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Abstract: Functionalized magnetite nanoparticles (Fe3O4) were prepared using the coprecipitation
method followed by functionalization with a multipotent antioxidant (MPAO). The MPAO was
synthesized and analyzed using FTIR and NMR techniques. In this study, the functionalized nanopar-
ticles (IONP@AO) were produced and evaluated using the FTIR, XRD, Raman, HRTEM, FESEM,
VSM, and EDX techniques. The average determined particle size of IONP@AO was 10 nanometers. In
addition, it demonstrated superparamagnetic properties. The magnitude of saturation magnetization
value attained was 45 emu g−1. Virtual screenings of the MPAO’s potential bioactivities and safety
profile were performed using PASS analysis and ADMET studies before the synthesis step. For the
DPPH test, IONP@AO was found to have a four-fold greater ability to scavenge free radicals than
unfunctional IONP. The antimicrobial properties of IONP@AO were also demonstrated against a
variety of bacteria and fungi. The interaction of developed nanoantioxiants with biomolecules makes
it a broad-spectrum candidate in biomedicine and nanomedicine.

Keywords: functionalization; magnetite nanoparticles; nanoantioxiants

1. Introduction

Antioxidants, recognized as prophylactic and therapeutic molecules, have various
applications in the field of pharmaceuticals, cosmetics and nutraceuticals due to the many
health benefits associated with their usage [1]. Further study is being done to better under-
stand the involvement of antioxidants in the redox biological pathway and to strengthen
their ability to protect cells from reactive oxygen species (ROS). The phrase ‘oxidative
stress’ refers to an imbalance between the production of ROS and the body’s response
to these ROS. Internally generated ROS damage proteins, DNA, and lipids permanently
cause genetic mutations and ultimately lead to cell death [2]. Parkinson’s disease, malig-
nancies, Alzheimer’s disease, and diabetes are all linked to the overproduction of reactive
oxygen species [3,4]. Redox balance between pro- and antioxidants is critical in treating
and preventing many diseases. The use of antioxidants is generally restricted by their
sensitivity to light, oxygen and pH, as well as their poor solubility in physiological fluid,
low bioavailability and ineffective transport to undesirable cellular compartments, even if
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their potential is tremendous [5–7]. Researchers are always searching for new antioxidant
species to promote healthy aging and prevent oxidative stress.

Nanoparticles can act as smart nanocarriers and have various applications including
drug delivery. The combined effect of material science with nanotechnology and engi-
neering has led to important developments that decrease free radicals’ production [8].
‘Nanoantioxidants’ are smart nanocarriers with antioxidant capabilities that have been
developed in recent years through the application of nanotechnology [9]. Using nanoan-
tioxidant systems means that many of the limitations of standard antioxidant molecules
could be overcome and their efficiency could be increased. Nanoantioxidant systems can
exhibit prolonged stability and improved bioavailability. They have the capacity to evade
quick metabolic activities, and the potential to give a regulated and targeted delivery [10].
The surface of smart nanocarriers can be functionalized with antioxidant molecules to trans-
form nanoparticles into nanoantioxidants. In recent years, the surface functionalization of
nanoparticles with antioxidants has been used to improve their biostability, biocompatibil-
ity and their ability to boost immune system [11]. Specifically, the simultaneous loading and
functionalization of nanocarriers with antioxidants provides the advantage of delivering
high amounts of antioxidants and the possibility for the co-delivery of other drugs and, thus,
the use of these devices to exploit any synergic effects [12]. The surface functionalization
of nanoparticles with natural antioxidants also imparts specific biological activity, which
mainly depends upon the material used for functionalization, such as anticancer, antimi-
crobial, anti-Alzheimer’s and antidiabetic materials. Rutin and caffeic acid-functionalized
silica nanoparticles were synthesized by Elle et al. and showed promising results, minimiz-
ing ROS production [13]. DPPH assay and radical scavenging assay of Gold nanoparticles
(AuNP) immobalized on Kraft paper and cellulose fibre was performed in both dark and
light conditions. [14]. Polyethylene glycol (C2nH4n+2On+1), PEG-coated gold (AuNPs) was
functionalized using the antioxidant of salvianic (C9H10O5) acid (Au@PEG3SA). The an-
tioxidant properties of the functionalized Au@PEG3SA was observed. The free radical
scavenging rate of Au@PEG3SA was nine times higher than that of the plain salvianic
acid A monomers [15]. A new potent nano-antioxidant of sulfur-containing butylated
hydroxytoluene ligands (S-BHTLs) conjugated with gold nanoparticles, Au-S-BHTLs, was
synthesized by the conjugation of sulfur-containing ligands derived from BHT on the
surface of gold nanoparticles (AuNPs). The in-house-developed eight sulfur-containing
BHT-ligands (S-BHTLs) were used for further study on functionalization with AuNPs
and their biological activities [16]. The antioxidant properties of iron oxide nanoparticles
has already been studied and it has been shown that radical scavenging is due to elec-
tron transfer [17–19]. In another study, gallic acid and quercetin functionalized magnetite
nanoparticles showed synergistic organic–inorganic hybrid antioxidant properties and
potent antimicrobial activity on various fungal and bacterial strains [19,20].

Among the most commonly used synthetic antioxidants is butylated hydroxytoluene
(BHT), with many reports confirming potent antioxidant activity in various industrial
applications, such as in the food, oil, and cosmetics industries [21]. In addition, this
synthetic phenolic antioxidant has also been applied in therapeutic fields; however, certain
factors, such as volatility, high-temperature instability and toxicity and safety concerns,
have greatly limited the effective therapeutic application of this antioxidant [22]. To this
end, current research focuses on designing and synthesizing new BHT-derivatives to
enhance antioxidant and therapeutic activities and reduce toxic side effects [5]. This study
aimed to design and synthesize EG-ester of BHT bearing antioxidant groups as an effective
strategy to enhance the safety profile, solubility of BHT, and synthesis of new multipotent
antioxidant (MPAO) functionalized magnetic nanoantioxidant. Prior to the synthesis of the
MPAO, computational studies were carried out to verify whether the designed molecules
were based on a structure-activity relation (SAR) strategy. Rule of five, polar surface area
and Lipinski parameters were used for predicting ADMET properties. PASS analysis
was performed for the MPAO to predict the potential biological activities of the molecule.
A post functionalization technique was used to synthesize magnetic nanoantioxidants.
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Antioxidant assay and antimicrobial activities were carried out for the functionalized
nanoparticles IONP@AO.

2. Results
2.1. FTIR Analysis

The FTIR spectra of iron oxide nanoparticles (IONP) and antioxidant functionalized
iron oxide nanoparticles IONP@AO are shown in Figure 1 Magnetite was observed in the
nanoparticle samples by a strong absorption at 556 and 562 cm−1 for IONP and IONP@AO,
respectively, which corresponds to Fe-O stretching vibrations [23]. All the peaks represent
the hydroxyl, carboxylic and aromatic groups present in organic molecules. The broad
peak at 3100–3200 cm−1 represents the-OH stretching vibration. The peak at 1621 cm−1

confirms the existence of carbonyl groups in IONP@AO [24].
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Figure 1. Surface Functional Groups identification using Fourier-transform infrared spectra of
IONP@AO.
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2.2. Raman Spectra

Figure 2 shows Raman spectra of the functionalized IONP and unfunctionalized IONP.
The main band confirms the presence of magnetite at 678 cm−1 (A1g) [11]. IONP@AO have
a main band centred at 678 cm−1, and the peaks at ca. 464 cm−1 and 344 cm−1 are due to
A1g, T2g and Eg vibrations of magnetite. The Raman spectra confirms that the samples did
not contain maghemite [25,26].
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Figure 2. Raman spectra of IONP@AO.

2.3. XRD Analysis

XRD spectra for IONP and IONP@AO are shown in Figure 3. Diffraction peaks were
observed in all samples at 2θ values of 30, 25, 43, 57, and 63, which correspond to Brag
reflections in [220], [311], [400], [422] and [440] planes, respectively. The magnetite nanopar-
ticles synthesized here have a cubic inverse spinal framework based on the XRD pattern
(JCPDS No. 82-1533). The crystallinity index for functionalized and un-functionalized
IONPs were 24.19 and 30.99%, respectively. The superlattice diffraction at 210, 213 and 300
were not present, confirming the absence of maghemite in the sample. Furthermore, no
phase change was observed, which confirms that functionalization with organic moieties
did not affect the magnetite phase.
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Figure 3. X-ray Diffraction spectra of IONP@AO.

2.4. Magnetic Properties

A Vibrating Sample Magnetometer (VSM) was used to determine saturated mass
magnetization. The values of 64.19 and 45 emu g−1 were given for bare iron oxide nanopar-
ticles and functionalized IONP@AO, respectively. Figure 4 shows the hysteresis loops as
a function of the magnetic field at room temperature. The hysteresis loops are shown in
Figure 5 as functions of the magnetic field at room temperature. All samples showed super-
paramagnetic behaviour, and their saturation magnetization was lower when compared to
bulk Magnetite (92 emu g−1 [27]. The magnetization value for IONPs functionalized with
Camellia sinensis L. showed a lower mag value 11 emu/g [28]. The decrease in saturation
magnetization of IONP@AO over the surface of the produced nanoparticles is most likely
due to organic molecules and impurities [29–31].
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2.5. Morphological and Structural Studies

High-Resolution Transmission Electron Microscopy (HRTEM) was used to analyze the
morphology of IONP@AO. HRTEM image and size distributions for IONP and IONP@AO



Molecules 2022, 27, 789 7 of 17

are shown in Figure 5. The TEM images reveal that the mean particle size was 10.07 and
10 nm for IONP and IONP@AO, respectively. The particles are spherical in shape and
have a homogeneous size distribution. Earlier research using by HRTEM analysis on
functionalized IONPs with extract of Camellia sinensis L found spherical particles had the
size of 20–35 nm [28]. The magnetic behavior of the samples causes the aggregation of iron
oxide nanoparticles. The lattice fringe spacing of 0.26 corresponds to (220) lattice pane of
magnetite nanoparticles [32].

2.6. EDX Analysis

An energy dispersive X-ray spectroscopy (EDX) analysis was used to determine the
elements in IONP and IONP@AO, respectively. Table 1 shows the elemental analysis of the
synthesized IONP@AO. Figure 6 shows the EDX and elemental map of Fe, O, C and S for
functionalized and unfunctionalized IONP. The EDX spectrum of the IONP@AO consisted
of different peaks for Fe, O, C and S, confirming the successful formation of IONP@AO.
The Fe and O signals are due to iron oxide, while carbon signals are due to an organic
matrix. Furthermore, the IONP@AO elemental mapping revealed that the MPAO was
spread uniformly throughout the microstructure of the IONP.

Table 1. EDX Elemental Analysis of IONP@AO.

Sample Fe O C S

IONP 69.4 30.6 - -
IONP@AO 68.2 25.3 6.5 0.1
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2.7. Computational Analysis
2.7.1. ADMET Studies

The physicochemical characteristics of synthesized MPAO were analyzed and calcu-
lated based on Lipinski’s rule of five (Mol. Weight ≤ 500 Da, LogP ≤ 5, H-bond donor ≤ 5
and H bond accepter ≤ 10). Table 2 shows the properties predicted by ADMET. Figure 7A,B
shows molecular lipophilicity potential (MLP) to visualize hydrophobicity (violet and blue
colors) and hydrophilicity (orange and red) on the molecular surface. The miLogP method
was used for MLP calculation from atomic hydrophobicity contributions; this method
is the same as calculating the octanol-water partition coefficient (logP). MLP is valuable
for rationalizing various molecular ADME characteristics (like membrane penetration or
plasma-protein binding). 3D distribution of hydrophobicity on the molecule’s surface
is helpful to explain the difference in observed ADME properties of molecules having
the same logP values [33]. 3D parameters have more information than logP expressed
by just a single value. Figure 7C shows the boiled egg predictive model of lipophilicity
(WLOGP) and polarity (tPSA) computation. The white portion of the figure indicates a
higher probability of absorption in the gastrointestinal system, whereas the yellow region
(yolk) indicates a higher probability of brain permeation [34].
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Table 2. Predicted ADMET Properties from Computational Analysis.

Physicochemical Properties

Number of rotatable bonds 13
Number of H-bond acceptors 5

Number of H-bond donors 1
MR 116.67

TPSA 90.29

Lipophilicity

iLOGP 4.58
XLOGP3 4.98
WLOGP 4.27
MLOGP 2.99

Silicos-IT LogP 5.62
Consensus LogP 4.49

Water Solubility

ESOL Log S −4.84
ESOL Solubility (mg/mL) 6.02 × 10−3

ESOL Solubility (mol/l) 1.46 × 10−5

ESOL Class Moderately soluble

Pharmacokinetics

GI absorption High
BBB permeant No
Pgp substrate No

CYP1A2 inhibitor No
CYP2C19 inhibitor No
CYP2C9 inhibitor No
CYP2D6 inhibitor Yes
CYP3A4 inhibitor Yes

log Kp (cm/s) −5.28

Druglikeness

Lipinski number of violations 0
Ghose number of violations 0
Veber number of violations 1
Egan number of violations 0

Muegge number of violations 0
Bioavailability Score 0.55

Medicinal Chemistry

PAINS number of alerts 0
Brenk number of alerts 0

Leadlikeness number of violations 3
Synthetic Accessibility 3.89
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2.7.2. PASS Analysis

The predicted bioactivities of synthesized compounds were predicted using the PASS
model. Multi-level neighbour of atoms (MNA) descriptors (2D molecular fragment) are
used in PASS studies, which show that biological activity is a function of molecular structure.
The predictive score for activities is given as probability ratios between ‘probability to be
active (Pa)’ and ‘probability of being non-active (Pi)’. Higher values of Pa represent the
higher activity of organic molecules. Table 3 shows the selected bioactivities with higher
Pa values when Pa > Pi (Table S1, Supplementary Material). Figure 7A,B shows the polar
surface area and Molecular Lipophilicity Potential (MLP) of MPAO.

Table 3. Part of the predicted biological activity spectra of the MPAO based on PASS prediction
software.

a Pa b Pi Biological Activity

0.456 0.013 Free radical scavenger
0.351 0.049 Lipid peroxidase inhibitor
0.285 0.026 Antioxidant
0.268 0.097 Antifungal
0.224 0.098 Antibacterial

a Probability “to be active”. b Probability “to be inactive”.

The fact that the MPAO has antioxidant values and other predicted bioactivities of
Pa > 0.7 suggests that nanomaterial functionalized with the MPAO could display en-
hanced activities compared to nanoparticles without functionalization. This is owing to the
MPAO’s biocompatibility, which can assist the drug transportation system as well as with
bioimaging. Biological testing verified the predicted results.
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2.8. Antioxidant Activity

Figure 8A shows UV–Visible spectra of the samples. The intensity of DPPH peak at
517 nm is decreasing. The IC50 value and the reduction in peak intensity were used to
determine the free radical scavenging properties (Table 4).
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concentrations.

Table 4. IC50 of IONP@AO.

IC50 a Values (mg) ± S.E.M b and Max. Inhibition %

Sample IC50 mg/mL % Inhibition

IONP 5 mg 4.7 ± 0.002 50
IONP@AO 5 mg 1 ± 0.002 83

a IC50, 50% effective concentration. b S.E.M, standard error of the mean.

The percent inhibition of stable free radical DPPH for synthesized nanoantioxidant was
determined to be IONP@AO (1 ± 0.002 mg/mL; 83%) and at a 10−4 M, which is four times
higher than unfunctionalized IONP (IC50 4.7 ± 0.002 mg/mL; 50%). In comparison to IONP,
IONP@AO demonstrated greater free radical scavenging properties. Antioxidant activity
depends on the amount of total antioxidant compounds present [35]. The nanoantioxidant
scavenges free radicals by transferring electrons from functionalized IONP@AO to the
center nitrogen atoms of the DPPH. The synergistic effect of IONP and the MPAO results in
an increase in the free radical scavenging activity of IONP@AO. Similar results have been
observed for Gallic acid and Quercetin functionalized IONPs [19,20]. Another study has
reported that superparamagnetic iron oxide nanoparticles have good antioxidant activity
because they are plant-extract-mediated (natural sweetener from stevia leaf extract) [36].

2.9. Antibacterial Activity

The results of the agar well diffusion technique are summarized in Figure 9A. The
percentage inhibition of diameter growth (PIGD) of bacteria is plotted against the experi-
mental sample concentration of 100 mg/mL. Antibacterial activity against Gram-negative
and Gram-positive species of bacteria was observed for functionalized IONP@AO. For the
most effective samples, the minimal inhibitory concentration was estimated. IONP@AO
exhibited distinct bactericidal activity against Gram-positive and Gram-negative bacteria.
Different varieties of bacteria had distinct types of cell wall, leading to this finding. Gram-
positive bacteria have a relatively substantial, thicker peptidoglycan layer (10–30 nm) on
their surface, while Gram-negative bacteria have an additional outer layer with a thin
layer of peptidoglycan (10 nm). IONP@AO has been shown to have varying degrees of
antibacterial activity against a range of bacterial species. When IONP@AO is added to
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bacterial strains, inhibition occurs due to the internalization of functionalized IONPs within
the cells. This ultimately destroys the cell wall by breaking the 1,4 glycosidic linkages.
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with IONP@AO.

2.10. Antifungal Activity

The results obtained for an agar well diffusion method are illustrated in Figure 9B.
Antifungal activity was observed for Aspergillus Niger, Trichoderma spp., Candida albicans,
and Saccharomyces cerevisiae. In the cases of Aspergillus Niger, Saccharomyces cerevisiae and
Candida albicans, IONP@AO showed enhanced antifungal activity. It exhibited reduced
antifungal activity for Trichoderma sp. Functionalized nanoparticles eventually prompted
the cellular damage and death of the treated cells. In general, ultra-small nanoparticles
have fungicidal activities. This is determined by the nanoparticles’ synthesis protocol and
physicochemical attributes.

3. Materials and Methods
3.1. Materials

IONPs were prepared using ferric chloride hexahydrate (FeCl3·6H2O, Sigma, Saint
Louis, MO, USA, ≥97%), ferrous chloride tetrahydrate (FeCl2·4H2O, Merck, (Saint Louis,
MO, USA), and ammonium hydroxide (R and M, 28%, Shanghai, China). All chemicals
were of analytical grade and were used without further purification.

3.2. Chracterizations

The morphology of the functionalized nanoparticles was analyzed using a High-
Resolution Transmission Electronic Microscope (HRTEM) (Model: JEM-2100F, JEOL, Tokyo,
Japan). The system was equipped with a 200 kV field emission gun. To prepare samples for
HRTEM a drop of the sample was evaporated on a carbon-coated copper grid. Gatan Digital
MicroGraph software was used to measure particle size. Cu-Kα radiation (λ = 1.54060 Å)
was utilized for XRD Analysis. The range of 2θ was scanned from 10.00 to 90.00 using a
PANalytical X-ray diffractometer (Model: EMPYREAN, Almelo, The Netherlands). Surface
functional groups were identified using Fourier-transform infrared spectroscopic analysis
(Perkin Elmer, Boston, MA, USA. Energy dispersive X-ray analysis (EDX) (INCA Energy 200,
Oxford Inst., Hillsboro, OR, USA) was performed under vacuum conditions and a working
distance of 6 mm. Percentage composition was calculated using the surface area method.
Raman spectra of the samples were taken on a Renishaw inVia Raman (Gloucestershire,
UK) using a 514 nm Argon gas laser. Magnetic properties were measured in solid state at
room temperature using VSM analysis (Lake Shore Magnetometer, Westerville, OH, USA).
A LaboGene’s coolsafe freeze dryer was used for lyophilization.



Molecules 2022, 27, 789 13 of 17

3.3. Methods
3.3.1. Computational Studies

A PASS web server was used to investigate potential biological activities of the MPAO.
PASS is a useful tool for the exploration of possible bioactivities of organic molecules based
on their chemical formula. Lipinski’s rule of five was applied to predict ADMET and
physicochemical properties.

3.3.2. Synthesis of MPAO

To a solution of 2-((3,5-di-tert-butyl-4-hydroxybenzyl)thio)acetic acid (2 g) in dry
toluene (5 mL) was mixed with the respective MDEG. PTSA (0.02 g) was introduced into
the above mixture, and the resultant solution was refluxed for 8 h. The water produced
throughout the reaction was removed using the Dean–Stark system, as shown in Figure 10A.
After cooling, the mixture was filtered and washed with distilled water to remove PTSA and
unreacted EG and dried over anhydrous sodium sulphate. The precipitate was collected by
filtration, dried at RT, and recrystallized from the appropriate solvent.
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Molecular Formula: C23H38O5S, Molecular Weight: 426.61, 1H-NMR (600 MHz,
CDCl3) δ 7.04, 5.09, 4.24, 4.23, 4.23, 3.71, 3.67, 3.66, 3.65, 3.59, 3.58, 3.57, 3.52, 3.51, 3.50, 3.46,
3.45, 3.44, 3.42, 3.07, 1.36, 1.13. 13C-NMR (151 MHz, CDCl3) δ 170.60, 153.01, 135.99, 127.53,
125.86, 70.69, 69.82, 69.02, 66.70, 36.76, 34.31, 32.56, 30.30, 15.11.

3.3.3. Synthesis of IONP

An aqueous solution of FeCl2 and FeCl3 at a ratio of 1:1.5 (mole/mole) was prepared
in 100 mL of DI water. 3 M NH4OH solution was mixed with the mixture of Fe salts at a rate
of 5.0 mL min−1 and was subject to continuous stirring at 600 rpm until it had a final pH of
11. The reaction mixture was subject to mechanical stirring for 90 min at 80 ◦C, as shown
Figure 10B. Magnetic decantation was used to isolate the black precipitate which formed.
The precipitates were thoroughly washed with DI water and CH3CH2OH and were finally
freeze dried. The process of lyophilization or freeze drying involves the removal of water
from a product after it has been frozen in order to allow it to transform directly from a solid
state into a gaseous state [37]. The sample was frozen to a temperature below its “eutectic
point” at −60 ◦C and then freeze dried at an ultra-low pressure.

3.3.4. Functionalization
Synthesis of IONP@AO

The synthesized MPAO was dissolved in ethanol and was added to the ethanolic
suspension of IONPs. The reaction mixture was sonicated for 20 min and after that it was
stirred for 24 h. Deionized water and ethanol (C2H5OH) were used to thoroughly rinse the
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precipitates prior to freeze-drying. A schematic representation of IONP functionalization is
shown in Figure 10C.

3.3.5. Antioxidant Activity

Antioxidant activity can be evaluated by using various chemical-based methods.
Depending on the reaction, these assays can be divided into two categories: H atom

transfer and electron transfer. The antioxidant activity of synthesized IONP@AO was
investigated using the DPPH assays based on the electron transfer mechanism [38]. A
modified DPPH assay was used to study antioxidant nature of nanoparticles [10,38]. 1 cm
quartz cuvettes were used to prepare the mixture of 1 mL of the methanolic solution of
DPPH (0.2 mM) and the methanolic suspension of the sample (300 µL). For each experiment,
absorbance was recorded after thirty minutes. The readings were constantly taken at 517 nm.
All readings were taken twice within thirty minutes after adding DPPH solution to the
sample. The radical scavenging capacity was estimated by following Equation (1):

“Inhibition Percentages” (%) = (Ac − As)/Ac × 100 (1)

where As = positive control/absorbance of the compound Ac = the absorbance of DPPH
solution (control). At different concentrations, the percent inhibition obtained was different,
and it was plotted to calculate IC50.

3.3.6. Antimicrobial Activity
Determination of Antibacterial Activity

The agar well diffusion method was used to estimate the antibacterial activity of
IONP@AO [39]. Bacterial precultures of Bacillus sbustilis, Staphylococcus aureus and Es-
cherichia coli were spread over the Nutrient Agar surface, and 100 microliters of test samples
(100 mg/mL) was added to the wells (6 mm diameter). The petri dishes were incubated for
24 h at 37 ◦C. Sterile DI water was used as a negative control, while ampicillin (100 mg/mL)
and streptomycin 100 mg/disc were utilized as a positive control for Gram-negative and
Gram-positive bacterial strains, correspondingly. The antibacterial properties were evalu-
ated by measuring halo (inhibition) zones.

Determination of Antifungal Activity

To determine antifungal properties, functionalized and unfunctionalized IONPs were
tested against various fungal strains by using the agar well diffusion method. Aspergillus
Niger, a filamentous fungus (multicellular), Saccharomyces cerevisiae, a yeast (unicellular)
and Candida albicans, a yeast and Trichoderma spp. were used in this work. Fungal strains
were inoculated with potato dextrose agar (PDA) plates under aspectic conditions.

The wells were filled with 100 L of the test sample (100 mg/mL) and incubated at
25 ◦C for 48 h.

Incubation was done at 25 ◦C for 48 h in 100 L of the test sample (100 mg/mL).
As a negative control, sterile DI water was utilized. Sterile distilled water and Nystatin

(100 mg/mL) was used as negative and positive controls respectively. The POI, representing
the growth of mycelia, was estimated using Equation (2):

POI =
R1 − R2

R1
× 100 (2)

where R1 = the radius of the pathogen away from the antagonist and R2 = the radius of the
pathogen towards the antagonist.

4. Conclusions

MPAO functionalized IONP was successfully synthesized using a post-functionalization
procedure. For post-functionalized IONP@AO, the average particle size was 10 nm. IC50
for IONPs were 4.7 ± 0.002. However, the functionalized IONPs@AO showed IC50 values
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1 ± 0.002 mg/mL. The IONP@AO was studied using XRD, FTIR, VSM, EDX, HRTEM
and Raman analysis, which demonstrated that it had properties similar to magnetite. The
superparamagnetic nature of the produced nanoparticles was confirmed by VSM. In order to
uncover and anticipate the molecule’s potential bioactivities and safety profile, the structure-
based virtual screening of the MPAO was carried out using PASS analysis and ADMET
studies. IONP@AO showed better radical scavenging and antimicrobial activities. The MPAO
functionalized IONP showed promising free radical scavenging.

Supplementary Materials: The following are available online, Table S1: Part of the Predicted Biologi-
cal Activity Spectra of the MPAO based on PASS Prediction Software.
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ADME Absorption, Distribution, Metabolism and Excretion.
ADMET Absorption, Distribution, Metabolism, Excretion and Toxicity
AO Antioxidant
BBB Blood–Brain Barrier
BHT Butylated Hydroxytoluene
DI Deionized Water
DNA Deoxyribonucleic Acid
DPPH 2,2-diphenyl-1-picrylhydrazyl
EDX Energy Dispersive X-ray Analysis
FESEM Field Emission Scanning Electron Microscope
FTIR Fourier-transform infrared spectroscopy
HRTEM High-Resolution Transmission Electron Microscopy
IC50 Half-maximal inhibitory concentration
IONP Iron Oxide Nanoparticle
MLP Molecular Lipophilicity Potential
MNA Multi-level Neighbour of Atoms
MPAO Multipotent Anioxidant
NMR Nuclear Magnetic Resonance Spectroscopy
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NP Nanoparticles
PASS Prediction of Activity Spectra for Biologically Active Substances
PDA Potato Dextrose Aagar
PEG Polyethylene Glycol
PIGD Percentage Inhibition of Diameter Growth
POI Percentage of Inhibition
PSA Polar Surface Area
PTSA p-Toluenesulfonic acid
ROS Reactive Oxygen Species
SAR Structure Activity Relation
TEM Transmission Electron Microscopy
TPSA TotalPolar Surface Area
UV Ultraviolet
VSM Vibrating-Sample Magnetometer
XRD X-ray Crystallography
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