper cell (Tph) subset
expressing MHC class II and high levels of the co-inhibitory
receptor PD-1 provide B-cell help in the synovial joint (Figure 1)
(113). These cells lack Bcl-6 but express other typical markers
for B-cell help such as IL-21, CXCL13, ICOS, and MAF. It is
currently unknown if this subset shares the same ontogeny as
Tfh. This study supports earlier reports showing the importance
of PD-L1 (program death ligand-1)/PD-1 interaction in RA.
Indeed, most of C57BL/6-Pdcd1-/- mice develop arthritis (117)
and CD4+ T cells were shown to express PD-1 in synovial
joints of RA patients (118). CD4+PD-1+ infiltrating T cells have
also been described in the context of breast cancer (119) where
they display comparable features with Tph such as ICOS and
CXCL13 expression (120). Importantly, these cells also express
IFNγ in both RA synovial fluid (113) and breast cancer (119)
showing that these T cells have the capacity to convey multiple

effector functions contradicting the original Th1/Th2 hypothesis.
Recently, the occurrence of case reports of RA following PD-1
or PD-L1 blockade in the context of cancer therapies have also
highlighted the role of this checkpoint regulation in the balance
between cancer and autoimmunity (121). Cases of psoriasis have
also been reported (122) suggesting the importance of PD-1 in
the pathogenesis of this disease as well. Although this subset of
pathogenic T cells has not been extensively studied in psoriasis,
PD-1 expression on Th17 cells has been reported in psoriatic skin
of patients (123). So far, the subset of pathogenic Tph cells driving
B-cell responses has only been described in the synovial joint of
RA patients but is probably relevant to other antibody-positive
autoimmune diseases.

REGULATORY T-CELL SUBSETS

The concept of regulatory T cells was revisited in 1995 when
the group of Sakaguchi described a population of CD4+
CD25+ T cells capable of preventing the development of
several autoimmune diseases in mice (124). Shortly after, the
key function of the transcription factor FOXP3 (Forkhead box
P3) in the development and function of regulatory T cells was
demonstrated inmice (125) and humans (126). Regulatory T cells
(Tregs) also express CTLA-4 (cytotoxic T lymphocyte-associated
antigen-4) and other markers e.g., GITR (glucocorticoid-induced
TNFR family related gene) and CD39 whose expression might
vary depending on the context (127). In peripheral blood, Tregs
can be divided into naïve and activated regulatory T cells based
on the expression of CD45RA (128). Importantly, in humans,
FOXP3 expression is not strictly restricted to regulatory T cells
as it is transiently up-regulated also in effector T cells (129).
Therefore, in humans, regulatory T cells cannot only be defined
by the phenotypic expression of FOXP3 and CD25 but need to be
supplemented by assessment of their in vitro suppressive capacity
and/or the demethylation of the FOXP3 TSDR (Treg cell-specific
demethylated region) (130).

Tregs at Site of Inflammation
In RA patients, FOXP3+CD25+CD4+ T cells accumulate in
synovial fluid (131, 132) and in synovial tissue (Figure 1)
(133). In vitro suppressive capacity and demethylation of the
FOXP3 TSDR showed that these regulatory T cells are functional
(133, 134). However, effector T-cell proliferation and pro-
inflammatory cytokines have been demonstrated to reduce
FOXP3 regulatory T-cell function in vitro (134), which is likely
to happen also in situ. Indeed, adding TNF during co-culture
experiments was shown to inhibit regulatory T-cell functions
(135, 136).Whether this effect is mediated through a direct action
on effector T cells or regulatory T cells is still a matter of debate
(137) since TNF can also induce conventional T-cell proliferation
(138). The ontogeny of FOXP3+CD4+ T cells in synovial
tissues is still unknown. FOXP3+ Tregs can originate from the
thymus (thymus Tregs or tTregs) or be induced in situ from
conventional T cells during infections or other inflammatory
processes (induced Tregs or iTregs) (139).

Regulatory T cells from peripheral blood and inflamed joints
of juvenile arthritis patients were shown to harbor a different T
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cell Receptor Vβ usage than conventional T cells suggesting that
Tregs would be generated independently of conventional T cells
(140). Whether this is also the case in RA is currently unknown
but IL-2 (141) and TGFβ (142), important for induced regulatory
T-cell generation are present in synovial fluids of RA.

In plaques of psoriasis patients, the frequency of FOXP3+
CD4+ T cells is increased when compared to healthy skins (143)
where only few Tregs are found in the dermis and epidermis
(143). FOXP3+CD4+ T cells present in the psoriatic lesions also
co-expressed IL-17 (143, 144). Hence, as for RA, it has been
suggested that the inflammatory milieu through for instance IL-6
(145) may affect regulatory T-cell function.

Therapeutic Interventions Affecting Treg
Function and/or Frequencies
Current therapies given in RA that alleviate inflammation are
therefore likely to restore or increase regulatory T-cell function.
In RA patients treated with anti-TNF therapy, an increased
frequency of CD4+CD25 high T cells was observed in responders
when compared to non-responders (146). Similarly, an expansion
of CD4+CD25+FOXP3+ T cells has been observed after anti-
IL-6R blockade and was accompanied by a decrease in Th17
frequency (147). Treg and Th17 cells have opposite functions
but their differentiation both rely on the presence of TGFβ. In
the absence of pro-inflammatory cytokines such as IL-6, Treg
differentiation is enhanced whereas in the presence of IL-6, Th17
differentiation is promoted. Hence, targeting IL6R contributes to
increase the ratio between Treg and Th17 cells in RA patients
(147). Recently, a therapeutic strategy based on the use of low-
dose of IL-2 has been developed to directly induce the expansion
of Tregs in vivo in autoimmune patients (148). This concept relies
on the fact that Treg development and expansion is dependent
on low levels of IL2R signaling (149). Clinical trials investigating
such treatments in RA are currently ongoing.

IL-10 Producing Tr1 Cells
Another subset of T regulatory cells named T regulatory type
1 cells (Tr1) is defined by their suppressive function combined
with their capacity to produce IL-10 (150). So far, no unique
cell surface marker specific for Tr1 cells has been identified
but the expression of several markers such as ICOS, PD-1,
CD49b, TIM-3, and LAG3 is increased on this subset (151). Tr1
cells have been extensively studied in the context of intestinal
mucosal immunity and the prevention of colitis (152, 153). The
importance of IL-10 in intestinal immunity is also illustrated by
the identification of mutations in IL-10, IL-10RA, and IL-10RB
genes in children suffering from inflammatory bowel disease
(IBD) (153). The frequency of Tr1 cells (defined by production
of IL-10 and low production of IL-2 and IL-4) was found to be
decreased in peripheral blood and synovial fluid of RA patients
when compared to osteoarthritis patients and healthy donors
(154). However, IL-10 does not only have an anti-suppressive
effect but is also involved in B-cell activation and antibody
production (155) and is secreted by follicular helper T cells
(156). Clearly, IL-10 alone is not sufficient to define Tr1 cells
and additional markers are needed to understand their possible
function in synovial tissues. As of today, Tr1 cells have been

clearly implicated in intestinal mucosal immunity but their
contribution to the synovial joint homeostasis is less clear.

CYTOTOXIC CD4+ T CELLS

Although not part of the general text book, cytotoxic features of
CD4+ T cells have been observed already more than 20 years
ago but were initially described in T cell clones (157) raising
the concern that their generation might be an artifact due to
repeated in vitro stimulation. However, the presence of CD4+ T
cells with cytotoxic activities (CD4+ CTLs) has been confirmed
ex vivo in human diseases driven by a variety of viruses like CMV
(158) or dengue (159) as reviewed in Juno et al. (160). In healthy
individuals, the frequency of peripheral CD4+ CTLs is usually
very low (161).

Cytotoxic T Cells in RA
In peripheral blood of a subset of RA patients, several
groups have reported an increased frequency of a population
of CD4+CD28null cells expressing perforin, granzymes, and
other cytotoxic features (162–164) (Figure 1). Although CD4+
CD28null T cells are not enriched in synovial fluid, the presence
of perforin+CD4+ T cells has been repeatedly reported in
synovial fluids and tissues (164–166). No unique marker is
associated with CD4+CD28null T cells but they express proteins
related to their cytotoxic functions which are more commonly
found in CD8+ CTLs and Natural Killer (NK) cells including
granzyme B, granzyme A, and perforin-1. NK cell activating
receptors such as NKG2D are also found on CD4+CD28null
cells (167). Further investigation of CD4+CD28null cells or an
updated approach of studying such cells in RA is warranted
in the light of recent characterization of CD4+ CTLs at the
single cell level (168, 169). In particular, the recently described
transcription factor Hobit was identified in CD4+ CTLs where
its precise function remains to be determined (170). We recently
demonstrated that the transcription factor EOMES, implicated in
terminal T-cell differentiation and the transcription of perforin-
1 (171), is increased in CD4+ T cells from synovial fluids of RA
patients (166). Using single cell transcriptomics, expanded T cell
clones present in the synovium of RA patients were also shown to
express EOMES and granzyme B when compared to circulating
expanded clones (172). Antigen-specificity of CD4+ CTLs in
RA is still debated although an increase in their frequency is
more prominent in CMV-seropositive patients suggesting a link
between CMV infections and the generation of this T-cell subset
in RA patients (173). Nevertheless, repeated antigen stimulation,
a classical feature of chronic inflammation, seems to be a constant
feature in CD4+ CTL generation (160). Although CD4+ CTLs
were initially suggested to derive from Th1 cells, it has also
been proposed that they represent an independent lineage
with CRTAM (class I-restricted T cell-associated molecule) as
a possible marker for precursors of CD4+ CTLs (174). IL-
2 and IL-15 as well as 4-1BB triggering are thought to favor
their generation (160). Importantly, IL-2 (141) and IL-15 (175)
are present in synovial fluids of RA patients while soluble
forms of 4-1BB and 4-1BB ligand are increased in peripheral
blood of RA patients (176). The functional implications of
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CD4+ CTLs interactions with HLA class-II expressing cells in
synovial joints such as macrophages, dendritic cells, neutrophils
(177), chondrocytes (178), or endothelial cells remains largely
unknown. They might directly contribute to joint damage as it
has been shown that CD4+ CTLs can directly lyse EBV-infected
B cells (179). Another possibility is that they participate in
the hypercitrullination of NETs (Neutrophil Extracellular Traps)
through a perforin-dependent mechanism (180). We indeed
observed that the level of ACPAs correlated with the frequency
of perforin+CD4+ T cells in synovial joint of RA patients (166).
It was recently shown that CIA was attenuated in granzyme
A-/- mice (181) that presented reduced osteoclastogenesis. The
source of granzyme A was not identified in this study but
we have shown that CD4+ T cells producing granzyme A are
present in synovial joints of RA patients (166). Granzyme A
also stimulates monocytes to produce IL-6, IL-8, and TNF (182)
which can contribute to increased inflammation in the RA
joint. The presence of CD4+ CTL at the site of inflammation
has been reported in several autoimmune diseases (183–185).
Cytotoxic CD4+T cells expressing NKG2Dwere identified in the
lamina propria of patients with Crohn’s disease (186). Likewise,
perforin+ CD4+ T cells have been observed in skin lesions from
patients with psoriasis (187).

Therapeutic Strategies Affecting Cytotoxic
CD4+ T Cells
TNF has been shown to repress the expression of the CD28 gene
(188). In an early study, the expression of CD28 was indeed
increased on CD4+ T cells in RA patients undergoing anti-
TNF therapy but markers of cytotoxicity were not investigated
(189). Direct approaches to target cytotoxic CD4+ T cells can
be achieved by targeting specific molecules expressed on these
cells. For instance, an antibody targeting NKG2D induced a
reduction in disease activity in some Crohn’s disease patients in a
phase II clinical trial (190). Cytotoxic CD4+ T cells also express
CX3CR1, the receptor for fractalkine, a chemokine expressed on
synoviocytes and endothelial cells of synovial tissues from RA
patients (191). A phase II clinical trial is currently investigating
the effect of fractalkine blockade in RA patients refractory to
TNF inhibitors or methotrexate therapy. Clearly, the results of
these new therapeutic blockades will bring new insights into the
contribution of cytotoxic CD4+ T cells to RA.

TISSUE-RESIDENT MEMORY T CELLS

Tissue-resident memory T cells (Trm) are memory T cells that
remain in a given tissue during a long period of time. They
are well-described in mucosal tissues where they contribute
to the first line of adaptive defense after re-exposure to
a specific pathogen. For instance, influenza-specific resident
memory CD8+ T cells have been described in the lung
(192). The transcriptional signature of Trm cells differs from
circulating T cells and includes genes important for their
migration and retention in a given tissue (193). While the
markers defining CD4+ Trm T cells are likely to slightly differ

depending on the tissue, receptors such as CD69, CD49a, PD-
1, and CXCR6 are commonly expressed (193). Persistence of
memory T cells in tissues is beneficial in the rapid intervention
against pathogenic infections infections but is also proposed to
participate in the maintenance of pathogenicity in autoimmune
inflammatory conditions.

Trm T Cells in Disease
Psoriasis is the best example of a clear implication of resident
memory T cells in the pathogenesis and resurgence of the disease.
Indeed, Th17 Trm cells are present in recurrent psoriatic skin
lesions and persist in resolved skin even after effective treatment
(194). These data highlight the implication of Trm T cells in
the reappearance of psoriatic lesions in a site-specific manner
(194). The presence of T cells in perivascular areas of healthy
synovial joints has been reported but is largely inferior to the
number of T cells observed in mucosal tissues at steady state
(195). Persistence of inflammation in synovial joints is observed
in RA patients even in clinical remission (196) and might be
indicative of Trm involvement in RA as described in psoriasis.
Recently, CD8+ T cells with features of Trm cells such as CD69,
PD-1, and CD103 have been identified in synovial fluids of
juvenile arthritis patients (197). A fraction of CD4+ T cells
express PD-1 (118) and CD69 (198) in synovial fluid of RA
patients but whether these cells are bonafide Trm cells is so
far unknown. Importantly, the peripheral T helper cell subset
recently described in synovial joints (113) also expresses PD-1
and CD69 suggesting at least some overlap with resident memory
T-cell markers. In synovial fluids, T cell clones with identical TCR
sequences persist over time indicative of retention mechanisms
in the joint (199). However, clonal T-cell expansions have not
been studied in the context of Trm markers. In particular,
the maintenance of Trm T cells in synovial tissues during the
course of the disease and during relapses has not been assessed
in RA. This set of experiments would provide information
about the nature of effector T-cell functions implicated in tissue
damage as exemplified by the persistence of Th17 Trm cells
in psoriasis.

Given the recent discovery of Trm T cells, no specific
therapeutic strategy is currently targeting this population. The
persistence of Trm T cells in the plaques of psoriasis patients
show that they probably resist current therapies. Hence, future
therapies targeting the maintenance of resident T cells in tissues
represent an attractive perspective.

GENETIC RISK VARIANTS AND T-CELL
SUBSETS

The study of genetic risk variants can allow a better
understanding of the pathogenesis of the disease and the
cell subsets involved and also helps to validate therapeutic targets
(200). The first genetic contribution to RA is located in the
HLA-DRB1 locus (8). Genome-wide association studies have
also identified 100 additional loci associated to RA (Table 1
and Supplementary Table 1) (201–203) that are predicted
to target immune pathways. This set of gene loci does not
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TABLE 1 | Shared genetic variants associated to Rheumatoid Arthritis (RA), Psoriasis and Crohn’s disease referenced at Immunobase corresponding to GO biological

process (enrichr), p = adjusted p-value.

Psoriasis RA Crohn’s disease GO biological process

Shared among the

three diseases

REL, TAGAP, TNFRSF9

TYK2, UBE2L3

REL, TAGAP, TNFRSF9

TYK2, UBE2L3

REL, TAGAP, TNFRSF9

TYK2, UBE2L3

Interleukin-23-mediated signaling pathway (p =

0.04802)

Negative regulation of interferon-beta

production (p = 0.04802)

Interleukin-27-mediated signaling pathway

(p = 0.04802)

Shared between

Psoriasis and RA

ELMO1, ETS1

IRF4, TNFAIP3

ELMO1, ETS1

IRF4, TNFAIP3

Regulation of toll-like receptor 3 signaling

pathway (p = 0.01682)

T-helper 17 cell lineage commitment

(p = 0.01682)

T-helper cell lineage commitment (p = 0.01682)

Shared between RA

and Crohns’ disease

IFNGR2, IKZF3, IL2

IL6ST, IRF8, PTPN2

PTPN22, RASGRP1

IFNGR2, IKZF3, IL2

IL6ST, IRF8, PTPN2

PTPN22, RASGRP1

regulation of tyrosine phosphorylation of STAT

protein (p = 3.079e-7)

positive regulation of interferon-gamma

secretion (p = 0.0003406 )

interleukin-21-mediated signaling pathway

(p = 0.0003774)

SPRED2, STAT4, YDJC SPRED2, STAT4, YDJC

CD40, IL2RA, IL21 CD40, IL2RA, IL21

CXCR5, BACH2 CXCR5, BACH2

Shared between

Psoriasis and Crohns’

disease

ERAP1, HLA-C, IL12B ERAP1, HLA-C, IL12B Interleukin-23-mediated signaling pathway

(p = 8.300e-7 )IL23R, NOS2, SOCS1 IL23R, NOS2, SOCS1

STAT3, STAT5A, STAT5B

TNIP1, ZMIZ1

STAT3, STAT5A, STAT5B

TNIP1, ZMIZ1

Cellular response to interleukin-7 (p = 3.344e-8 )

Regulation of T-helper 17 cell

lineage (p = 0.00007020)

correspond to a unique T-cell subset signature. However,
epigenetic chromatin modifications (trimethylation of histone
H3 at lysine 4) of RA-associated risk alleles are enriched in
primary CD4+ regulatory T cells (201) suggesting that the
function of this subset might be implicated in RA. Psoriasis
represents a clear example where part of the 35 genetic loci
can be assigned to the IL-23/Th17 pathway (204). Some of the
genetic variants shared between psoriasis and Crohn’s disease
correspond to the IL-23 pathway and the T-helper 17 cell lineage
(Table 1) based on gene ontology biological process analysis
[Enrichr (205)]. Shared genetic variants between RA and Crohn’s
disease highlight a positive regulation of IFNγ secretion that
might reflect part of the Th1 component of these diseases
(Table 1). Many of the genetic variants associated with RA
are not common to psoriasis or Crohn’s disease emphasizing
the importance of distinct mechanisms in the pathogenesis
of the disease (Supplementary Table 1). For instance, genetic
variants in the IL-10 and IL-10R loci are only found associated
with Crohn’s disease, which is striking given the importance
of IL-10 regulatory function in the intestinal barrier as well
as in inducing IgA class switch (206). Similarly, a risk locus
encompassing PADI4 (peptidylarginine deiminase type 4) is
found only in RA (Supplementary Table 1). PADI4 controls
citrullination processes that are highly relevant in RA where
anti-citrullinated peptides antibodies (ACPAs) are commonly
found. Still, a clear correlation between genetic risk variants
in RA and a specific T-cell subset is lacking. Nevertheless, this
can be explained by several factors. First, although some of the

locus variants directly have an effect on the expression of the
assigned gene (201) (eQTL (expression quantitative trait loci
effect)), in most cases the functional consequences of the genetic
variants have not been elucidated. We recently demonstrated
that the PTPN22 risk allele (rs2476601) favors the development
of EOMES+ CD4+ T cells with cytotoxic features in RA (166).
This finding and the fact that EOMES risk variants are associated
with RA (Supplementary Table 1) suggest that cytotoxic T cells
probably contribute to the disease. Second, RA is a complex
disease that might encompass several sub-phenotypes with
distinct stages and genetic signatures that are not uncovered in
current GWAS. Finally, our understanding of genetic variants is
evolving together with our knowledge on T-cell differentiation
mechanisms and will be revisited in the light of emerging data
on new T-cell subsets.

CONCLUSIONS AND FUTURE
DIRECTIONS

Rheumatoid Arthritis is a complex disease where several T-cell
subsets have been proposed to be involved. During the last 10
years, new therapeutic trials as well as extended GWAS have
provided new data to reinvestigate the contribution of T-cell
subsets in RA. Based on the therapeutic intervention and the
genetic data, RA cannot be classified as a Th17-driven disease
such as for example psoriasis. Moreover, it has become clear that
in human inflammatory contexts, CD4+ T cells harbor multiple
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effector function profiles that do not follow the classical dogma
of T helper classification. IFNγ and IL-17 are present in synovial
joints of RA patients but their blockade does not necessarily
improve disease suggesting that their effector function is not rate-
limiting for the downstream processes. These cytokines initiate
a cascade of proinflammatory cytokines that may no longer
be reversed by blocking IFNγ or IL-17 alone. Earlier targeting
of these cytokines or combined therapeutic targeting of more
downstream cytokines such as GM-CSF and TNF might be more
effective. Th1 cells might also have already differentiated into
cytotoxic CD4+ T cells capable of inducing cytotoxic damage
and a cascade of proinflammatory cytokines. In that context,
granzyme A represents a good candidate target since it induces
osteoclastogenesis (181) as well as proinflammatory cytokines
(182). In ACPA+ RA patients, recent identification of pathogenic
Tph cells driving B-cell responses show that, in addition to IL-
10, these cells also produce IFNγ and perforin-1 (113). How
thesemultiple effector functions are integrated during T cell/APC
interactions is currently not known. Still, the elevated expression
of PD-1 on this subset confirms that this co-inhibitory signaling
pathway is important in RA and represents a possible target. The
emergence of the concept of resident memory T cells capable
of perpetuating the disease represent a breakthrough in the
understanding of the mechanisms behind disease chronicity and
might also favor the development of new therapeutics. Based on
the comparison between these three inflammatory conditions,
it is clear that some pathogenic pathways are common to these
diseases while some others are very distinct and are probably
a reflection of different tissue-mediated immunity components.
These data should also encourage us to stratify RA patients
in subgroups who might be more likely to respond to certain
therapies based on the stage of the disease as well as the genetic
variants associated. Moreover, a more common use of single cell
technologies will allow the dissection of functional properties of
rare CD4+ T cells present in inflammatory tissues. However,
caution should be taken when analyzing T-cell subsets present in
inflammatory tissues since bystander T cells can bias our view
of pathogenic T cells. The presence of specific T cell types in
inflammatory tissues does not imply that they are necessarily
involved in the pathogenesis of the disease. Hence, the analysis
of antigen-specific T cells might give a more accurate picture

of important effector T-cell functions in the aforementioned
inflammatory conditions. Finally, instead of targeting a distinct
T-cell subset or effector function, an alternative approach would
be to perform antigen-specific targeting and hence to target
pathogenic T cells irrespective of their phenotype. We hope
that, with this review, we provide a better understanding of
current knowledge of CD4+ T-cell functions in RA and highlight
the possible ways to identify pathogenic T cells that could be
therapeutically targeted.
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