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Abstract

Genetic factors are believed to account for 25% of the interindividual differences in Years of Life (YL) among humans.
However, the genetic loci that have thus far been found to be associated with YL explain a very small proportion of the
expected genetic variation in this trait, perhaps reflecting the complexity of the trait and the limitations of traditional
association studies when applied to traits affected by a large number of small-effect genes. Using data from the
Framingham Heart Study and statistical methods borrowed largely from the field of animal genetics (whole-genome
prediction, WGP), we developed a WGP model for the study of YL and evaluated the extent to which thousands of genetic
variants across the genome examined simultaneously can be used to predict interindividual differences in YL. We find that a
sizable proportion of differences in YL—which were unexplained by age at entry, sex, smoking and BMI—can be accounted
for and predicted using WGP methods. The contribution of genomic information to prediction accuracy was even higher
than that of smoking and body mass index (BMI) combined; two predictors that are considered among the most important
life-shortening factors. We evaluated the impacts of familial relationships and population structure (as described by the first
two marker-derived principal components) and concluded that in our dataset population structure explained partially, but
not fully the gains in prediction accuracy obtained with WGP. Further inspection of prediction accuracies by age at death
indicated that most of the gains in predictive ability achieved with WGP were due to the increased accuracy of prediction of
early mortality, perhaps reflecting the ability of WGP to capture differences in genetic risk to deadly diseases such as cancer,
which are most often responsible for early mortality in our sample.
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Introduction

Agricultural and biomedical research has shown through

controlled experiments and familial studies that many complex

traits are highly heritable, suggesting that in principle, such traits

could be predicted early in life from knowledge of individuals’

genotypes. Human longevity is not an exception: empirical

evidence from twin and familial studies indicate that approxi-

mately 25% of inter-individual differences in human lifespan can

be attributed to genetic factors [1–3].

Research with model organisms offers several examples of

genetic polymorphisms having a sizable effect on lifespan [4].

However, although genome-wide association studies (GWAS) and

linkage scans in humans have uncovered several regions signifi-

cantly associated with longevity and aging traits [5–9], only a few

of these associations have been consistently confirmed, and our

ability to predict inter-individual differences in expected Years of

Life (YL) remains limited [7].

Several diseases (e.g., cancer, cardiovascular disease) and

biological events (e.g., stroke, heart failure) can lead to death,

and the genetic architecture (i.e., the set of genes having an effect

on the trait and the ways they interact) of each of these mortality-

related traits is expected to be disorder-specific. Therefore, the

genetic architecture of YL is likely to include a large number,

perhaps thousands, of possibly interacting genes.

Recent articles [10,11] have suggested that the limited advances

in our ability to predict complex human traits and diseases using

genomic information may partially reflect the limitations of

traditional GWAS to detect significant associations with complex

genetic architectures. These authors have suggested that Whole

Genome Prediction (WGP) may be better suited than traditional

GWAS to the prediction of complex traits.

Whole genome prediction exploits multi-locus linkage-

disequilibrium (LD) between quantitative trait loci (QTL) and

genome-wide markers (e.g., SNPs) to predict inter-individual

differences in a quantitative trait that are attributable to genetic

factors. Unlike traditional association studies, in which the

association between markers and phenotypes is tested one marker

at a time, WGP uses all available markers to regress phenotype

onto genomic information. This methodology was first proposed in

the field of animal breeding by Meuwissen Hayes and Goddard in

2001 [12]. Since then, several simulation [12,13] and empirical

studies have demonstrated its predictive power with plant [14,15]

and animal [16–19] data.

More recently, research with human height showed that much

of the so-called missing heritability of complex traits could be

recovered using genome-wide panels of common variants [11]
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and, more importantly, that regression using WGP methods can

improve the prediction of yet-to-be observed human phenotypes

[20]. A next logical question is whether these findings apply to

traits of greater medical or practical importance. Here, we: (a)

extend WGP methods, which were originally developed for

continuous un-censored outcomes, to accommodate censoring, a

feature commonly encountered in applications with human data,

(b) developed a WGP model for YL and (c) quantified the ability of

this model to account for and to predict inter-individual

differences in human YL that are not accounted for by major

factors such as sex, Body Mass Index (BMI, kg/m2) and smoking.

Materials and Methods

Model
Many outcomes in human-health studies are either binary (e.g.,

presence/absence of diseases) or are subject to censoring (i.e.,

bounds of the outcome are known, but the exact value of outcome

remains unknown). And it is well established that ignoring

censoring yields biased estimates [21]. The linear models

commonly used for WGP can be easily extended to accommodate

binary or censored outcomes. Here, we present an extension that

accommodates censoring. Similar ideas can be used to model

binary outcomes as well [22].

In our WGP models, we describe YL (yi, i = 1,…,n) as the sum

of individual-specific means (mi) which, as we explain below, will

be a function of genetic and non-genetic factors, and of a model

residual (ei) which is assumed to be a normal random variable with

mean zero and variance s2; therefore yi~mizei. For individuals

with known YL, we observeyi; for individuals with censoring at

age equal to ti, the observed event is yiwti. In our WGP model,

expected YL (mi) was described using a linear regression,

mi~mz
XJ

j~1
xijcjz

XL

l~1
zilbl , ð1Þ

which had three components: m, an effect common to all subjects;PJ
j~1 xijcj , a regression component accounting for the effects of

non genetic covariates (sex, smoking and BMI covariates in our

application); and
PL

l~1 zilbl , a regression on SNP genotypes zij

� �
where zij[ 0,1,2f g counts the number of copies of the least

frequent allele at the jth SNP. By combining (1) with the normal

assumptions described above, we derived the likelihood function

for censored and un-censored individuals (see Methods S1 for

further details).

The Bayesian model is completed by assigning a prior density to

the collection of model unknowns m,c,b,s2f g. Here, we structure

the prior density using a modified version of the Bayesian LASSO

(BL) [23]. This model has been effectively used for WGP in plants

[14,15,24], animals [14,18,19,25] and humans [20]. We extend

this model to accommodate censoring as well as effects other than

those of markers. In our model, we assigned independent vague

prior densities to the intercept (m) and to the effects of sex, smoking

and BMI (c). This treatment yields estimates of the effects of these

non-genetic factors that are similar to those obtained with

likelihood-based methods. For the remaining unknowns we adopt

the prior-specification of the BL of Park and Casella [23] (see

Methods S1 for further details). The joint prior-density (see

expression 2 in the Methods S1) is indexed by a set of four hyper-

parameters, including the prior degree of freedom and scale

assigned to the residual variance (denoted as df and S, respectively),

and the rate and shape parameters (dentoed as d and s,

respectively) assigned to the regularization parameter of the BL.

A discussion of how these can be chosen is given in Perez et al.

[26]. Here, following those guidelines, we set

H~ df ~5,S~170,d~1|10{4,s~2
� �

. Given the characteris-

tics of our data (sample size, number of markers and allele

frequencies and observed variability on YL), these values provide

priors with small influences on predictions.

Implementation
Models were fitted using a modified version of the BLR package

[27] of R [28] which handles censoring (right, left and interval)

according to the model described above. In addition to BLR, R-

packages bayesm [29], splines [28] and SuppDists [30] were used

to implement the sampler.

Data
(N = 5,117) were from the original (N = 1,493) and offspring

(N = 3,624) cohorts of the Framingham Heart Study. Data and

material distributions from this study are made in accordance with

the individual consent history of each participant (see http://www.

framinghamheartstudy.org/research/consentfms.html for further

details about consent forms). And the current study has been

approved by the Internal Review Board of University of Alabama

at Birmingham (IRB Protocol Number: X090720002). The

criteria for inclusion in the study included being 18 years or older

at time of recruitment, having survival information as of 2007, and

having complete information for covariates (sex, smoking and

BMI).

Average age at entry was 37 with a standard deviation (SD) of

9.0 years. Of the participants, two thirds (N = 3,390) were

censored (i.e., at the time at which survival records were defined,

these individuals were still alive), 55% were female, and 36% never

smoked. Mean BMI at first exam was 25.0 with a SD of 4.1 kg/

m2. Subjects were genotyped using the Affymetrix GeneChip

Human Mapping 500K Array Set. For details on the genotyping

method, please refer to Framingham SHARe at the NCBI dbGaP

website (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/

study.cgi?study_id = phs000007.v3.p2). Other editing and geno-

typing quality control and imputation procedures were as

described in Makowsky et al. [20].

Primary Data Analysis
Using the specification of equation (3) we generated a sequence

of nested models by changing the predictors included in the right-

hand side of the linear predictor (mi). Our baseline model (denoted

as MA-0) includes an intercept, sex, and age at entry; the latter

modeled nonparametrically using a 4-df natural spline [31] with

interior and boundary knots chosen using the default specifications

of the natural spline (ns) function of the spline package of R [28];

with 4-df, interior knots were placed at the 25th, 50th and 75th

sample percentiles of the predictor variables. We extended this

model by adding smoking and BMI (also modeled nonparame-

terically using a 4-df natural spline [31]) this model is denoted as

MB-0. Subsequently, models MA-0 and MB-0 were then extended

by adding subsets of evenly spaced SNPs, from 2.5K (K = thou-

sand) to 80K; these models were denoted as M(.)-2.5K, M(.)-5K,

M(.)-10K, M(.)-20K, M(.)-40K and M(.)-80K, where (.) was either A or B.

Models were first fitted to the entire dataset to obtain parameter

estimates (estimated posterior means of effects and of variance

parameters) and to evaluate the goodness of fit and the Deviance

Information Criterion [32]. Subsequently, the prediction accuracy

of each of the models was assessed using a 10-fold cross-validation

(CV). Prediction accuracy was evaluated using two different

metrics: a CV R-squared (R2
CV ) and the area under Longitudinal

Receiving Operating Characteristic Curves (AUC(t) [33]). The

Whole Genome Prediction of Years of Life
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R2
CV measures the proportion of inter-individual differences in

years of life that can be accounted by CV-predictions, this was

calculated as R2
CV ~1{

X
i[U

yi{m̂mi,M:

� �2

X
i[U

yi{m̂mi,MA{0

� �2 where: yi denotes

observed YL of the ith individual, m̂mi,MA{0
is a 10-fold CV-

prediction of YL derived from model M: and m̂mi,MA{0
is the

estimated average YL, derived from a model that only included an

intercept and the effect of age at entry, which is taken here as our

baseline model. This statistic can be evaluated only with subjects

that have already died; therefore, in the 10-fold CV, the

summation in the formula for R2
CV uses only data from subjects

with an observed age at death. Un-censored subjects do not

constitute a random sample of individuals and this may induce

bias in our estimate of R-squared. Because of this, we consider a

second measure of prediction performance based on longitudinal

AUCs [33]. To this end we defined a sequence of thresholds

(t= 60, 65, 70, 75, 80, 85, 90, 95 YL) and for each of these

thresholds we generated survival indicator variables

di,60,di,65,…,di,95 where: di,t~1 if individual i had YL,t; di,t~0
if individual i was still alive at time t, and un-determined if

individual i had an age at censoring smaller than t. The number of

individuals for which di,t was determined (i.e., those that had

known YL or age at censoring greater than t) were 4495, 3836,

3262, 2773, 2366, 2102, 1889 and 1762 for t~65,…, t~95,

respectively. Using these survival indicator variables and CV

predictions of YL (m̂mi,M:
) derived from the models above described

we computed the AUC(t) for every threshold using the R-package

pROC [34].

Evaluation of the effects of population structure and
familial relationships on prediction accuracy

The distribution of genotypes, their allele frequency, levels of

LD, etc., can be affected by factors such as population structure,

admixture or familial relationships. Therefore, a certain propor-

tion of the prediction accuracy of WGP could be attributed to

those factors. To further explore this, a series of additional analysis

were carried out. First, in order to account for population

structure, we extended the model including age, sex, smoking and

BMI as predictors (MB-0) by adding the effects of the first two

principal components (PCs) derived from the same set of 80K

SNPs used in M(.)-80K. Second, to quantify the relative

importance of familial relationships on prediction accuracy we

carried out two additional analyses: (a) we extended MB-0 by

adding an effect representing a regression on the pedigree. This

was done using the standards of the additive infinitesimal model of

quantitative genetics [35], and this model is denoted as MB-PED.

And (b) we fitted models MA-0K, MB-0K and MB-80K in a 10fold

CV where entire families, as opposed to individuals, were assigned

to folds; therefore, in this CV predictions are derived from

nominally-unrelated individuals.

Results

Full data analysis
Using MB-0, we estimated an average (6 posterior SD)

difference in YL between females and males of 3.1 (60.42) years

and between smokers and nonsmokers of 24.1 (60.44) years.

Using estimates from MB-0, we computed the expected YL of

a nonsmoking 35-year-old by sex and BMI; the results are

displayed in (Figure S1). Expected YL was greatest within the

range BMI[ [20,25]; extreme BMI values, lower than 20 or

higher than 25, were associated with a decrease in YL. Using MB-0

we estimate an expected decrease in YL of 0.43 year per extra unit

of BMI in the range BMI[ [25,40]. Overall, these patterns are in

agreement with what has been reported previously for the effect of

sex [36–38], smoking [36,39] and BMI [21,36] on YL.

Table 1 shows estimates of residual variance and DIC by model.

The intercept-only model (not included in Table 1) yielded an

estimate of variance of YL of 135, and the estimated residual

variance of MA-0 was 104.1; therefore, approximately 23%,

computed as 100| 1{(104:1=135)ð Þ, of observed variability in

YL in our dataset can be explained by differences in age at entry

and sex. Model MB-0 yielded an estimate of residual variance of

98.7, indicating that BMI and smoking accounted for about 5% of

inter-individual differences in YL that were not accounted for by

age at entry and sex; this was computed as 100| 1{98:7=104:1ð Þ.
Adding SNPs to MA-0 or MB-0 resulted in a marked increase in

goodness of fit, and this is reflected in a substantial reduction in the

estimated residual variance (Table 1). For instance, MB-80K yielded

an estimate of the residual variance that was 65% smaller than

that of the MB-0K, computed as 100| 1{34:4=98:7ð Þ.
Due to the curse of dimensionality [40], the increase in

goodness of fit achieved by adding SNPs to the model may reflect

genetic variability captured by SNPs, over-fitting, or a combina-

tion of both. However, DIC, a model comparison criterion that

balances goodness of fit and model complexity, decreased

monotonically with the number of SNPs, suggesting that

information is being added as marker density increases.

Evaluation of prediction accuracy in cross validation
Figure 1 shows estimated R2

CV versus marker density (from 0 to

80K) by model. The R2
CV of a model including age at entry and

sex, R2
CV MA{0ð Þ, was approximately 6%. The addition of

smoking and BMI resulted in a doubling of R2
CV , from

R2
CV MB{0ð Þ~6% to R2

CV MB{0ð Þ~12%; as expected, the

addition of smoking and BMI increased prediction accuracy by

a sizable amount. Prediction accuracy increased monotonically

with the number of markers both in models with and without BMI

and smoking covariates. These results confirm that markers are

capturing information about expected YL that cannot be predicted

using major factors such as age at entry, sex, smoking and BMI.

Using 80K markers, we were able to increase R2
CV from 6% to

11% for the model without smoking and BMI (MA-(.)) and from

12% to 21% for the model including smoking and BMI (MB-(.)).

(Table S1) shows R2
CV for models MA-0, MB-0 and MB-80K by fold

of the CV. The variability in R2
CV across folds reflects uncertainty

about our estimates due to sampling of training and testing

datasets. Although we observed an overall superiority of MB-0 over

MA-0 this superiority did not occur in every fold of the CV.

However, MB-80K outperformed models without SNP information

(MA-0 and MB-0) consistently across folds indicating that SNPs are

capturing important and consistent patterns of variability in

human lifespan.

The above results indicate that markers can explain a sizable

proportion of inter-individual differences in YL that are not

accounted for by age at entry, sex, smoking and BMI. To obtain

further insights into the source of this improvement in prediction

accuracy, we present in Figure 2 the average absolute value of the

CV prediction error (from the 10-fold CV) and its SE by range of

YL for models MB-0K and MB-80K. As expected, for both models,

the absolute value prediction error was lowest for people dying

around median age (80 YL) and increased for people dying early

or late in life. Predictions derived from model MB-80K were much

more accurate than those of MB-0 for the prediction of YL of

Whole Genome Prediction of Years of Life
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people dying early in life; however, the prediction accuracy of the

model with markers was slightly higher than that of MB-80K for

subjects dying at intermediate ages. This suggests that the overall

higher predictive ability of MB-80K is due mostly to improvements

in prediction of early mortality.

Figure 3 shows the AUC (vertical axis) for models MA-0, MB-0,

and MB-80K for each of the 8 thresholds (horizontal axis). Adding

BMI and smoking information to a model that included sex and

age (MB-0 vs MA-0) resulted in an increase in AUC(t) of roughly 5–

7%. When 80 thousand SNPs (MB-80K) were added to a model

that included age, sex, smoking and BMI as covariates we

observed a substantial increase in classification performance for

prediction of early stage survival status (relative to MB-0, MB-80K

yielded an increase in AUC(60) of 18%), a more modest increase

in AUC(t) for survival status at ages 65–90 (MB-80K outperformed

MB-0 by about 14% for AUC(65) and by 7–10% for AUC(70)–

AUC(90)), and no change in AUC(95). These results are consistent

with those observed with R2
CV in that they indicate that genomic

information can increase the prediction accuracy of lifespan,

mostly due to an increase in the prediction of early mortality.

Table S1 shows estimates of AUC(t) for models MA-0, MB-0 and

MB-80K by fold of the CV. Similar to what we observed for R2
CV ,

although we found an overall superiority in the classification

performance of MB-0 relative to that of MA-0 such superiority was

not consistently observed in every fold. However, for early and

intermediate survival status (t#85) model MB-80K had a classifica-

tion performance that was consistently higher than that of models

without genetic information (MA-0 and MB-0). For late mortality

(t.85) such superiority was not consistently observed across folds.

Effects of population structure
The estimated R2

CV of model MB-GWPC was 15.77%, this is

roughly half the way from the R2
CV of model MB-0 (11.45%) and

Table 1. Estimated posterior mean of residual variance and Deviance Information Criterion (DIC, ‘smaller is better’) by number of
SNPs (rows) and nongenetic covariates (columns) included in the model.

Residual Variance* Deviance Information Criterion (DIC)

Thousands of
SNPs in the
Model Age+Sex Age+Sex+BMI+Smoking Age+Sex Age+Sex+BMI+Smoking

0 104.1 98.7 14,744 14,625

2.5 79.7 75.5 14,268 14,158

5.0 68.3 64.1 14,130 14,007

10.0 57.1 554.5 13,951 13,845

20.0 48.1 46.2 13,772 13,673

40.0 40.3 39.6 13,540 13,479

80.0 34.6 34.4 13,337 13,289

*: Posterior mean of the residual variance, the estimate of this parameter can be regarded as a proxy of goodness of fit to the data used to train the model.
doi:10.1371/journal.pone.0040964.t001

Figure 1. Cross-validation R-squared (R2
CV ) by number of

markers and model. Circles represent the R2
CV obtained in a 10-fold CV.

doi:10.1371/journal.pone.0040964.g001

Figure 2. Absolute value CV prediction error versus range of
YL. Circles represent the average absolute value prediction error for
each group of YL (YL#65, 65,YL#70,..,YL.95); and vertical bars
represent the 95% confidence interval defined by the average absolute
value prediction error 61.966SE.
doi:10.1371/journal.pone.0040964.g002
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that of model MB-80K (21.40%). Results for AUC showed similar

patterns. This indicates that a sizable proportion of inter-

individual differences in YL could be attributed to genetic

differences associated to population structure. On the other hand,

the fact that the R2
CV of model MB-80K was 37% higher than that

of model MB-GWPC suggests that genetic factors beyond those

associated with population structure account for a sizable

proportion of inter-individual differences in YL.

Effects of familial relationships
Model MB-PED, which including age at entry, sex, BMI,

smoking and pedigree information showed clear signs of over-

fitting (the posterior mean of the residual variance was 11.1,

compared to 34.4 for model MB-80K) and, consequently, had a

very poor predictive performance; even worse than our baseline

model (MA-0). This is most likely to occur because of two reasons.

First, the pedigree is very sparse, with 37% of nominally un-related

individuals and most of the remaining individuals coming from

relatively small nuclear families (74% of individuals were in

families with 3 or less members). Additionally, in the great

majority of nuclear families the offspring have censored YL.

Therefore, in this dataset the amount of familial information

available for prediction is very limited. To further illustrate this, we

counted for every subject in the 10-fold CV where individuals

were randomly assigned to folds the number of close-relatives

(father, mother, offspring or full-sib) which were used for

prediction (i.e., those which were assigned to a different fold).

We found that in our CV 41.6 of the observations were predicted

without having any direct relative in the training dataset (i.e. in

other folds) and 70.75 were predicted without having any un-

censored direct relative available for training. Only 10% of

individuals had 3 or more direct relatives in the training datasets,

and no-one had 3 or more direct relative with observed YL

assigned to a different fold.

Our second approach to quantify the relative importance of

family relationships on prediction accuracy consisted on fitting

models MA-0, MB-0 and MB-80K in a10-fold CV where entire

families, as opposed to individuals, were assigned to folds. Such

setting guarantees that no-direct relatives are used for prediction.

The R2
CV obtained in this new CV were very similar (R2

CV were

11.9% and 22.3% for MB-0 and MB-80K, respectively) to the ones

we obtained when subjects, as opposed to entire families, were

assigned to folds (here, R2
CV were 11.9% and 22.3% for MB-0 and

MB-0, respectively). Combining all these results we conclude that in

our analysis familiar relationships were not a major factor

explaining the prediction accuracy obtained with WGP.

Prediction accuracy and causes of mortality
Our results suggest that genomic information can enhance

prediction of lifespan, mostly by improving prediction of early

mortality. This can be due to several factors, one of which may be

that SNPs are capturing genetic risk to certain diseases that are

most responsible for early mortality. Figure 4 presents the

distribution of death by cause and range of age at death in the

Framingham sample. Cancer was the leading cause of death for

people dying early in life, and the relative importance of cancer as

a cause of death declined with increasing YL. On the other hand,

the relative importance of other causes of death was much higher

for people dying at older ages.

Discussion

Familial studies suggest that roughly 25% of the inter-individual

differences in YL can be attributed to genetic factors [7]. Although

linkage and association studies have reported several variants

associated with human lifespan and aging-related traits [6,8,9,41],

the individual effects of these variants is usually small and our

ability to use genetic information to predict human lifespan

remains very limited. Recent studies [10,11,20] suggest that WGP

is effective at predicting complex traits. Here, we developed a

WGP model for the prediction of YL and evaluated its predictive

power using data from the Framingham longitudinal study.

When genetic markers were added to a model accounting for

age at entry, sex, smoking, and BMI, the increase in R2
CV obtained

by adding 80K SNPs (,9–10% of inter-individual differences in

YL) was greater than the increase obtained by adding smoking and

BMI (,6% of inter-individual differences in YL), indicating that

genetic markers are making a relatively important contribution to

predictive ability. Similar results were obtained when prediction

accuracy was evaluated using longitudinal AUC’s.

As anticipated, our results suggest that the genetic basis of YL

involves a large number of variants. The observation that DIC and

prediction accuracy improved with marker density suggests that a

large number of markers spread across the genome are needed to

account for differences at QTLs affecting YL, and this is consistent

with what one would expect for a trait that conforms to an

‘‘infinitesimal’’ model [42,43]. This pattern is also consistent with

empirical evidence obtained for traits that conform to the

infinitesimal model, such as human height [20] or production

traits in dairy cattle [19].

Our results are also consistent with those of Yashin et al. [44]

who, using a subset of the dataset used here (1,173 individuals of

the original cohort), found that a sizable proportion of inter-

individual differences in YL (20% in the training dataset) can be

explained by the joint influence of 168 small-effect genetic variants

which were pre-selected using p-values derived from single-marker

regressions. Although the study by Yashin et al. [44] and the one

presented here both suggest that a large number of variants is

needed to account for interindividual differences in YL, the two

studies differ in many respects: (a) our study uses a larger sample

size (N = 5,117, versus N = 1,173) and incorporates both uncen-

Figure 3. Area under the receiving operating characteristic
curve (AUC) for survival status define at different time points
(60, 65,…,95 years of life) and three models that differed on
the predictor variables used to predict expected years of life.
doi:10.1371/journal.pone.0040964.g003
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sored and censored observations, (b) unlike the Yashin study,

where markers were pre-selected using statistics derived from

single marker regression, here we used a much larger number of

markers (up to 80K), spread along the whole genome, (c) although

the two studies used an additive linear score to predict YL, the two

scores are different. In the Yashin study the score consist of a sum

of so-called ‘‘longevity alleles’’, while in our study the predictive

score is a weighted sum of allele dosage, with weights given by

estimates of marker effects, (d) in some of our models we account

for the effects of BMI and smoking, while these covariates were not

accounted for in the Yashin study. Finally (d) in our study we

focused on prediction accuracy of yet-to be observed outcomes,

while the study by Yashin et al. reports the proportion of

interindividual differences in YL that could be accounted for in the

same dataset that was used to derive the predictive score.

Nevertheless, despite the differences in the datasets and methods

used, both studies provide consistent evidence that an important

proportion of differences in YL can be predicted using genomic

information and that capturing those patterns requires considering

a large number of small-effects variants.

In addition to demonstrating that a sizable proportion

differences in YL can be predicted using genomic information,

we found that most of the gains in prediction accuracy obtained

with use of genetic information came from increased accuracy of

prediction of early mortality. Further examination of the

distribution of causes of death by age at death reveled that cancer

was the leading cause of death for people dying early in life.

Therefore, a possible explanation of our results is that the ability of

our WGP to capture cancer risk (indirectly through YL) was

higher than for other death-related disorders. Further studies,

using disorder-specific responses (e.g., presence/absence or onset

of cancer) and case-control datasets will be needed to confirm this

conjecture.

The Framingham dataset has a familial design and exhibits

some level of population structure, much of which can be

described through PCA of genome-wide SNPs. Whole-Genome

Prediction exploits multi-locus LD between markers and QTL.

These patterns of LD are likely to change across sub-groups in the

population and because of this, models fitted using WGP cannot

be regarded as ‘universal equations’. The validity across sub-

groups of the patterns captured by a WGP model will depend on

the extent to which genetic features (e.g., stratification) present in

training samples are also present in those used for validation.

Including the first two marker-derived PCs increased prediction

accuracy markedly, indicating that YL covariates with ancestry, as

described by the first 2 PCs. However, the level of prediction

accuracy attained by models using the first two marker-derived

PCs was substantially lower than that of the model using 80K

genome-wide SNPs, suggesting that the genetic factors affecting

YL cannot be fully described by features such as population

structure. The effects of familial relationships on the prediction

accuracy of WGP are well established [13,20]. However, in our

study, the pedigree is relatively sparse and when families with

more than one subject exist the offspring are highly likely to be

censored; therefore, familiar relationships are not very informative

to begin with, explaining why in this study familial relationships

did not show a strong effect on the prediction accuracy of WGP.
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Methods S1 Describes the Bayesian model used.

(DOCX)

Figure S1 Estimated expected years of life versus Body
Mass Index (BMI) by sex (estimates derived from a
model which included sex, age at entry, smoking and
BMI as predictors).
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Figure 4. Proportion of deaths by cause, and range of age at death. Causes included cancer, coronary heart disease (CHD), cardio-vascular
accident (CVA), other cardio-vascular diseases (Other CVD) and other causes.
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27. de los Campos G, Pérez P (2010) BLR: Bayesian linear regression. R package
version 1.2. R-project, available at: http://cran.r-project.org/web/packages/

BLR/index.html. Accessed 2012 June 28th.
28. R Development Core Team (2010) R: A language and environment for

statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

R Foundation for Statistical Computing. R-project, available at: http://www.
R-project.org. Accessed 2012 June 28th.

29. Rossi P, McCulloch R (2010) bayesm: Bayesian inference for marketing/micro-
econometrics. R package version: 2–2.

30. Wheeler B (2008) SuppDists: Supplementary distributions. R package version:

1–1.
31. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman & Hall/

CRC.
32. Spiegelhalter DJ, Best NG, Carlin BP, Linde A van der (2002) Bayesian

Measures of Model Complexity and Fit. Journal of the Royal Statistical Society.
Series B (Statistical Methodology) 64: 583–639.

33. Heagerty PJ, Zheng Y (2005) Survival Model Predictive Accuracy and ROC

Curves. Biometrics 61: 92–105. doi:10.1111/j.0006-341X.2005.030814.x
34. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, et al. (2011) pROC: an

open-source package for R and S+ to analyze and compare ROC curves. BMC
Bioinformatics 12: 77. doi:10.1186/1471-2105-12-77

35. Henderson CR (1975) Best linear unbiased estimation and prediction under a

selection model. Biometrics 31: 423–447.
36. Peeters A, Barendregt JJ, Willekens F, Mackenbach JP, Mamun AA, et al. (2003)

Obesity in adulthood and its consequences for life expectancy: a life-table
analysis. Annals of internal medicine 138: 24–32.

37. Finkelstein EA, Brown DS, Wrage LA, Allaire BT, Hoerger TJ (2009) Individual

and aggregate years-of-life-lost associated with overweight and obesity. Obesity
18: 333–339.

38. Arias E, Rostron BL, Tejada-Vera B (2010) National vital statistics reports.
National Vital Statistics Reports 58.

39. Mamun AA, Peeters A, Barendregt J, Willekens F, Nusselder W, et al. (2004)
Smoking decreases the duration of life lived with and without cardiovascular

disease: a life course analysis of the Framingham Heart Study. European heart

journal 25: 409–415.
40. Drineas P, Lewis J, Paschou P (2010) Inferring Geographic Coordinates of

Origin for Europeans Using Small Panels of Ancestry Informative Markers.
PLoS ONE 5: e11892. doi:10.1371/journal.pone.0011892

41. Poduslo SE, Huang R, Spiro A (2010) A genome screen of successful aging

without cognitive decline identifies LRP1B by haplotype analysis. Am J Med
Genet. 153B: 114–119. doi:10.1002/ajmg.b.30963

42. Goddard M (2009) Genomic selection: prediction of accuracy and maximisation
of long term response. Genetica 136: 245–257.

43. Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic
animals and their use in breeding programmes. Nature Reviews Genetics 10:

381–391.

44. Yashin AI, Wu D, Arbeev KG, Ukraintseva SV (2010) Joint influence of small-
effect genetic variants on human longevity. Aging (Albany NY) 2: 612–620.

Whole Genome Prediction of Years of Life

PLoS ONE | www.plosone.org 7 July 2012 | Volume 7 | Issue 7 | e40964


