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Background: Nitric oxide (�NO) is more effective at inhibiting neointimal hyperplasia following arterial
injury in male versus female rodents, though the etiology is unclear. Given that superoxide (O2

��)
regulates cellular proliferation, and �NO regulates superoxide dismutase-1 (SOD-1) in the vasculature, we
hypothesized that �NO differentially regulates SOD-1 based on sex.
Materials and methods: Male and female vascular smooth muscle cells (VSMC) were harvested from the
aortae of Sprague-Dawley rats. O2

�� levels were quantified by electron paramagnetic resonance (EPR)
and HPLC. sod-1 gene expression was assayed by qPCR. SOD-1, SOD-2, and catalase protein levels were
detected by Western blot. SOD-1 activity was measured via colorimetric assay. The rat carotid artery
injury model was performed on Sprague-Dawley rats 7�NO treatment and SOD-1 protein levels were
examined by Western blot.
Results: In vitro, male VSMC have higher O2

�� levels and lower SOD � 1 activity at baseline compared to
female VSMC (P o 0.05). �NO decreased O2

�� levels and increased SOD � 1 activity in male (Po0.05)
but not female VSMC. �NO also increased sod� 1 gene expression and SOD � 1 protein levels in male
(Po0.05) but not female VSMC. In vivo, SOD-1 levels were 3.7-fold higher in female versus male carotid
arteries at baseline. After injury, SOD-1 levels decreased in both sexes, but �NO increased SOD-1 levels
3-fold above controls in males, but returned to baseline in females.
Conclusions: Our results provide evidence that regulation of the redox environment at baseline and
following exposure to �NO is sex-dependent in the vasculature. These data suggest that sex-based dif-
ferential redox regulation may be one mechanism by which �NO is more effective at inhibiting neoin-
timal hyperplasia in male versus female rodents.

Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Neointimal hyperplasia limits the long-term durability of vas-
cular interventions such as balloon angioplasty, stenting, en-
darterectomy, and bypass grafting. Current FDA approved drug
eluting stents, designed to prevent the development of neointimal
hyperplasia, deliver derivatives of two different classes of drugs
(i.e., rapamycin and paclitaxel), both of which indiscriminately
inhibit all cellular proliferation, including endothelial cell pro-
liferation. Thus, there is a great need to develop novel therapies
that effectively prevent neointimal hyperplasia while also
access article under the CC BY lice
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promoting vascular healing. Nitric oxide (�NO) is one such drug
that possesses many different vasoprotective properties. �NO is a
small gaseous molecule that is known to inhibit platelet adherence
and aggregation, mitigate leukocyte chemotaxis, and prevent
vascular smooth muscle cell (VSMC) and adventitial fibroblast
proliferation and migration [1–9]. Simultaneously, �NO stimulates
endothelial cell proliferation and prevents endothelial cell apop-
tosis [10,11]. Our laboratory and others, have demonstrated the
beneficial effect of �NO delivery to the vasculature to prevent
neointimal hyperplasia in various different small and large animal
models of arterial injury and bypass grafting [12–20]. However,
our laboratory also demonstrated that ●NO has differential efficacy
at inhibiting neointimal hyperplasia based on sex and hormone
status [21]. The etiology for this difference, with ●NO being much
more effective at inhibiting neointimal hyperplasia in males
compared to females, and in hormonally intact versus castrated
nse (http://creativecommons.org/licenses/by/4.0/).
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animals, remains unclear.
One possible explanation may reside in the regulation of oxi-

dative stress between the sexes. Indeed, Vassalle et al. demon-
strated differing levels of oxidative stress between men and
postmenopausal women, with and without coronary artery dis-
ease (CAD). While postmenopausal females with CAD exhibited
greater oxidative stress compared to men, they presented with
less severe CAD [22]. Reactive oxygen species (ROS) have been
found to extensively contribute to the severity of vascular disease
and subsequent formation of neointimal hyperplasia [23–25].
Specifically, superoxide (O2

��), one of the main ROS, has been
shown to be elevated after vascular injury, resulting in the for-
mation of neointimal hyperplasia through increased proliferation
and migration of VSMC and adventitial fibroblasts [26–28]. Su-
peroxide dismutases, modulate this response through dismutation
of O2

�� into oxygen and hydrogen peroxide, with the latter being
enzymatically converted to water by catalase or other antioxidant
peroxidases [29,30]. �NO can readily react with O2

�� to form
peroxynitrite, which can have detrimental effects in the vascu-
lature. Our laboratory recently demonstrated that �NO regulates
O2

�� levels in a cell-specific manner in the vasculature through
modulating SOD-1 levels [31]. Thus, given the role of O2

�� in
stimulating VSMC proliferation and migration and the role of �NO
in modulating neointimal hyperplasia and SOD-1, we hypothesize
that �NO differentially regulates SOD-1 levels based on sex. Here,
we investigate the effect of �NO on O2

�� generation, sod-1 gene
expression, SOD-1 protein levels, and SOD activity in vitro and
in vivo in male and female rodent models.
Materials and methods

�NO-releasing donor

1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-
ium-1,2-diolate (DETA/NO) and disodium 1-[(2-carboxylato)pyr-
rolidine-1-yl]diazen-1-ium-1,2-diolate (PROLI/NO) were supplied
by Dr. Larry Keefer (National Cancer Institute). Both DETA/NO and
PROLI/NO are diazeniumdiolate �NO donors that release 2 mols of
�NO per mole of compound at a predictable rate under physiologic
conditions of pH 7 and temperature 37 °C [32]. Given that the
duration of the in vitro experiments were up to 24 h, we used
DETA/NO for these experiments since it has a half-life of 20 h.
PROLI/NO was used for all animal studies given our prior work
demonstrating superior efficacy of PROLI/NO in this animal model
compared to other diazeniudiolate �NO donors [17,19,21,31].

Rat carotid artery injury model

All animal procedures were performed in accordance with
principles outlined in the Guide for the Care and Use of Laboratory
Animals published by the National Institutes of Health (NIH Pub-
lication 85-23, 1996) and approved by the Northwestern Uni-
versity Animal Care and Use Committee. Adult male and female
Sprague-Dawley rats (Harlan, Indianapolis, IN) weighing between
250–400 g were used for the study. Treatment groups included
control, injury, and injury þ�NO (n¼5 rats/treatment group). Rats
were anesthetized with inhaled isoflurane (0.5–2%), with sub-
cutaneous atropine administration (0.1 mg/kg) to minimize airway
secretions. The right common carotid artery for each rat served as
the control group. Following sterile preparation, a midline neck
incision was made. The left common, internal, and external carotid
arteries were dissected, followed by occlusion of the internal and
common carotid arteries. A No. 2 French arterial embolectomy
catheter (Edwards Lifesciences, Irvine, CA) was inserted into the
external carotid artery and advanced into the common carotid
artery. The balloon was inflated to a pressure of 5 atm for 5 min to
cause uniform injury. After the balloon was deflated and removed,
the external carotid artery was ligated and blood flow restored. For
the injury þ�NO group, 10 mg of PROLI/NO was applied evenly to
the external surface of the common carotid artery after balloon
injury, as previously described [17,19,21,31]. Following injury and
treatment, neck incisions were closed. Rats were sacrificed 3 days
after treatment to harvest carotid arteries. Arteries within treat-
ment groups were pooled, frozen in liquid nitrogen, powdered
with mortar and pestle, and homogenized in 20 mM Tris (pH 7.4)
with 1 mM phenylmethylsulfonyl fluoride, 1 mM leupeptin, and
1 mM sodium orthovanadate (Sigma, St. Louis, MO). Western blot
analysis was performed as described below.

Cell culture

VSMC were harvested from the aortae of male and female
Sprague-Dawley rats (Harlan) via methods as described by Gun-
ther et al. [33] Male and female VSMC were confirmed via PCR
(Supplementary Fig. 1) using SRY and GAPDH primers (IDT, Cor-
alville, IA). Cells were maintained in media containing equal vo-
lumes of Ham’s F12 and Dulbecco’s modified Eagle’s medium –

low glucose (DMEM) (Invitrogen, Carlsbad, CA), complemented
with 100 units/mL penicillin (Corning, Corning, NY), 100 mg/mL
streptomycin (Corning), 4 mM L-glutamine (Corning), and 10% fetal
bovine serum (FBS) (Invitrogen). Cells were incubated at 37 °C
with 5% CO2. To synchronize cells prior to DETA/NO treatment,
cells were exposed to media lacking FBS for 24 h at 37 °C with 5%
CO2. VSMC used in this study were between passage 3 and 9.

EPR analysis

VSMC were plated on 100-mm dishes and allowed to attach
overnight. Cells were serum starved for 24 h and exposed to DETA/
NO (0.5–1.0 mM), pegylated (PEG)-SOD (50 U), or control media
for 24 h. PEG-SOD was used as a control to ensure the signal
measured was O2

��-dependent. Cells were then washed with cold
PBS, incubated with the cell-permeable spin probe, 1-hydroxy-3-
methoxy-carbonyl-2,2,5,5-tetramethlpyrrolidine (CMH) (Enzo Life
Sciences, Ann Arbor, MI) for 30 min, and subsequently analyzed in
a temperature- and O2-controlled Bruker EPR (Millerica, MA) at
37 °C, as described by Dikalov et al. [34]. The intensity of the first
peak of the �CM radical spectrum was quantified. EPR signal in-
tensity was normalized per mg of protein. All buffers contained
25 mM deferoxamine and were treated with Chelex resin from
Biorad (Hercules, CA) to minimize deleterious effects of possible
contaminating metals.

2-Hydroxyethidium analysis

VSMC were plated on 100-mm dishes and were incubated
overnight to facilitate attachment. After cells reached 80% con-
fluence, VSMC were exposed to DETA/NO (0.5–1.0 mM), pegylated
PEG-SOD (50 U), or control media for 24 h. PEG-SOD was used as a
control to ensure the changes measured were O2

��-dependent.
After 24 h of exposure to the various experimental conditions,
VSMC were exposed to 10 mM of dihydroethidium (DHE) (In-
vitrogen) in the dark for 30 min. Subsequently, cells were washed
with cold PBS, scraped, collected, protected from light, and stored
at � 80 °C. O2

�� levels were determined by quantifying the levels
of 2-hydroxyethidium (2-OH-E) by HPLC with electrochemical
detection according to Zielonka et al. [35]. The results were ex-
pressed as pmols of O2

�� per mg of protein in total cell lysate.
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Western blot analysis

After 24 h of exposure to the various experimental conditions,
VSMC were washed with cold PBS, scraped, and resuspended in
20 mM Tris at pH 7.4, supplemented with 1 mM phe-
nylmethylsulfonyl fluoride, 1 mM leupeptin, and 1 mM sodium or-
thovanadate (Sigma). Protein concentrations were determined via
a bicinchoninic acid protein assay per manufacturer’s instructions
(Pierce, Rockford, IL). Equivalent protein amounts of each cell ly-
sate were subjected to sodium dodecyl sulfate-polyacrylamide gel
electrophoresis on 13% separating gels and transferred to ni-
trocellulose membranes (Schleicher & Shuell, Keene, NH). Mem-
branes were probed with antibodies raised against either β-actin,
SOD-1, SOD-2, or catalase for 1 h at room temperature or overnight
at 4 °C, followed by hybridization with goat anti-rabbit secondary
antibody conjugated to HRP for 1 h at room temperature. Proteins
were imaged with chemiluminescent reagents, Supersignal Sub-
strate, and processed according to manufacturer’s instructions
(Pierce). Films exposed to membranes were analyzed with ImageJ
v.138x (NIH, Bethesda, MD). Protein levels were determined by
fold difference in density, standardized to male control, following
normalization to β-actin loading controls.
Fig. 1. Superoxide (O2
��) levels are higher in male than female vascular smooth

muscle cells (VSMC) at baseline and nitric oxide (�NO) decreases O2
�� levels in

male, but not female, VSMC. (A) VSMC were treated with DETA/NO for 24 h, wa-
shed, incubated with 1-hydroxy-3-methoxy-carbonyl-2,2,5,5-tetra-
methylpyrrolidine (CMH) for 30 min, scraped and collected, then assessed via
Quantitative PCR

After either 6 or 12 h of exposure to the various experimental
conditions, VSMC were washed with cold PBS, scraped, and col-
lected. RNA was isolated from samples via RNAeasy Protect Mini
Kit per manufacturer’s instructions (Qiagen, Germantown, MD).
RNA concentrations were determined via a Gen5 Take 3 Module
per manufacturer’s instructions (BioTek, Winooski, VT). Equivalent
RNA amounts were converted into cDNA via a QuantiTect Reverse
Transcription Kit per manufacturer’s instructions (Qiagen). Quan-
titative PCR was performed via a QuantiTect SYBR Green PCR Kit
using SOD-1 and GAPDH primers according to manufacturer’s in-
structions (Qiagen). Fluorescence was detected via an iQ5 optical
system (Bio-Rad) and Ct values were exported as Excel files. Ex-
pression of sod-1 was calculated using GAPDH as a reference and
normalized to male control.
electron paramagnetic resonance (EPR) for the radical �CM signal. Control cells
were pre-treated with 50 units of pegylated superoxide dismutase (PEG-SOD).
Two-way ANOVA analysis shows a significant interaction between sex and �NO
(P¼0.003). EPR signal is higher in male vs. female VSMC at baseline (*Po0.001 vs.
male control) but decreases in male VSMC at 24 h with DETA/NO treatment
(*Po0.001 vs. male control, N¼5). (B) VSMC were treated with DETA/NO for 24 h,
washed, incubated with dihydroethidium for 1 h, scraped and collected, then
2-hydroxyethidium was quantified by HPLC. Control cells were pre-treated with
PEG-SOD (50 units) for 24 h. Two-way ANOVA analysis shows a significant effect of
�NO (P¼0.029). O2

�� levels measured by HPLC detection of 2-OH-E were higher in
SOD activity assay

SOD-1 enzyme activity on cytosolic fractions was assayed using
a colorimetric kit by Cayman Chemicals (Ann Arbor, MI) according
to the manufacturer’s specifications. Potassium cyanide, a SOD-1
inhibitor, was used to differentiate SOD-1 from SOD-2 activity.
male vs. female VSMC (**P¼0.002 vs. male control) but decreased in male VSMC at
24 h with DETA/NO treatment (*Po0.05 vs. male control, N¼5).
Statistical analysis

Results are expressed as the mean7standard error of the mean
(SEM). Variation between sexes and treatments for O2

�� and SOD
activity measurements was analyzed using two-way ANOVA with
the Student–Newman–Keuls post hoc test for pairwise compar-
isons. Differences between non-normally distributed variables
(qPCR and protein data) were analyzed by the Wilcoxon rank sum
and an ANOVA on ranks with the Dunn’s post hoc test for pairwise
comparisons. All statistical analyses were performed using either
SigmaPlot v10.0 (Systat Software Inc. CA, USA), or SAS (SAS In-
stitute Inc., NC, USA). Threshold for statistical significance was
assumed at Pr0.05.
Results

�NO decreases generation of O2
�� in male, but not female VSMC.

To determine the effect of sex on O2
�� levels, EPR signal and

HPLC analysis were used to quantify O2
�� (Fig. 1A and 1B). At

baseline, ●CM EPR signal was higher in male compared to female
VSMC (Po0.001), suggesting higher O2

�� levels in male VSMC.
Following exposure to DETA/NO (1 mM), the �CM EPR signal in
male VSMC decreased 22% compared to untreated VSMC (Fig. 1A,
Po0.001), suggesting a decrease in O2

�� levels. However, female
VSMC show no significant change with increasing DETA/NO
treatment (Fig. 1A). This interaction between sex and �NO
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concentration is statistically significant (P ¼ 0.003). VSMC pre-
treated with PEG-SOD (50 U) also show a decrease in EPR signal,
which suggests that the �CM radical signal is due to O2

�� (Fig. 1A).
To further validate these O2

��
findings, the O2

��-specific oxida-
tion product of dihydroethidium, 2-hydroxyethidium (2-OH-E)
was analyzed via HPLC (Fig. 1B), and a similar pattern emerged. At
baseline, the levels of 2-OH-E levels were higher in male com-
pared to female VSMC (P ¼ 0.002). O2

�� generation in male VSMC
decreased by 29% with increasing DETA/NO treatment (Fig. 1B,
Po0.05). Again, female VSMC show no significant change with
increasing DETA/NO treatment (Fig. 1B). As expected, VSMC ex-
posed to PEG-SOD (50 U) showed a decrease in O2

�� levels. These
data suggest that O2

�� levels are higher in male compared to fe-
male VSMC at baseline, but that �NO affects O2

�� levels more in
male compared to female VSMC.

�NO affects SOD-1 expression levels in male, but not female VSMC in a
concentration- and time-dependent manner

Given the differential O2
�� levels in male and female VSMC at

baseline and following �NO exposure, sod-1 expression levels were
examined via qPCR (Fig. 2). The data show a trend for females to
have higher sod-1 expression at baseline (1.9 fold). However, this
trend did not reach statistical significance (Fig. 2; P ¼ 0.07). On the
other hand, expression of sod-1 increased with all concentrations
of DETA/NO tested at 6 h in male VSMC (Fig. 2A, Po0.05). Female
VSMC showed no statistically significant change in sod-1 expres-
sion with DETA/NO treatment (Fig. 2A). This interaction between
sex and DETA/NO concentration is statistically significant
(P¼0.006). To explore whether the female response to �NO could
be delayed, sod-1 expression was examined 12 h following ex-
posure to DETA/NO (1 mM) (Fig. 2B). While sod-1 expression in-
creases to 2.1-fold at 6 h in male VSMC (Po0.05, Fig. 2B), it was
not significantly different from control at 12 h (Fig. 2B). However,
no significant increase in expression in females occurred with
DETA/NO over 12 h (Fig. 2B). These data suggest sod-1 gene ex-
pression in VSMC depend on sex and that �NO has differential
effects on regulating sod-1 gene expression in male versus female
VSMC.

�NO affects SOD-1 protein levels in male, but not female VSMC

Given the differential effect on sod-1 transcription between the
Fig. 2. Nitric oxide (�NO) increases sod-1 gene expression in male, but not female, VSMC.
at baseline, and increases in male but not in female VSMC with DETA/NO treatment at 6
showed sod-1 gene expression time course. In male VSMC treated with DETA/NO sod-1 in
controls, N¼3 for 6 and 12 h). In female VSMC, DETA/NO treatment has no significant e
sexes at baseline and after DETA/NO treatment, SOD-1 protein
levels were assessed via Western blot analysis (Fig. 3A). Densito-
metry data of Western blots revealed that there was a trend to-
ward higher SOD-1 protein levels at baseline in female versus
male VSMC, but this difference did not reach statistical sig-
nificance (P¼0.4). When analyzed by sex, DETA/NO increased
SOD-1 levels 1.9-fold in male VSMC compared to control (Po0.05,
Fig. 3B). SOD-1 protein levels did not change in female VSMC
following exposure to DETA/NO (Fig. 3B). In order to determine the
relative contribution of SOD-1 in influencing these changes in
oxidative stress, SOD-2 and catalase protein levels were also ex-
amined. SOD-2 (Fig. 3C) and catalase (Fig. 3D) protein levels were
not different at baseline between the sexes, nor did they change
significantly with increasing DETA/NO treatment in either sex.
These data suggest that the action of �NO in regulating O2

�� levels
in VSMC is attributed mainly to changes in SOD-1 protein levels in
male VSMC.

●NO affects SOD activity in male, but not female VSMC

Given the differences in O2
�� levels, sod-1 gene expression, and

SOD-1 protein levels following �NO treatment between the sexes,
we assessed SOD activity in both sexes at baseline and after �NO
exposure and normalized the data to male control for comparisons
between the sexes (Fig. 4). Congruent with our previous findings
in O2

�� levels and sod-1 gene expression, female VSMC had
2.1 � fold higher SOD � 1 activity at baseline compared to male
VSMC (Po0.001). Following treatment with DETA/NO, SOD ac-
tivity increased 2.7-fold in male VSMC (Po0.001 vs. male control,
Fig. 4). There was no DETA/NO -induced change in SOD-1 activity
in female VSMC. This interaction between sex and �NO con-
centration was statistically significant (P ¼ 0.019). These data
suggest that SOD activity in VSMC is based on sex and that �NO
modulates SOD activity more in male compared to female VSMC.

�NO differentially increases SOD-1 protein levels in male and female
carotid arteries after injury.

To determine if SOD-1 levels are effected by �NO in vivo, SOD-1
protein levels were assessed via Western blot analysis from lysates
isolated from carotid arteries that were balloon injured or injured
and exposed to �NO treatment (Fig. 5). At baseline, female carotid
arteries exhibited higher SOD-1 protein levels compared to male
(A) Quantitative PCR showed sod-1 gene expression is higher in females then males
h (*Po0.05 vs. control, N¼3 for males and N¼4 for females). (B) Quantitative PCR
creases at 6 h and starts to return to baseline by 12 h (*Po0.05 vs. control, N¼8 for
ffect at 6 and 12 h (N¼7 for control, N¼4 for 6 h, and N¼3 for 12 h).



Fig. 3. Nitric oxide (�NO) increases SOD-1 protein levels exclusively in male, but not female, VSMC. (A) Image of representative Western blots from male and female VSMC
probed for SOD-1, SOD-2, catalase, and β-actin control. (B) Male and female densitometry data from Western blots probed for SOD-1. �NO increases SOD-1 levels 1.9-fold in
male VSMC at 24 h (*Po0.05 vs. male control; N¼4). (C) Densitometry data from Western blots probed for SOD-2. SOD-2 protein levels do not differ at baseline or following
DETA/NO treatment in male or female VSMC (N¼4). (D) Densitometry data from Western blots probed for catalase. Catalase proteins levels do not differ at baseline for
following DETA/NO treatment in male or female VSMC (N¼4).

Fig. 4. Superoxide dismutase (SOD) activity is higher at baseline in female vs. male
vascular smooth muscle cells (VSMC), but nitric oxide (�NO) increases SOD activity
in male, but not female, VSMC. VSMC were treated with DETA/NO for 24 h, washed,
scraped and collected, then analyzed for SOD activity via colorimetric assay. Two-
way ANOVA analysis shows a significant interaction between sex and �NO
(P¼0.019). SOD activity was 2.1-fold higher in female VSMC at baseline compared
to male VSMC (*Po0.001 vs. male control). DETA/NO increased SOD activity 2.7-
fold in male VSMC (*Po0.001 vs. male control, N¼6). SOD does not change in
female VSMC with DETA/NO treatment (N¼6).

R.C. Morales et al. / Redox Biology 4 (2015) 226–233230
carotid arteries (Fig. 5A). SOD-1 protein levels decreased 3 days
after balloon injury in both sexes as compared to control arteries.
Treatment with �NO increased SOD-1 levels following arterial in-
jury in both sexes compared to injury alone (Fig. 5A).
Densitometry data of Western blots were normalized to β-actin
and male control to compare data between the sexes (Fig. 5B).
Female carotid arteries had 3.7-fold higher SOD-1 protein levels at
baseline compared to male carotid arteries. Following arterial in-
jury, SOD-1 protein levels decreased similarly in both sexes (69%
vs. 68%, respectively). Following arterial injury and �NO exposure,
SOD-1 protein levels increased 3.0-fold higher then control levels
in males, but returned to baseline levels in females (Fig. 5B). These
data provide further evidence that SOD-1 levels differ at baseline
between the sexes, and that �NO exerts a differential effect on
male and female SOD-1 regulation after injury in vivo.
Discussion

Our present study shows that significant differences exist in
O2

�� levels and SOD activity between male and female VSMC and
carotid arteries at baseline. We also show that �NO exposure af-
fects the redox environment differently between the sexes in
VSMC and carotid arteries. At baseline, O2

�� levels were higher in
male VSMC and this corresponded to lower SOD activity, as
compared to female VSMC. Basal SOD-1 protein levels and sod-1
gene expression, both showed a trend to be higher in female than
males. Following exposure to �NO, O2

�� levels decreased in male
VSMC and were associated with corresponding increases in sod-1
gene expression, SOD-1 protein levels, and SOD activity. �NO
caused no such changes in female VSMC. A similar pattern was
also observed in carotid arteries following arterial injury and �NO



Fig. 5. SOD-1 levels are higher in female compared to male carotid arteries but nitric oxide (�NO) increases superoxide dismutase-1 (SOD-1) protein levels above basal levels
in male but not female carotid arteries. (A) Images of Western blots from male and female carotid arteries for SOD-1 and β-actin in control arteries, arteries harvested 3 days
after balloon injury, and arteries harvested 3 days after balloon injury and treatment with �NO (N¼5 carotid arteries/treatment group). (B) Densitometry of SOD-1 protein
levels from the Western blots of carotid artery lysates normalized to β-actin levels. SOD-1 protein levels were 3.7-fold higher in female carotid arteries compared to males.
SOD-1 protein levels decreased following arterial injury in both sexes. �NO increased SOD-1 protein levels 3.0-fold above control levels in males, but returned SOD-1 protein
levels to control levels in females.
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exposure, with greater SOD-1 levels at baseline in female com-
pared to male carotid arteries, a decrease in SOD-1 levels in both
sexes after injury, but a much greater increase in SOD-1 levels in
male versus female carotid arteries following �NO exposure.
Overall, our results provide evidence that regulation of the redox
environment at baseline and following exposure to �NO is sex-
dependent in the vasculature.

This sex-based differential regulation of SOD-1 has implications
in pro-proliferative states such as neointimal hyperplasia. SOD has
been shown to decrease VSMC proliferation and migration in vitro
[36,37]. It has also been shown that overexpression of SOD-1 limits
the development of neointimal hyperplasia in vivo. Kuo et al.
showed that arteries in which SOD-1 was overexpressed devel-
oped 50% less neointimal hyperplasia compared to controls [29].
Muscoli et al. delivered a SOD mimetic to rats to inhibit balloon-
induced neointimal hyperplasia [30]. On the other hand Hogg et al.
showed that male VSMC proliferated and migrated more than fe-
male VSMC, and that �NO inhibited proliferation and migration
more effectively in male VSMC compared to female cells [21].
Thus, given that our laboratory that �NO specifically increases
SOD-1 levels both in vitro and in vivo in males, our current findings
on the sex-based regulation of SOD-1 following exposure to �NO
may account for the sex-based difference in the inhibition of
neointimal hyperplasia by �NO [21,31].

Interestingly, we observed differences in basal levels of O2
��

and SOD-1 activity between the sexes, with higher SOD activity in
females and corresponding lower O2

�� levels. These data are
consistent with the research showing that premenopausal women
develop less CAD and have lower cardiovascular mortality [38]. In
addition, several investigations are supportive of our overall
finding. For example, Lam et al. showed that estrogen can directly
impact ROS generation by increasing the availability of tetra-
hydrobiopterin, preventing eNOS uncoupling and ROS generation
[39]. Stirone et al. showed that estrogen can increase eNOS gene
expression while McNeill et al. demonstrated increased eNOS
protein levels in endothelial cells and VSMC with 17β estradiol
treatment [40,41]. Arias-Loza et al. demonstrated that estrogen
can directly regulate the subunits of NADPH oxidase, an enzyme
responsible for ROS production, resulting in additional control of
oxidative stress [42]. Most importantly, Strehlow et al. showed
that 17β-estradiol specifically upregulates SOD expression and
activity, resulting in the inhibition of ROS levels in VSMC [43].
Thus, our study demonstrating a sex-based differential in basal
oxidative stress is supported by existing literature on the effects of
estrogen. However, our study is distinct because we specifically
link sex to differential regulation of the redox environment at
baseline, following arterial injury, and following treatment with
�NO, and the severity of neointimal hyperplasia observed in vivo.

Bahnson et al. demonstrated the importance of �NO-dependent
regulation of SOD-1 in inhibiting VSMC proliferation through
modulation of O2

�� levels [31]. DHE fluorescence serves as a
general indicator for O2

�� levels and has been previously used to
qualify and quantitate the extent of reactive oxidative species. Si-
milar to our findings, Wedgwood et al. reported a concurrent 80%
reduction in DHE fluorescence in VSMC exposed to �NO [44].
However, Wedgwood et al. analyzed total DHE fluorescence which
is not a specific measurement of O2

�� . Though we report smaller
decreases in O2

�� levels, our results are based on HPLC detection
of 2-hydroxyethidium, the only validated, specific method for
O2

�� measurement [45]. In addition, Wedgwood et al. assessed
DHE fluorescence with the �NO donor still present in the cells [44].
As �NO readily reacts with O2

�� , the reduction in DHE fluores-
cence could be confounded by O2

�� scavenging by �NO, rather
than be a consequence of redox protein regulation upon treat-
ment. To account for this in our experimental design, the �NO
donor was completely removed and the cells thoroughly washed
before exposing the cells to DHE. In doing so, the decrease in O2

��

in male VSMC is attributed to an increase in SOD-1 levels and
activity, as opposed to a direct reaction of �NO with O2

�� .
Nevertheless, a direct reaction between �NO and O2

�� while the
�NO donor is present cannot be discounted. Moreover, Bahnson
et al., have reported increased nitration in male VSMC treated with
DETA/NO[31].

Our study is not without limitations. Firstly, in our O2
�� mea-

surement experiments, we used PEG-SOD as a control. We showed
that, as expected PEG-SOD decreased O2

�� levels in males. How-
ever, PEG-SOD failed to further decrease the O2

�� signal in fe-
males. Moreover, basal O2

�� levels in females were as low as the
levels in males treated with exogenous PEG-SOD. A possibility for
this phenomenon is that baseline levels of the O2

�� are already so
low that the PEG-SOD added is not enough to cause a further re-
duction. Secondly, we analyzed the redox environment and the
O2

���SOD relationship using a variety of techniques. Whereas
SOD-1 activity, O2

�� levels, and sod-1 gene expression showed a
statistically significant interaction between sex and �NO, SOD-1
protein levels did not. This is probably due to the sample size used
in the Western blot analysis and its intrinsic semi-quantitative
nature, which may not have provided sufficient statistical power.
When analyzed separately, we found that SOD-1 protein levels are
higher upon DETA/NO treatment, consistent with previous
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findings by Bahnson et al. [31] This effect was not observed in
females. In this work, we show significant changes in gene ex-
pression, activity, and O2

�� levels in male VSMC but not in female
VSMC with a significant interaction between sex and ●NO vari-
ables. In addition, we focused primarily on an analysis of the im-
pact of ●NO on SOD-1; therefore, the interplay between additional
protein factors as well as the dynamics between other cell types
(e.g., endothelial cells, adventitial fibroblasts) was excluded from
this study. However, we have previously shown that �NO treat-
ment has no effect on SOD-1 in adventitial fibroblasts and en-
dothelial cells from male rats [31]. While SOD-2 and catalase were
examined to rule out the influence of other proteins in vitro, we
did not investigate the role of other redox enzymes, such as
NADPH oxidases or glutathione peroxidases. Furthermore, analysis
outside of a pathophysiologic model in vitro potentially obfuscates
the true roles of additional antioxidant proteins in concert. While a
comprehensive in vivo study is outside the scope of this project,
we still show evidence that the expression of SOD-1 is differen-
tially affected at baseline and by �NO based on sex both in vitro
and in vivo. Although our study does not explore a direct corre-
lation of SOD-1 levels and neointimal hyperplasia in vivo based on
sex, we have previously shown that �NO is less effective at in-
hibiting neointimal hyperplasia in male SOD-1 knockout mice [31].

In conclusion, we show that regulation of the redox environ-
ment in the vasculature at baseline and following �NO treatment is
sex dependent. These data are consistent with our laboratory’s
previous finding of differential efficacy on �NO on the inhibition of
neointimal hyperplasia based on sex [21]. By furthering our un-
derstanding of how sex impacts the vasculature, better therapies
can be developed for both sexes, bring personalized medicine
close to reality.
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