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The workload of radiologists has dramatically increased in the context of the COVID-19 pandemic, causing misdiagnosis and
missed diagnosis of diseases. The use of artificial intelligence technology can assist doctors in locating and identifying lesions in
medical images. In order to improve the accuracy of disease diagnosis in medical imaging, we propose a lung disease detection
neural network that is superior to the current mainstream object detection model in this paper. By combining the advantages of
RepVGG block and Resblock in information fusion and information extraction, we design a backbone RRNet with few parameters
and strong feature extraction capabilities. After that, we propose a structure called Information Reuse, which can solve the
problem of low utilization of the original network output features by connecting the normalized features back to the network.
Combining the network of RRNet and the improved RefineDet, we propose the overall network which was called CXR-RefineDet.
Through a large number of experiments on the largest public lung chest radiograph detection dataset VinDr-CXR, it is found that
the detection accuracy and inference speed of CXR-RefineDet have reached 0.1686 mAP and 6.8 fps, respectively, which is better
than the two-stage object detection algorithm using a strong backbone like ResNet-50 and ResNet-101. In addition, the fast
reasoning speed of CXR-RefineDet also provides the possibility for the actual implementation of the computer-aided

diagnosis system.

1. Introduction

Chest X-ray (CXR) is an effective and widely used imaging
technique in the diagnosis and screening of lung-related
diseases. The imaging principle and structure of chest ra-
diographs are complex, which requires professional radi-
ologists to spend a lot of time to observe carefully. Medical
research [1, 2] shows that postprocessing of medical images
by using a computer-aided diagnosis (CAD) system can
effectively reduce the initial screening of chest radiographs
and improve the accuracy of lesion screening. Benefiting
from the rapid development of the field of artificial intel-
ligence [3], many researchers have proposed lots of auto-
matic diagnosis methods by combining deep learning
technology with imaging examination technology to reduce
the workload of radiologists and the possibility of misdi-
agnosis [4, 5]. The use of deep learning technology to assist
doctors in diagnosing diseases has become a new trend.

The application of deep learning in the field of medical
imaging is mainly in the two major tasks of segmentation
and detection. Because of the reason that the segmentation
task can provide doctors with precise lesion area positions
and is more suitable for actual needs, it has become a re-
search hotspot in the field of medical imaging [6, 7]. Arnaud
proposed a new computer-aided detection lung nodule
system using multiview convolutional networks (ConvNets)
to reduce the false positives of the CAD system [8]. Olaf
proposed a segmentation network U-Net [9] that efficiently
utilizes medical image annotation, which vigorously pro-
motes the development of medical image segmentation.
Rocha [10] proposed a lung nodule segmentation method
based on U-Net and SegU-Net to solve the segmentation
problem of lung nodules in computed tomography. The
segmentation results of lung nodules by this method can
help doctors further analyze the lesions feature. However,
the segmentation model may be inaccurate for the
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segmentation of the edge part of the lesion and the small
lesion area in practical applications since the spatial di-
mension of a chest X-ray is usually 2000 x 3000 pixels and
the local lesion area is relatively small, which makes the
detection more difficult and requires the doctor to spend
more time to make further judgments.

Different from image segmentation, object detection
provides a candidate area of the lesion, which will help the
doctor to quickly locate the lesion area instead of focusing on
the pixel-level segmentation area [11]. In terms of lung
disease screening, studies [12-15] have shown that detection
models designed through deep learning can provide doctors
with areas where lung disease may occur, which can greatly
improve the efficiency of disease screening by radiologists. In
order to detect the location, type, and attributes of lung
lesions more accurately, Yan designed a deep learning
module that extracts relevant semantic tags from radiology
reports related to lesion images. Using image and text to
mine tags, a lesion annotation network (LesaNet) based on
multilabel convolutional neural network is proposed to learn
all the tags in a comprehensive way [16]. Liang proposed a
method to filter out target images with lung nodules from
the patient’s whole lung CT images by training a classifi-
cation network and then use Faster RCNN to detect the
location range of the suspected lung nodules in the CT image
to increase the reliability of the detection and reduce the false
positives of detectors [17]. Xiao [18] proposed a fully au-
tomatic lung nodule detection algorithm using a cascade
strategy based on FPN [19]. By designing multiple stages of
detection networks and integrating them into a heteroge-
neous classification network, the nodules are gradually
separated from the lung background. Although the lung
lesion detection methods based on the two-stage object
detection model have higher detection accuracy, the two-
stage object detection model is larger and occupies high
computing resources, and it is difficult to deploy to the
detection system of the hospital. Therefore, most of the
current lesion detection models of medical images tend to
use a combination of one-stage object detection algorithms
and large backbone, such as using RetinaNet [20] as the base
model and matching large backbone such as ResNet-101 [21]
and SE-ResNet-101 [22] to detect lung lesions. Although this
can increase the detection accuracy while speeding up the
detection speed, these base models still require high com-
puting resources and cannot be well applied in medical
auxiliary detection systems.

From the above analysis, it can be seen that the high
requirements of computing resources, slow reasoning speed,
and low accuracy of detecting lesions hinder the application
of artificial intelligence technology in the field of medical
images. In order to solve the above problems and promote
the implementation of computer-aided diagnosis technology
in chest radiography, a chest radiograph lesion detection
algorithm with a small model, high accuracy, and fast de-
tection speed based on RefineDet network architecture is
proposed in this paper. In the first step, we designed a
backbone RRNet with a small amount of parameters and
strong feature extraction capabilities by combining the
advantages of RepVGG block and Resblock in information
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fusion and information extraction, which can improve the
feature extraction capabilities of the network while reducing
the amount of model calculations. Then, we proposed a
structure called Information Reuse through connecting the
normalized features of RefineDet back to the network again,
which can effectively solve the problem of low utilization of
the original network output features and achieve the purpose
of improving detection accuracy. Combining the network of
RRNet and the improved RefineDet, we propose the overall
network named CXR-RefineDet. A large number of ex-
periments have been done to verify the performance of CXR-
RefineDet on VinDr-CXR [23], and the experimental results
show that the RRNet backbone and Information Reuse
structure we designed have brought about 0.99% and 0.72%
improvement in detection performance, respectively. In
addition, we also compare with the current mainstream
object detection network on the three performance indi-
cators of mAP, inference speed, and parameter amount. As
shown in Figure 1, the comparative experiment results show
that the detection accuracy and speed of the CXR-RefineDet
network greatly exceed the existing mainstream object de-
tectors under the condition of moderate parameter amount,
which can effectively help doctors quickly and accurately
screen the location of lesions in the image.

The main contributions of this work are as follows: (1) By
combining the advantages of RepVGG block and Resblock
in information extraction and information fusion, we
designed a backbone RRNet with few parameters and strong
feature extraction capabilities. (2) We propose the Infor-
mation Reuse structure, which solves the problem of low
utilization of the original network output features by linking
the normalized features back to the network. (3) The pro-
posed object detection model CXR-RefineDet has a good
performance between accuracy and speed. It achieves
0.1686 mAP and 6.8 fps on the VinDr-CXR dataset, which is
significantly better than mainstream object detection
models.

2. Materials and Methods

2.1. Related Works. The one-stage object detection network
RefineDet [24] proposed by Zhang adds Anchor Refinement
Module (ARM) and Object Detection Module (ODM) to the
network to perform preliminary filtering and further fil-
tering of anchor frames, respectively. At the same time, the
network also uses the Transfer Connection Block (TCB)
module to fuse the features between ARM and ODM, so that
the one-stage object detection network has the accuracy of
the two-stage object detection network while maintaining a
faster detection speed, which could make it possible for the
model to be implemented. It should be pointed out that the
backbone of RefineDet has two types, VGG-16 [25] and
ResNet-101, but ResNet-101 has a large amount of pa-
rameters and requires high computing resources. Compared
with ResNet-101 which stacks more residual blocks, VGGnet
has the advantages of fewer network parameters and faster
running speed. Considering that the efficiency of the medical
auxiliary detection system is more important in practical
applications, choosing VGG-16 as the backbone of
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FiGure 1: Comparison of the proposed CXR-RefineDet and other
mainstream object detectors. CXR-RefineDet at 512 resolution
reaches 0.1686 mAP, surpassing all mainstream detectors, and its
single image inference speed is nearly 2 times that of other
detectors.

RefineDet for medical image detection will be more prac-
tical. The contribution of VGG-16 proposed by Karen is a
thorough evaluation of networks of increasing depth using
an architecture with very small convolution filters, which
shows that a significant improvement on the prior-art
configurations can be achieved by pushing the depth to
16-19 weight layers [25]. Recently, many researchers have
proposed excellent variant networks based on VGG. Huang
[26] connected the low-level semantic information of the
network with many high-level semantic information to build
a complex network topology Densenet. Inspired by the
ResNet and Inception structures, [27] designed the ResNext
network structure by adding residual connections to the
Inception structure. Zhang constructed the ResNeSt [28]
network by introducing the Split Attention module and
SKNet-block [29] on the basis of ResNeXt. Although new
network structures are emerging one after another and the
accuracy of the network has also been greatly improved, the
amount of network parameters and requirements for
computing resources have also become higher and higher. In
addition, various new network module functions are
complicated to implement, which further aggravates the
difficulty of model deployment.

2.2. Network Architecture. In the previous analysis, it was
mentioned that ResNet-101 needs to consume more com-
puting resources, and the residual structure in ResNet

requires that the feature dimensions before and after the
residual must match, which limits the flexibility of the
network, so we chose VGG-16 as the backbone of RefineDet.
At the same time, we noticed that the RepVGG [30] network
proposed by Ding is only composed of 3 x 3 convolution, BN
layer, and ReLU modules, which is very beneficial to the
acceleration of the neural network of mobile devices. In
addition, since Resblock can fuse the feature information
between multiple convolutional layers through jump con-
nections between layers, and RepVGG block can improve
the feature extraction ability of single-layer convolution after
paralleling multiple convolution modules in a single con-
volution layer, we believe that combining the advantages of
RepVGG block and Resblock in single-layer convolution
and multilayer convolution can greatly improve the detec-
tion ability of the backbone. Considering that the network
shallow convolution is responsible for extracting low-level
semantic features, and the information richness of this part
of the low-level semantic features directly determines the
effectiveness of the high-level semantic features of the
subsequent convolutional layer, we set the first three layers
of the new backbone named RRnet as RepVGG block and
use the feature of multiple modules in parallel to improve the
information extraction ability of the network’s shallow
convolution, while the remaining layers are set as Resblock
modules to fuse high-level semantic features between cross-
layer convolutions. In addition, we found that the features of
the first two network output layers after L2 normalization in
RefineDet have not been effectively used, which reduces the
detection capabilities of the latter two network output layers.
In order to solve this problem, we designed the Information
Reuse structure to connect the first two network output
layers to the network again through the characteristics of L2
normalization. Combining the backbone RRNet we
designed and the improved RefineDet network architecture,
we finally got the new object detection model CXR-Refi-
neDet, which is shown in Figure 2.

It can be seen from Figure 2 that CXR-RefineDet in-
troduces three modules of ARM, ODM, and TCB of Refi-
neDet network to improve the detection performance of the
network. The role of the ODM module is to further accu-
rately determine the position of the anchor frame and
predict the category information of the anchor frame. The
TCB module exists between the ARM and ODM modules; it
integrates the context information to a greater extent by
transferring the characteristics of the ARM modules in
different output layers to the corresponding ODM module
to improve the detection capability of the ODM module. The
new backbone RRnet is designed by integrating the structure
of Resblock and RepVGG block to solve the problem of poor
information extraction ability of the original backbone. The
structure of RRNet and Information Reuse will be further
discussed in next sections.

Many natural image processing methods in computer
vision have strongly relied on ImageNet pretrained deep
CNN models [31] so far. These models have performed well
in a large number of object categories and provide a good
baseline for further model fine-tuning. In the field of object
detection, the backbone usually uses a pretrained model for
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FIGURE 2: Architecture structure of CXR-RefineDet.

migration learning, which can accelerate the convergence
speed of the network while improving the detection accuracy
of the network. However, the use of pretraining models
limits the flexibility of the network structure. Existing
pretraining models are based on specific network structures
such as ResNet-50 and ResNet-101, and their computing
resource consumption often cannot meet the requirements
of edge computing systems. In addition, pretraining models
may not be suitable for the field of medical image diagnosis
since the medical images are quite different from traditional
RGB images. Using ImageNet pretraining models may cause
domain mismatch problems, while training the network
from scratch can avoid these problems. In summary, we
follow the settings in ScratchDet [32] and introduce the
BatchNorm layer in the RefineDet network, while using a
larger learning rate for training.

2.3. New Design Backbone. To solve the problems of gradient
dispersion and gradient explosion in deep neural network
training, the residual structure proposed of ResNet intro-
duced the jump connections in stacked convolution mod-
ules, as shown in Figure 3(b). The introduction of residual
connections can fuse the feature information between dif-
ferent network layers, which is very beneficial for the de-
tection of medical images. As we know, the neural network
extraction of image information is a process from shallow to
deep [33]. The size of the feature map will decrease as the
number of network layers deepens, and the deeper the
number of network layers, the more delicate the semantic
information contained in the feature map. Therefore, the

residual connection can further merge the fine-grained
features between different convolutional layers. For exam-
ple, the position of the heart and the lung lobes are included
in the lung X-ray image, so the disease of cardiac hyper-
trophy includes the texture of the lung lobes, and the residual
connection can correlate this part of the characteristic in-
formation well.

In addition, the introduction of the residual connection will
not increase the model parameters since the residual con-
nection is only the summation operation of the feature in-
formation between different network layers. As shown in
Figure 3(a), unlike the cross-layer information fusion in
ResNet, the multibranch topology of RepVGG is paralleled
with 1 x 1 convolution (additional BN layer) and BN layer on
both sides of 3 x 3 convolution (additional BN layer). Through
summing the feature information extracted by different con-
volution modules, the information extraction capability of a
single convolution module can be improved.

In our opinion, Resblock belongs to cross-layer infor-
mation fusion since it merges fine-grained features between
different layers through jump connections between layers.
The RepVGG block connects multiple convolutional layers
in parallel on a single convolution module to enrich the
feature information contained in the single-layer convolu-
tion, which belongs to information fusion within the layer.
Therefore, we combined Resblock and RepVGG block to
design a new backbone RRNet, which can improve the
information extraction capabilities of the backbone in sin-
gle-layer convolution and cross-layer convolution. The
network structure is shown in Figure 4(b).
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FIGURE 4: Comparison of VGG-16, ResNet-34, and the backbone RRNet we designed. (a) VGG-16. (b) RRNet. (c) ResNet-34.

The network shallow convolution is responsible for
extracting low-level semantic features such as grayscale
and texture, and the information richness of this part of
the low-level semantic features directly determines the
effectiveness of the high-level semantic features of the
subsequent convolutional layer. With this in mind, we set
the first three layers of the network as RepVGG block and

use the feature of multiple modules in parallel to improve
the information extraction ability of the network’s shallow
convolution, while the remaining layers are set as Res-
block modules to fuse high-level semantic features be-
tween cross-layer convolutions. The backbone RRNet we
designed has fewer network layers and higher accuracy
than ResNet-34.



2.4. The Architecture of Information Reuse. We follow the
settings in RefineDet and select four convolutional layers
(Conv4_3, Conv5_3, Conv6_1, and Conv6_2) of different
sizes in the backbone as the output of the network, as shown
in Figure 5. Conv4_3 and Conv5_3 pass through L2 nor-
malization as the first two outputs of the network, and
Conv6_1 and Conv6_2 add two additional convolutional
layers at the end of the VGG-16 network as the last two
outputs of the network.

Although L2 normalization is added to con4 3 and
conv5_3 to scale the feature norms, the scaled features are not
turther utilized in subsequent networks, so only the object
detection effects of the first two networks output feature maps
x; and x, have been improved. The structural information in
the image is continuous in space and time. The shallow
features extracted by the network are the representation of the
deep features of the image. Using the shallow feature in-
formation extracted at the beginning of the network will help
to improve the effectiveness of the subsequent extraction of
deep features. Therefore, we connect con4_3 and conv5_3 to
the network again after the scaling feature of L2 normali-
zation, as shown in Figure 5. After this operation, the sub-
sequent neural network can obtain the scaling characteristics
of the output layers of the first two networks, which can
improve the detection capability of the overall network.

3. Results and Discussion

3.1. VinDr-CXR Dataset. In order to learn to annotate le-
sions, a large-scale and diverse lesion image dataset is re-
quired. Existing lesion datasets are usually either too small or
insufficiently diverse. Fortunately, the recently released
dataset VinDr-CXR greatly alleviates this limitation. VinDr-
CXR is a chest radiograph dataset released by Vingroup Big
Data Institute (VinBigdata) that has the most local labels and
the richest number of categories so far. VinBigdata collected
more than 100,000 chest radiographs from two major
hospitals in Vietnam and invited 17 professional radiologists
to manually label 18,000 images, of which 22 types of lesions
are local tags and 6 types of special lesions are global label. In
addition, VinDr-CXR dataset is divided into 15,000 training
sets and 3000 test sets. The images in the training set are
independently annotated by 3 doctors, and the images in the
test set are jointly annotated by 5 doctors. Since 8 of the 22
categories containing local location information have a small
number of images, we merge these 8 smaller categories into
other lesions, and then our task is finally defined as an object
detection problem for 14 types of lesions, which includes (1)
aortic enlargement, (2) atelectasis, (3) calcification, (4)
cardiomegaly, (5) consolidation, (6) interstitial lung disease
(ILD), (7) infiltration, (8) lung opacity, (9) nodule/mass, (10)
other lesions, (11) pleural effusion, (12) pleural thickening,
(13) pneumothorax, and (14) pulmonary fibrosis. The dis-
tribution of each lesion category is shown in Figure 6.

3.2. Training Settings. Because the imaging principle of
natural image is very different from that of medical image,
the application effect of the pretraining model in medical
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FIGURE 5: The connection method of the original RefineDet net-
work output layer and the improved Information Reuse.

image is not as good as the model trained from scratch.
Therefore, we adopt the pretraining model and the corre-
sponding parameter settings are fine-tuned according to
ScratchDet and the experimental results, whose earning rate
is 0.05, using SGD with 0.0005 weight decay and 0.9 mo-
mentum. Other training strategies mostly follow RefineDet,
including data augmentation, hard negative mining, scale
and aspect ratios for default boxes, and loss functions. All
conv-layers are initialized with the xavier uniform method.
The training of other networks such as Reitinanet and Faster
RCNN is based on the mmdetection framework, and the
Imagenet pretraining model and default parameters are used
for training.

3.3. Ablation Study. In order to verify the effectiveness of the
backbone RRNet and Information Reuse structure, we
conduct ablation experiments on VinDr-CXR. In addition,
we conducted comparative experiments on mainstream ob-
ject detection models and compared the performance of
various parameters of the models to prove the superiority of
the proposed model. Specifically, we resize all the images in
the training set to 512 x 512 resolution, but the test set is not
resized, and the relevant hyperparameters for model training
are kept consistent to ensure a fair comparison. All models are
trained and tested on the official training set and test set and
submitted to the official platform for result evaluation. The
detection results were evaluated using standard PASCAL
VOC 2010 [34] mean Average Precision (mAP) at IoU > 0.4.
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TaBLE 1: Performance comparison of different backbone networks.
Backbone mAP Params (M)
All-Resblock 0.1521 49.98
All-RepVGG block 0.1513 35.15
ResNet-18 0.1409 30.16
ResNet-34 0.1525 40.26
REVGG-AO0 0.1374 23.52
REVGG-A1 0.1409 29.77
REVGG-B0 0.1434 30.23
REVGG-B1 0.1488 72.05
RRNet (ours) 0.1572 49.76

3.4. RRnet. We did two comparative experiments to vali-
date the effectiveness of our new design backbone. A
comparative experiment is to replace all layers of VGG-16
with Resblock and RepVGG block, and the other is to
replace with two different depths of ResNet and four dif-
ferent versions of RepVGGnet VGG-16, as shown in Ta-
ble 1. The experimental results in the first row of Table 1
show that the number of layers of the backbone RRNet we
designed is less than that of ResNet-34, but the accuracy is
0.47% higher. This proves that, in our analysis in Section
2.3, the information fusion of the Resblock and RepVGG
block modules in the cross-layer convolution and single-
layer convolution modules can well correlate the charac-
teristics of the lesions, thereby improving the ability of the
network to extract feature information. We use Resblock
and RepVGG block to replace all layers of VGG-16 and
name them All-Resblock and All-RepVGG block, respec-
tively. The two backbones obtained accuracy of 0.1521 and

0.1513, respectively, which are both higher than the ResNet-
18 backbone, and the performance is equivalent to that of
the ResNet-34 backbone, which verifies the effectiveness of
the two modules.

In addition, it can be seen from Table 1 that the accuracy
values of RepVGG-A0, Al, RepVGG-B0, and Bl are 0.1374,
0.1409, 0.1434, and 0.1488, respectively, which are lower than
the accuracy value of directly replacing all layers of VGG-16
with RepVGG block. The reason is that although the RepVGG
series backbones all include RepVGG block, their network tasks
are designed for classification, so the difference between tasks
causes the performance of the network to deteriorate. The
backbone RRnet with 0.1572 mAP is higher than all versions of
the backbone, which proves the effectiveness of RRnet.

3.5. Information Reuse. To demonstrate the effectiveness of
the Information Reuse in the network, we use the network
connection output in the original RefineDet and our
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TaBLE 2: Effectiveness of various designs.

Component

Chest-X_ray RefineDet

VGG Pretraining model

\/

Batch normalization N v N
Information Reuse v/ v/
RRNet N
mAP 0.1686 0.1587 0.1515 0.1514 0.1173
TaBLE 3: Detection results of different methods on VinDr-CXR test set.
Method Backbone Input size mAP Inference speed (fps) w/o reparam Params (M)
. ResNet-50 0.1269 3.7 36.37
RetinaNet ResNet-101 S12x512 0.1494 3.5 55.37
ResNet-50 0.1597 3.7 41.19
Faster RCNN ResNet-101 P12x512 01569 3.5 60.18
GA-Faster RCNN ResNet-50 512 x 512 0.1464 3.3 41.78
ResNet-50 0.1512 3.3 68.97
ResNet-50-DCN 0.1613 3.2 69.55
Cascade RCNN ResNet-101 S12x512 0.1631 3.1 87.96
ResNet-101-DCN 0.1560 3.0 89.24
ResNet-50 0.1413 3.6 32.51
VENet ResNet-101 S12x512 0.1505 3.4 51.51
ResNet-50 0.1478 3.7 31.92
ATSS ResNet-101 P12x512 0.1538 3.5 50.91
RefineDet VGG-16 320x 320 0.1149 10.8 —
RefineDet VGG-16 512 %512 0.1173 9.9 33.51
CXR-RefineDet (ours) RRNet 320 x 320 0.1392 9.6 —
CXR-RefineDet (ours) RRNet 512 %512 0.1618 6.8 49.76

improved information reuse structure for comparative ex-
periments, whose results are shown in the second and third
columns of Table 2. After adding an improved Information
Reuse structure to the basic network, the mAP is 0.1587.
Compared with the basic network, adding the Information
Reuse structure can bring an improvement of 0.72% mAP to
the detector, which proves that reconnecting the zoom
feature of the network output layer to the network through
the Information Reuse structure can improve the perfor-
mance of the detector.

3.6. Network Performance. In order to prove the superiority of
the model, we use the three performance indicators of mAP,
inference speed, and parameter quantity to conduct compar-
ative experiments on the mainstream object detection model,
and the experimental results are shown in Table 3. Compared
with large-scale backbone networks such as ResNet-50 and
ResNet-101, the model RefineDet with VGG-16 backbone
greatly exceeds other mainstream object detectors in detection
speed. The low-resolution version with 320 x 320 size of Refi-
neDet has a detection speed of 10.8 fps, and the high-resolution
version with 512 512 size has a detection speed of 9.9 fps.
However, the low-resolution and high-resolution detection
speeds of CXR-RefineDet using RRNet as the backbone are
9.6 fps and 6.8 fps, respectively.

In terms of detection accuracy, the low-resolution
version of CXR-RefineDet obtained 0.1392 mAP, which
surpassed RetinaNet with ResNet-50 backbone. The high-

resolution version with 512 x 512 size of CXR-RefineDet
obtained the highest detection accuracy of 0.1686 mAP.
Compared with the multistage object detection algorithm
Cascade RCNN, the model parameters of CXR-RefineDet
are smaller than its backbone (ResNet-50, ResNet-101), and
the accuracy is better than all its submodels. We also
compare with the classic two-stage object detection algo-
rithms Faster RCNN and GA-Faster RCNN. Although the
model parameters of CXR-RefineDet with ResNet-101
backbone are slightly higher, it achieves better results in
terms of detection accuracy and inference speed. In ad-
dition, we have also conducted comparative experiments
with anchor-free object detection methods. VENet [35] and
ATSS [36] based on ResNet-101 backbone are slightly
higher than CXR-RefineDet in model parameters, but
CXR-RefineDet is better than the two methods in terms of
speed and accuracy.

Based on the analysis of the above experimental results, it
can be seen that the backbone RRNet and Information Reuse
structure can effectively improve the detection accuracy of
the network. Compared with the use of ResNet-50 and
ResNet-101 as the object detector of the backbone, CXR-
RefineDet not only has fewer parameters but also can reach a
higher and faster level in detection accuracy and speed.

3.7. Analysis of Lesion Detection Results. The comparison
diagram of detection results between RefineDet and im-
proved CXR-RefineDet network is shown in Figure 7. It can
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FIGURE 7: The chest X-ray test results, where (1) is the true label of the VinDr-CXR dataset, (2) and (3) are the comparison images of the test
results of RefineDet and CXR-RefineDet on the VinDr-CXR test set, respectively, and the target boxes of the same color represent the same
lesion category.
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be seen that the detection effect of CXR-RefineDet is better
than that of RefineDet network. In the detection results of
the first and third rows, RefineDet cannot detect the lesions
on the edge of the lung, and its detection performance is
also poor for large lesions such as spine distortion. The
detection result of CXR-RefineDet is similar to the truth
box, and there is no missed detection or false detection. For
the detection of some small targets, the detection results in
the second row show that the detection rate of small targets
of CXR-RefineDet is much higher than that of RefineDet.
However, due to the small input resolution with 512 x 512,
some smaller lesion areas may also be missed. For some
lesions that are both small targets and extreme aspect ratios,
RefineDet and CXR-RefineDet have low detection rates for
these lesions, such as the red true target box in the lower left
corner of the fourth row. Because the imaging principle of
medical image is more complex, it does not have better
discrimination than natural image. Moreover, due to the
equipment, it is easy to be doped with noise in the imaging
process, which brings great difficulties to the image de-
tection. For areas with small lesions, even experienced
doctors need a long time to distinguish them through naked
eye observation. In addition, in order to reduce the
complexity of the model, the proposed network model has
fewer layers and smaller parameters, which limits the
improvement of model detection ability.

4. Conclusions

In order to solve the problem of weak feature extraction
capability of the RefineDet backbone network and low feature
utilization of the output feature layer, a high-precision and
fast detection speed lung lesion detection network CXR-
RefineDet is proposed in this paper. By combining the ad-
vantages of RepVGG block and Resblock in single-layer and
multilayer convolution modules, we designed an efficient
backbone which was named RRNet. In view of the situation
that the original network output features are not used, we
introduce the Information Reuse structure to reconnect the
features of the network output layer back to the network to
improve the detection ability of the subsequent network.
CXR-RefineDet is tested on VinDr-CXR dataset for object
detection, and the detection accuracy and inference speed of
CXR-RefineDet have reached 0.1686 mAP and 6.8 fps, re-
spectively. The experimental results show that both the
backbone RRNet and the structure Information Reuse can
effectively improve the detection accuracy of the network.
Through comparison experiments with mainstream object
detection algorithms, it is found that the detection accuracy
and detection speed of CXR-RefineDet are significantly better
than the existing mainstream object detectors under the
condition of moderate parameters. In addition, CXR-Refi-
neDet has a good performance between accuracy and speed,
which can not only effectively alleviate the problem of high
computational resource consumption caused by the use of
large models and large resolution in the current lung lesion
detection but also provide objective conditions for the actual
implementation of the computer-aided diagnosis system.
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