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1  |  INTRODUC TION

Wind is a crucial parameter influencing bird migration, affecting bird 
survival and ultimately shaping migration routes (Erni et al., 2005; 
Kranstauber et al., 2015; la Sorte et al., 2014). This is because, with a 
similar order of magnitude as the birds' airspeed, favorable wind condi-
tions can considerably increase the speed of migration, which reduces 
the energy required of birds to perform their migration journey and 
improves their survival (Alerstam & Lindström, 1990; Liechti, 2006; 
Richardson, 1978, 1990; Shamoun- Baranes et al., 2017). The increase 

of ground speed brought by winds pays off on two fronts: birds can 
increase the distance covered for a given flight time, or reduce the 
energy cost for a given distance, thus shortening the time required 
for refueling.

Due to dominant global wind patterns and opposite directions 
of (return- ) migration, wind affects spring and autumn migration 
differently. Indeed, the stronger supporting winds in spring over 
autumn contribute to faster migration speed in spring (Gauthreaux 
et al., 2005; Kemp et al., 2010; la Sorte et al., 2014), in particular 
when birds can benefit from low- level jet (Liechti & Schaller, 1999; 
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Abstract
Wind has a significant yet complex effect on bird migration speed. With prevailing 
south wind, overall migration is generally faster in spring than in autumn. However, 
studies on the difference in airspeed between seasons have shown contrasting results 
so far, in part due to their limited geographical or temporal coverage. Using the first 
full- year weather radar data set of nocturnal bird migration across western Europe 
together with wind speed from reanalysis data, we investigate variation of airspeed 
across season. We additionally expand our analysis of ground speed, airspeed, wind 
speed, and wind profit variation across time (seasonal and daily) and space (geographi-
cal and altitudinal). Our result confirms that wind plays a major role in explaining both 
temporal and spatial variabilities in ground speed. The resulting airspeed remains rela-
tively constant at all scales (daily, seasonal, geographically and altitudinally). We found 
that spring airspeed is overall 5% faster in Spring than autumn, but we argue that this 
number is not significant compared to the biases and limitation of weather radar data. 
The results of the analysis can be used to further investigate birds' migratory strate-
gies across space and time, as well as their energy use.
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Wainwright et al., 2016). This seasonal difference in average 
ground speed has been confirmed by multiple (radar) studies 
(Felix et al., 2008; Horton, van Doren, Stepanian, Farnsworth, & 
Kelly, 2016a; la Sorte et al., 2018; Nilsson et al., 2014), but see 
(Liechti & Bruderer, 1995). In addition, favorable winds occur 
more often in spring, giving birds more opportunities to initiate 
migratory bouts and reducing overall migration duration. This 
seasonal difference in prevalence of favorable winds, combined 
with the lower energy cost per distance described above, also ex-
plains the shorter stopovers in spring (Nilsson et al., 2013; Tøttrup 
et al., 2012).

Beyond the influence of wind increasing ground speed, it has 
been hypothesized that birds increase their airspeed in spring 
(Nilsson et al., 2014). Indeed, arriving at the breeding area be-
fore competitors has shown to improve reproductive output (e.g., 
Forstmeier, 2002; Gilsenan et al., 2020; Kokko, 1999; Reséndiz- 
Infante & Gauthier, 2020) but arriving too early can hinder birds' 
survival	due	 to	 lack	of	 resources	 (Lerche-	Jørgensen	et	al.,	2018). 
Assuming more competition at breeding than wintering site, birds 
would prioritize a shorter migration in spring and a lower energy 
expenditure in autumn, resulting in higher airspeeds during spring 
migration (Hedenstrom & Alerstam, 1995). However, an increase 
in airspeed comes with higher flight energy costs, which result 
in prolonged stopovers. According to optimal flight theory (e.g., 
Alerstam & Lindström, 1990), birds should fly slightly faster (5– 
15%) when minimizing their overall migration duration (including 
replenishment at stopover) rather than when minimizing the over-
all energy used (Alerstam, 2003; Nilsson et al., 2013). However, 
given that flight represents only 6.5% of migration time (Briedis 
et al., 2020), the corresponding time gained over the entire mi-
gration journey in prioritizing speed over energy is less than 1% 
(Hedenstrom & Alerstam, 1998). Thus, if the goal of spring migra-
tion is to arrive earlier, flying faster only has a limited impact and 
there is stronger selectivity on replenishment during stopovers 
than airspeed (Houston, 2000).

Compared to the overall migration speed which can be more 
readily estimated (e.g., Briedis et al., 2020; Fransson, 1995; la Sorte 
et al., 2013; Yohannes et al., 2009), airspeed is harder to measure. 
Weather radars are well positioned to do so, yet so far have shown 
mixed results: some showing significantly faster airspeed in spring 
(Henningsson et al., 2009; Horton, van Doren, Stepanian, Farnsworth, 
& Kelly, 2016a; Karlsson et al., 2012; Nilsson et al., 2014), others sim-
ilar speeds in both seasons (Liechti & Bruderer, 1995) and yet others 
finding slightly faster airspeeds in autumn (Kemp et al., 2010).

To date, these earlier studies have been conducted with data 
sets that are either geographically limited or do not cover the en-
tire year. We draw on the first full year data set of nocturnal mi-
gration captured by European weather radars and combine it with 
high resolution weather re- analysis data to re- assess the relative 
effect of wind speed (and orientation) on the birds' airspeed. To 
further compare the seasonal difference in ground speed and air-
speed, we investigate intraseasonal, geographical, and altitudinal 
differences.

2  |  MATERIAL AND METHODS

2.1  |  Data

2.1.1  | Weather	radar	data:	Bird	vector	
speed and density

The vertical profile time series (Nussbaumer, 2020) consists of 
bird density � [bird/km3], ground speed along the east– west u and 
south– north v components [m/s], and radial velocity standard devia-
tion (a measure of the directional scattering of the speed) extracted 
from 37 weather radars in western Europe using vol2bird (Dokter 
et al., 2011, 2019). The final data set consists of 6.8 million data-
points	spanning	from	February	13,	2018	to	January	1,	2019,	with	a	
temporal	resolution	of	5	min	and	spatial	resolution	of	200 m	in	alti-
tude (0– 5 km). Details on the preprocessing procedure are provided 
in Nussbaumer et al. (2021).

2.1.2  |  Climate	reanalysis:	Wind	vector	speed	at	
pressure level

The east– west U and south– north V components of wind speed 
were retrieved from the ERA5 reanalysis (Hersbach et al., 2018). We 
downloaded the data at the maximal resolution (hourly, 0.25°× 0.25°	
and	pressure	 level	 from	1000	to	550 hPa)	 for	 the	year	2018.	Both	
components U and V were linearly interpolated (time– space 4D) at 
each datapoint of the weather radar data.

2.2  |  Analysis

We compare ground speed, airspeed, experienced wind speed, avail-
able wind speed, and wind profit in spring and autumn (taking 15 
July	as	cut-	off	day)	at	four	different	scales:	(1)	seasonal,	(2)	daily	(i.e.,	
within season), (3) geographical, and (4) altitudinal.

Using the triangle of velocities (e.g., Alerstam & Hedenstrom, 
1998), bird ground speed (Vg) and airspeed (Va) can be computed re-
spectively with

and

Thus, airspeed is computed locally for each datapoint accounting 
for the specific wind speed and orientation at this location.

In the analysis, we differentiate between experienced wind 
speed and available wind speed by using a weighted average based 
on bird density for the experienced wind speed and simple (un-
weighted) average for the available wind speed.

Finally, wind profit is computed as the vector projection of the 
wind speed on the assumed bird migration direction of 225° (e.g., 

Vg =
√

u2 + v2

Va =

√

(u−U)
2
+ (v−V)

2
.



    |  3 of 9NUSSBAUMER Et Al.

Bruderer	&	Jenni,	1990), with a north- east orientation in spring and 
south- west in autumn.

3  |  RESULTS

3.1  |  Seasonal scale

In general, the wind speed experienced by birds was higher in spring 
than in autumn (average windspeed of 7.5 vs 5.6 m/s, see Figure 1). 
The difference of wind speed was caused by the predominant 
Southwest winds, producing a higher wind profit in spring (avg of 
4.6 m/s) than in autumn (1.1 m/s) (see Figure SI- 3). Most of this in-
crease was also observed in the ground speed (12.6 vs 9.9 m/s), re-
sulting in strikingly similar airspeeds between the two seasons (8.7 
vs 8.2 m/s). This result suggests that birds flew with nearly constant 
effort in both seasons.

In order to better assess the statistical significance of the sea-
sonal differences in airspeed, we computed the probability that a 
spring airspeed is higher than autumn airspeed using the exact em-
pirical probability distribution function (Figure 1). Both distributions 
largely overlapped and the probability that birds fly faster in spring 
was similar to the probability in autumn (54% of birds flew faster in 
spring than in autumn and 46% flew faster in autumn).

3.2  |  Daily and intraseasonal scale

When looking at the daily scale (Figure 2), we find that more birds 
selected nights with positive wind profit and migrated faster when 

doing so. Bird ground speed and total density both followed the 
daily variation of wind profit. However, the highest bird densities 
were not always attained when there was maximal wind profit, but 
rather when wind profit became positive after a period of nega-
tive wind profit (e.g., early April or end October in Figure 2). More 
importantly, the daily airspeed was less variable than ground speed 
(airspeed SD = 3.1 m/s; ground speed SD = 5.1 m/s), suggesting 
that birds generally flew with constant airspeed independently of 
wind conditions.

Within a migratory season, ground speed showed a strong de-
crease	in	spring	of	−2	m/s	per	month	(95%	CI:	−2.6	to	−1.4	m/s)	and	
a	smaller	increase	in	autumn	of	0.57 m/s	per	month	(95%	CI:	0.19–		
0.94 m/s).	 In	 comparison,	 airspeed	 had	 a	 similar	 rate	 of	 −0.53 m/s	
per	month	in	spring	(95%	CI:	−0.34	to	−0.73 m/s)	and	−0.58 m/s	per	
month	 in	autumn	 (95%	CI:	−0.44	to	−0.72 m/s).	This	 indicates	 that	
after accounting for wind conditions, the change in airspeed was 
much stronger within a season than between seasons.

3.3  |  Spatial scale

Wind speed was stronger in south- west Europe than in north- east 
Europe (Figure 3), particularly in spring and most strongly in March 
(compared to the 2000– 2019 average in Figure SI- 5). These favora-
ble wind conditions allowed birds to migrate with higher ground 
speed in this area. More importantly, when removing the wind com-
ponent from the ground speed, the resulting airspeed showed an 
impressively uniform spatial pattern for all seasons (SD =	1.03 m/s)	
compared to wind speed (SD =	 1.35 m/s)	 and	 ground	 speed	
(SD =	2.44 m/s).

F I G U R E  1 (Left)	histogram	of	
ground speed (brown), airspeed (blue), 
and wind speed (yellow) per season. 
The distribution of airspeed remains 
relatively similar between seasons, 
while wind speed and ground speed are 
greater in spring (vertical lines indicate 
the arithmetic means). (Right) Polar 
histogram of direction per season. The 
45° and 225° dashed lines indicate the 
prefered directions of migration used 
for the calculation of windprofit. Wind 
speed direction is generally more spread, 
particularly in autumn. In autumn, 
birds are more selective of the wind 
oriented toward their prefered direction 
of migration all quantities (speed and 
directions) are weighted by the number of 
birds except for available winds (dashed 
histogram).
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F I G U R E  2 Daily	ground	speed	(brown),	airspeed	(blue),	and	wind	profit	(background	gray).	Circles	indicate	the	daily	average	across	all	
radars, and the solid lines represent their 7- day moving- average. The size of the circle is proportional to the total number of birds in the air. 
All averages are weighted by the number of birds (i.e., density). Wind profit is also averaged for all radar nights and is shown on a second 
right y- axis with an offset of 8 m/s (airspeed average) because of the sign change. Note that both y- axes have the same scale allowing ease of 
comparison. The fine dotted blue lines represent the linear trend of airspeed for both seasons separately.

F I G U R E  3 Ground,	wind,	and	airspeed	
vectorial average by radar weighted by 
bird density for 4 periods of the year. Both 
arrow length and circle color indicate 
speed.

F I G U R E  4 Ground	(brown),	air	(blue),	
and wind (yellow) speeds and radial 
velocity standard deviation (green) 
profiles over altitude for spring (left) 
and autumn (right). Circles represent the 
average per radar and altitude bin with the 
radius proportional to the number of birds 
(density).
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3.4  |  Altitudinal scale

The vertical profile of ground speed resembled the profile of wind 
speed in both spring and autumn (Figure 4). As a result, the airspeed 
vertical profile was relatively straight in comparison to ground and 
wind speed. This indicates that the difference in ground speed with 
elevation was mainly driven by differences in wind speed, showing 
there was a relatively constant airspeed irrespective of altitude.

The slight decrease in the standard deviation radial velocity with 
altitude indicates a more directional flow of birds at higher altitude 
(i.e., less variance in ground speed). In autumn, the higher standard 
deviation radial velocity in the first 100 m above ground suggests a 
high scatter of flight directions, which in turn explains the drop in 
airspeed (computed as the vectorial average of all birds within radar 
scanning distance).

4  |  DISCUSSION

We quantified wind assistance for nocturnal mass movements of mi-
gratory birds using a large data set covering western Europe with 37 
weather radars over a full year. Airspeed is nearly constant across sea-
sons, geography, and altitudes, but wind profit varied between sea-
sons, geography, and altitudes, and consequently, birds migrate faster 
in spring than in autumn, in France compared to Germany, and at higher 
altitudes compared to lower altitudes. As flight costs are proportional 
to airspeed (Hedenström, 2012), our results suggest that nocturnal mi-
grants keep their effort relatively constant across seasons.

4.1  |  The importance of wind in migration speed

Wind speed is an essential factor contributing to birds' overall move-
ment. In this study, birds encountered a wind speed of 6.2 m/s on 
average (SD: 3.7), while the airspeed was only about 24% higher 
(8.4 m/s, SD: 3.0). Harnessing the wind, bird ground speed was 
on average 25% higher than their airspeed (10.5 m/s; SD:5.0; see 
Figure SI- 1). Given the magnitude of wind speed relative to airspeed, 
it is crucial for birds to consider wind by minimizing headwind and 
crosswind while maximizing tailwind (Liechti & McGuire, 2018).

Although wind speed may be high, it does not directly translate 
into wind profit because the direction of wind is rarely perfectly 
aligned with the preferred migration direction, requiring birds to 
compensate for different wind directions. This explains why the av-
erage wind profit was only 2.0 m/s (SD: 5.1 m/s; see Figure SI- 2). Our 
results confirm that birds strategically select the few nights where 
wind conditions are most favorable (strong wind aligned with pre-
ferred direction of migration), during which bird density peaked at 
a wind profit of 5 m/s (see Figure SI- 2). During those nights, wind 
profit reached up to 50% of ground speed (see Figure SI- 4).

Our analyses confirm the importance of wind in speeding- up 
overall migration by 19% (2.0/10.5). For an average bird migrating a 
distance	of	3000 km	in	80 h	(assuming	a	ground	speed	of	10.5	m/s),	
wind	profit	saves	15 h	of	flight	time	(or	2–	3	nights).	As	wind	profit	

lowers the energy required to cover a certain distance, it reduces the 
number of stopovers and/or refueling time and ultimately migration 
duration.

4.2  |  Spring vs autumn

Based on flight optimization theory, birds should reduce their air-
speed with tailwinds and increase airspeed with head-  or crosswinds 
in order to minimize flight costs per distance flown (Hedenstrom & 
Alerstam, 1995; Liechti et al., 1994; Pennycuick, 1978). Lower air-
speeds would therefore be expected in spring due to the stronger 
tail winds.

We observed a 1.3 times higher average ground speed in spring 
than in autumn (12.6 vs 9.7 m/s), mainly explained by wind condi-
tions in both seasons: wind profit was on average 4.6 m/s in spring 
and only 1.1 m/s in autumn (see Figure SI- 3) while airspeeds were 
virtually the same (spring 8.7 vs autumn 8.2 m/s). Thus, wind alone 
increased overall migration speed by 37% (4.6/12.6) in spring and 
11% (1.1/9.7) in autumn. By contrast, the 6% increase in airspeed 
(8.7/8.2) comes with longer stopovers to refuel, such that the overall 
increase in migration speed is in fact lower than 6%.

If we assume birds fly based on optimizing time in spring and 
energy in autumn, the difference in airspeed is expected to be 5– 
15% (Alerstam, 2003; Nilsson et al., 2013). Although the increase 
of airspeed we found (5%) falls within this range, it is too small to be 
considered significant due to the large variance, measurement un-
certainty, and data quality as detailed below.

First, weather radars estimate bird ground speed based on the 
Doppler shift representing the mean vectorial average of all targets 
(Dokter et al., 2011). Therefore, the ground speed estimated will al-
ways be lower than the speed of each individual bird and, more im-
portantly for our study, will decrease as flight directions are more 
scattered. The alignment of flight directions depends on the vari-
ability of the direction followed by each population as well as on the 
amount of head-  or tailwind (Bäckman & Alerstam, 2003; Liechti & 
Bruderer, 1986). The degree of directionality can be assessed with 
the value of the standard deviation of the radial velocity. We found a 
higher standard deviation of the radial velocity in spring than in au-
tumn (see Figure SI- 6), which is in line with the results of a bird track-
ing radar study (Shi et al., 2021). Therefore, the slightly lower autumn 
airspeed estimated in this study could be explained by birds migrating 
in more diverse directions. This could be caused by the presence of 
more unexperienced birds (juveniles) in autumn, whose preferred ori-
entation tends to be more scattered (Åkesson et al., 2021).

Second, the presence of insects with their lower airspeeds re-
duces the ground speed estimated by weather radars. As insects 
are more common in autumn than in spring, the average airspeed 
will be lower in autumn than in spring. Following Nussbaumer 
et al. (2021), the insect- to- bird ratio is modeled based on airspeed 
and standard deviation radial velocity, accounting for both time 
and space variation. The ground speed of birds was then cor-
rected based on the estimated insect- to- bird ratio and the fitted 
distribution of birds' and insects' airspeed. While this approach 
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is currently the best available (e.g., compared to strict airspeed 
thresholds), the ground speed correction is not perfect, and there-
fore a slight residual influence of insect contamination in the au-
tumn data cannot be excluded.

We compare the spring/autumn speed ratios with other studies 
using different radar techniques, spatial and temporal coverage see 
Table SI- 1. In general, radars tracking single targets are more reliable 
in estimating the exact speed of individual birds. However, tracking 
radars are more prone to bias because (i) closer and larger birds are 
more likely to be tracked and (ii) they can only track a single bird at the 
time, tracking relatively fewer birds during high than during low mi-
gration intensity, the latter often being associated with less favorable 
winds. Of all the radar data sets, military tracking radars are generally 
considered the most reliable to estimate airspeed (Nilsson et al., 2018).

Most tracking radar studies have shown that airspeeds are 
not significantly higher in spring than in autumn (Bäckman & 
Alerstam, 2003; Kemp et al., 2010; Liechti & Bruderer, 1995), while 
other studies found significantly higher airspeeds in spring (Green & 
Alerstam, 2000; Karlsson et al., 2012). Interestingly, the tracks used 
in studies by Bäckman and Alerstam (2003) and Karlsson et al. (2012) 
were collected with the same radar at the same site. However, while 
Karlsson et al. (2012) focused on early autumn (August) and late 
spring (May), Bäckman and Alerstam (2003) collected data during 
late autumn (October) and early spring (April), with hardly any over-
lap between the observation periods. If we restrict our dataset to 
the same periods as Karlsson et al. (2012), we obtain a 1.11 times 
faster airspeed in spring (8.3 m/s) than in autumn (7.5 m/s).

In the northeast of the United States, Horton, van Doren, 
Stepanian, Farnsworth, and Kelly (2016a) found a ratio of 1.23 
times faster airspeed in spring than autumn for six weather radars. 
We can only speculate that this difference is at least partially linked 
to the larger scattering of flight directions, or to their treatment of 
insect contamination. Surprisingly, they excluded about the same 
amount of insect contamination in spring and autumn, although we 
would expect more insects in autumn (Larkin, 1991; Nussbaumer 
et al., 2021; Shi et al., 2021). In addition, with half of their radars 
located on the coast, one can also expect that the strong sea-
sonally dependant coastal effect (Horton, van Doren, Stepanian, 
Hochachka, et al., 2016) might cause increased airspeed in autumn 
(e.g., more compensation required with wind blowing bird offshore).

While these earlier studies are either geographically limited, 
prone to sampling biases or do not cover the entire year, our results 
comprehensively analyze the spatio- temporal differences in ground, 
air, and wind speed to highlight the absence of significant increase of 
airspeed in spring compared to autumn.

4.3  |  Early vs late migration (long- distance vs short- 
distance)

Our analysis shows a decrease in airspeed during spring migration 
and an increase during autumn. This shift in airspeed could be as-
sociated with a gradual change in the species composition in autumn 
from small trans- Saharan migrants to medium- sized short- distance 

migrants, and vice versa, in spring. This result is consistent with 
previous tracking radar studies (Dokter et al., 2011; Liechti, 1992; 
Nilsson et al., 2014) and a citizen science- based study (Horton 
et al., 2018). In addition, spatial variation in species composition 
could also cause the small spatial difference in airspeed observed 
(see Figure 3 and Figure SI- 7). Optimal flight theory predicts a maxi-
mum range airspeed of 7.4 m/s for a trans- Sahara migrant such as a 
Willow	Warbler	and	a	12 m/s	airspeed	for	a	short-	distance	migrant	
such as a Song Thrush (Pennycuick, 2008).

4.4  |  Altitude effect

In general, wind speed increases with altitude and in the north-
ern hemisphere wind directions tends to turn clockwise (North 
et al., 2014). Therefore, by choosing a specific flight altitude, a bird 
can select specific wind conditions (Shamoun- Baranes et al., 2017). 
Birds tend to fly in the first kilometers of the atmosphere in temper-
ate zones (Bruderer et al., 2018; la Sorte et al., 2018), but some birds 
have been observed flying at extremely high altitude to benefit from 
high wind support (Liechti & Schaller, 1999; Senner et al., 2018).

There is a general consensus that birds fly at the first altitude 
with favorable wind (Bruderer et al., 1995; Bruderer & Liechti, 1995; 
Dokter et al., 2013; Horton, van Doren, Stepanian, Farnsworth, & 
Kelly, 2016b; Kemp et al., 2013; Mateos- Rodríguez & Liechti, 2012) 
irrespective of temperature and humidity conditions (Liechti & 
Schmaljohann, 2007; Schmaljohann et al., 2009). Thus, with sup-
porting winds at higher altitude, spring migration generally occurs at 
higher altitude than autumn migration (Dokter et al., 2013; Horton, 
van Doren, Stepanian, Farnsworth, & Kelly, 2016b; Shamoun- 
Baranes et al., 2017) but see (la Sorte et al., 2015).

Because air density decreases with altitude, optimal theory pre-
dicts an increase in airspeed with altitude (Bruderer et al., 2018; 
Hedenstrom & Alerstam, 1995), which has been supported by empir-
ical results (Bruderer, 1971; Hedenström et al., 2002; Schmaljohann 
& Liechti, 2009). Our results reveal only a small increase of airspeed 
with height, with a slightly stronger pattern in spring than in autumn, 
but the vertical variation in groundspeed is dominated by the sea-
sonal difference in tail winds.
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