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Investigation of the diagonal 
elements of the Wigner’s reaction 
matrix for networks with violated 
time reversal invariance
Michał Ławniczak & Leszek Sirko

The distributions of the diagonal elements of the Wigner’s reaction K̂  matrix for open systems with 
violated time reversal T invariance in the case of large absorption are for the first time experimentally 
studied. The Wigner’s reaction matrix links the properties of chaotic systems with the scattering 
processes in the asymptotic region. Microwave networks consisting of microwave circulators were used 
in the experiment to simulate quantum graphs with violated T invariance. The distributions of the 
diagonal elements of the reaction K̂  matrix were experimentally evaluated by measuring of the two-
port scattering matrix Ŝ. The violation of T invariance in the networks with large absorption was 
demonstrated by calculating the enhancement factor W of the matrix Ŝ. Our experimental results are in 
very good agreement with the analytic ones attained for the Gaussian unitary ensemble in the random 
matrix theory. The obtained results suggest that the distributions P(ʋ) and P(u) of the imaginary and the 
real parts of the diagonal elements of the Wigner’s reaction K̂  matrix together with the enhancement 
factor W can be used as a powerful tool for identification of systems with violated T symmetry and 
quantification of their absorption.

Quantum chaotic scattering was originally introduced in order to describe processes of nuclear scattering1. It is of 
great interest for understanding properties of large scale complicated quantum systems2–4, however, their control-
lable experimental investigation is difficult and sometimes impossible. For that reason multitude of complicated 
physical problems from the field of quantum chaos are best tackled experimentally with the help of microwave 
networks (graphs) simulating quantum graphs5,6. To emphasize the nomenclature equivalence between micro-
wave networks and microwave graphs we will use both names interchangeably. Quantum graphs as structures of 
vertices connected by edges were first studied by Linus Pauling7. Their usefulness stems from the fact that they 
can be considered as practical models of real physical networks. Quantum graphs provide extremely rich plat-
form for studying properties of bounded quantum systems which are chaotic in the classical limit5,8–15 and open 
systems which display chaotic scattering6,16–18.

To the large variety of systems and models described by quantum graphs belong, e.g., superconducting quan-
tum circuits19, quantum circuits in tunnel junctions20, experimental setups to realize high-dimensional mul-
tipartite quantum states21, discrete-time quantum gravity models22 and functional connectivity in preclinical 
Alzheimer’s disease23.

The microwave networks (graphs) simulate quantum graphs8,9,13 because there is a direct analogy between the 
telegraph equation describing a microwave network and the Schrödinger equation of the corresponding quantum 
graph5,24. This is the only system which allows for the experimental simulation of quantum systems correspond-
ing to all three classical ensembles in the random-matrix theory (RMT): with T invariance belonging to Gaussian 
orthogonal ensemble (GOE)5,17,25,26 and Gaussian symplectic ensemble (GSE)27 as well as systems without T 
invariance belonging to Gaussian unitary ensemble (GUE)5,6,28–30.

Properties of open chaotic systems with T invariance (symmetry index β = 1 in RMT) were comprehensively 
investigated in many important aspects. The statistical distributions of a single port scattering matrix S in the mod-
els including imperfect coupling and direct processes were investigated theoretically and experimentally in refs31–37.
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The distributions P(ʋ) and P(u) of the imaginary and the real parts of the Wigner’s reaction matrix as well 
as the reflection coefficient P(R) were theoretically investigated for all ranges of the dimensionless parameter 
γ = 2πΓ/Δ, characterizing the absorption strength38,39, where Γ and Δ are the width of resonances and the 
mean level spacing, respectively. For microwave chaotic cavities they were experimentally studied in refs40–42 
and for microwave graphs, in the case of medium and large absorption strength γ ≤ 47.7, they were investigated 
in refs17,43–45. It is important to point out that the distribution of the imaginary P(ʋ) parts of the diagonal ele-
ments of the Wigner’s reaction matrix is known in solid-state physics as the local density of states (LDoS)38. The 
enhancement factor W was also studied using microwave networks6, where the investigations were focused on the 
absorption strength γ < 54.4. One should point out that quantum graphs with leads, which are other interesting 
open objects, were in details theoretically studied in refs12,16,18,46.

A different situation exists for open chaotic systems with violated time reversal invariance (symmetry index 
β = 2 in RMT) and large absorption. Such systems have been only fragmentarily experimentally studied so far. In 
refs6,47 the enhancement factor was investigated for microwave networks without T invariance for the absorption 
strength 7 < γ < 62.

Therefore, in this paper we discuss the first experiment which deals with the important characteristics of open 
chaotic systems - the distributions of the diagonal elements of the Wigner’s reaction matrix K̂38,48. The Wigner’s 
reaction K̂  matrix links the properties of chaotic systems (reaction regions) with the scattering processes in the 
asymptotic region. One should mention that off-diagonal entries to the Wigner reaction matrix K̂  were theoreti-
cally studied for T-invariant systems in the limiting case of zero absorption in ref49 while the full predictions for 
the distribution of the off-diagonal entries of the Ŝ matrix was given in ref50. The distributions of the diagonal 
elements of the 2 × 2 reaction K̂  matrix can be obtained from the normalized two-port scattering matrix ŝ  of the 
investigated system which is evaluated in the case of perfect coupling, when direct processes are not present36,42
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where Î  is the 2 × 2 identity matrix. The relationship between the matrix ŝ  and the two-port scattering matrix Ŝ 
measured directly in the experiment will be discussed in details later. The matrix K̂  is also related to the normal-
ized impedance42 = −ˆ ˆ ˆz K iz: .

Our studies are focused on microwave networks without T invariance in the limit of large absorption. One 
should point out that the two-port measurements are also indispensable because at large absorption the convec-
tional measures of T violation such as short- and long-range spectral correlation functions51, e.g., the nearest 
neighbor level spacing distribution or the level variance are useless because the individual levels are not resolved. 
In such a case the enhancement factor W can be used as a sensitive measure of T invariance violation6. The evalu-
ation of the enhancement factor W requires the measurements of the full two-port scattering matrix
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The diagonal elements of Ŝ can be parameterized as

= θS R e , (3)ii i
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where θi and Ri are the phase and the reflection coefficient measured at the ith port of the network.
In the experimental investigations quantum graphs were modeled by microwave networks (graphs). The analogy 

between microwave graphs and quantum graphs stems from the equivalency of the telegraph equation which describes 
the microwave circuits and the Schrödinger equation describing the quantum systems with the same topology5.

A microwave graph contains vertices (microwave joints) connected by edges, e.g., coaxial cables. In the pres-
ent investigations the SMA-RG402 coaxial cables were applied. The SMA-RG402 coaxial cable has a center con-
ductor of radius r1 = 0.05 cm encompassed by a tubular Teflon insulating layer having a dielectric constant 
ε . 2 0652,53. The insulating layer is encompassed by a tubular conductor of radius r2 = 0.15 cm. One should point 
out that inside a coaxial cable below the outset of the TE11 mode can propagate only the fundamental 
transverse-electromagnetic (TEM) mode. For the SMA-RG402 coaxial cable the TE11 mode cut-off frequency is 
ν

π ε+
  33cut

c
r r( )1 2

 GHz54, where c is the speed of light in vacuum. Absorption of the networks was effectively 
controlled by adding to the networks microwave attenuators 1 dB and 2 dB, respectively43,44.

The two-port scattering matrix Ŝ of fully connected hexagon graphs required for evaluation of the Wigner’s 
matrix K̂  and the enhancement factor W was measured using the setup shown in Fig. 1(a). The T violation was 
induced with four Anritsu PE8403 microwave circulators with low insertion loss which operate in the frequency 
range from 7–14 GHz. These are non-reciprocal three-port passive devices. A wave entering the circulator 
through port 1, 2 or 3 exits at port 2, 3, or 1, respectively, as illustrated schematically in Fig. 1(b). Ensembles of 
different microwave networks realizations were created by changing the lengths of four edges of the networks 
using the phase shifters visible in Fig. 1(a).

A vector network analyzer (VNA), Agilent E8364B, was used to measure the scattering matrix Ŝ of the hexa-
gon microwave graphs in the frequency range 7–14 GHz. The networks were connected to the VNA through the 
leads - HP 85133-616 and HP 85133-617 flexible microwave cables - connected to 6-joint vertices. The other four 
vertices of the graphs were 5-joints. Figure 1(a) shows also that to increase absorption of the networks each edge 
of the network contained a microwave attenuator.
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In order to identify T symmetry of the investigated system we used the elastic enhancement factor W6,36,55–62 
of the two-port scattering matrix Ŝ which is defined by the following relation

Figure 1.  The experimental setups for the evaluation of the Wigner’s K̂  matrix. (a) The schematic diagram of the 
experimental setup for measuring the scattering matrix Ŝ of the fully connected microwave networks (graphs) with 
violated T invariance and absorption. (b) The T violation was induced with four Anritsu PE8403 microwave 
circulators. 1 dB and 2 dB attenuators were used to vary absorption in the graphs. Here we show 2 dB attenuators. 
(c) The schematic of the setup for measuring of the two-port radiation scattering matrix Ŝ

r
. The matrix Ŝ

r
 was 

measured at the inputs of the 6-joint vertices. In order to simulate removed to infinity vertices 50 Ω loads were 
connected to the four connectors of these joints. The fifth connector of the 6-joint vertex was connected to fifth 
connector of the another 6-joint vertex in order to account for the direct processes between the 6-joints.
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where var(S12) ≡ 〈|S12|2〉 − |〈S12〉|2 stands for the variance of the matrix element S12. It was established that the 
enhancement factor W for γ  1 is not influenced by the direct processes present in the system55,63–65. For large 
absorption the enhancement factor W depends weakly on the parameter γ36,55, approaching for γ  1 the limit of 
W = 2/β.

In this study we will consider the system in the regime of large absorption where the effective parameter γ, 
which includes the contributions from large internal absorption and two open channels, will be evaluated using 
the single channel distribution P(R) of the reflection coefficient R. It is possible because in the large absorption 
limit the distribution P(R) can be well approximated by the exponential Rayleigh distribution36 which no longer 
depends explicitly on the number of open channels40,66. This property of the distribution P(R) will be discussed 
further in more detail. Moreover, we will show that the same role may play the distributions of the imaginary and 
the real parts of the diagonal elements of the K̂  matrix.

For systems without T invariance (β = 2), the analytic expression for the distribution of the reflection coeffi-
cient R is given by35,39,65
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where α = γβ/2, A = eα − 1 and B = 1 + α − eα.
In the large absorption limit the formula (5) can be well approximated by the exponential Rayleigh 

distribution36

α= .α−P R e( ) (7)R

The probability distribution P0(x) can be also used for calculating the distributions of the imaginary and the 
real parts P(ʋ) and P(u) of the diagonal elements of the Wigner’s K̂  matrix38
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where −ʋ = ImKii < 0 is the imaginary and u = ReKii is the real part of the ith diagonal element of the Wigner’s 
reaction matrix.

In the large absorption limit the formulas (8) and (9) are read as follows36
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Results
For each realization of a microwave graph the absorption strength γ γ= ∑ =i i

1
2 1

2  was evaluated by fitting the the-
oretical mean reflection coefficient

∫〈 〉 =R dRRP R( ), (12)
th

0

1

to the experimental one 〈 〉 = 〈 〉†R s si ii ii  obtained after eliminating the direct processes36,37,43. Here the index i = 1, 2 
denotes the port 1 or 2. Since we deal with microwave systems the direct processes can be also eliminated using 
the impedance approach41,42. In this very elegant method the normalized two-port network scattering matrix ŝ , 
with no direct processes present (perfect coupling case), can be calculated using the formula
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where Î  is the 2 × 2 identity matrix and the normalized impedance ẑ of a chaotic microwave network is given by
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. They are expressed by the network Ŝ and the radiation Ŝ
r
 scattering matrices, 

respectively. ẑ0 is a real 2 × 2 diagonal matrix of characteristic impedance of the network edges attached to the 
6-joint vertices. The two-port radiation scattering matrix Ŝ

r
 was measured at the inputs of the 6-joint vertices. In this 

case 50 Ω loads were connected to the four connectors of these joints to simulate the vertices removed to infinity. 
The fifth connector of the 6-joint vertex was connected to fifth connector of the another 6-joint vertex in order to 
account for the direct processes between the 6-joints. The schematic diagram of the setup for evaluating the radia-
tion matrix Ŝ

r
 of the 6-joint vertices is shown in Fig. 1(c). Moreover, what is the most important in this analysis, the 

diagonal elements of the Wigner’s reaction matrix K̂  can be evaluated using the formula (1).
Figure 2 shows the examples of the modulus |S11| and the phase θ1 of the diagonal element S11 of the matrix Ŝ 

of the microwave graph with γ = 48.4. The measurements were done for the network containing 2 dB attenuators 
in the frequency range 11–13 GHz. Its total “optical” length including phase shifters, circulators, joints and atten-
uators was 789 cm.

In Fig. 3 the experimental distributions of the reflection coefficient P(R) for the two values of the effective 
absorption strength γ: 19.4 ± 3.8 (red open circles) and 48.4 ± 4.5 (red full circles) are shown for the microwave 
networks with T invariance violation. They are obtained by averaging over 250 and 251 realizations of the net-
works containing 1 dB and 2 dB attenuators, respectively. The total “optical” length of the networks including 
edges, phase shifters, joints, attenuators and circulators, was varied, depending on the network configuration, 
from 777 cm to 912 cm.

Figure 2.  An example of the measured S11 element of the two-port scattering matrix Ŝ. Panels (a) and (b) show 
the modulus |S11| and the phase θ1 of the scattering matrix Ŝ measured for the microwave graphs with violated T 
invariance and γ = 48.4 in the frequency range 11–13 GHz. The measurements were done for the graphs 
containing 2 dB attenuators. The total “optical” length of the graph including edges, joints, phase shifters, 
microwave attenuators and circulators was 789 cm.

https://doi.org/10.1038/s41598-019-42123-y
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Figure 3 presents also the corresponding theoretical distributions P(R) (green and blue solid lines) calculated 
from the Eq. (5) for the parameter γ = 19.4 and γ = 48.4, respectively. An overall very good agreement of the 
experimental distributions P(R) with the theoretical ones confirms that the procedure leading to the determina-
tion of the strength parameter γ works very well for systems with violated T invariance.

In the inset in Fig. 3 we show the distributions of the experimental reflection coefficient P(R) in semi-log 
scale. The straight lines ln(P(R)) = aR + b fitted to the experimental results yielded the slopes a = −19.6 ± 0.2 and 
a = −48.9 ± 0.5 for the networks with 1 dB and 2 dB attenuators, respectively. These results clearly demonstrate 
that we deal with large absorption regime described with good approximation by the exponential distribution (7) 
with the exponent α = −a.

In Table 1 the enhancement factor W of the scattering matrix Ŝ of the microwave networks measured for two 
experimental values of the parameter γ is compared to the theoretical prediction Wth. The enhancement factor 
Wth was calculated using the formula (4) by applying the formulas (19) in ref.56 for the variances of the scattering 
matrix elements Sij. In the calculations we used experimentally measured transmission coefficients56 
T1 = 0.58 ± 0.08 and T2 = 0.43 ± 0.05. The internal absorption strength γabs was calculated from the formula 
γabs = γ − T1 − T2. The comparison of the experimental and theoretical results clearly shows that we deal with the 
system with broken T invariance.

Figure 4 shows the experimentally evaluated distributions of the imaginary part of the diagonal elements of 
the Wigner’s reaction matrix P(ʋ) for the microwave graphs with T invariance violation. The results are attained 
for the two values of the parameter γ = 19.4 (red open circles) and γ = 48.4 (red full circles), respectively. The 
experimental results presented in Fig. 4 are generally in good agreement with the theoretical ones denoted by 
green and blue solid lines, respectively. However, the experimental distribution for γ = 19.4 in the vicinity of the 
maximum is slightly shifted towards higher values of the parameter v. In Fig. 4 we also show the theoretical distri-
bution P(ʋ) for the GOE systems (with T invariance) for the same values of the parameter γ = 19.4 (green dashed 
line) and γ = 48.4 (blue dashed line), respectively. We clearly see that the distributions P(ʋ) for the systems with 
violated T invariance are significantly more peaked than the ones with T invariance. They are also shifted towards 
higher values of the parameter v. In the inset in Fig. 4 we show the comparison of the theoretical distribution P(ʋ) 
calculated for the parameter γ = 19.4 using the exact formula (8) (green solid line) with the approximated one 
evaluated from the formula (13) (green triangles). Again we see very good agreement between the approximated 
and exact results confirming that we really work in the regime of large absorption.

In Fig. 5 the distributions of the real part of the diagonal elements of the Wigner’s matrix P(u) are shown 
for the microwave graphs for the two values of the parameter γ = 19.4 (red open circles) and γ = 48.4 (red full 
circles), respectively. The experimental distributions are compared to the theoretical ones which are marked 
by green and blue solid lines, respectively, evaluated from the Eq. (8). In general, good agreement between the 

Figure 3.  Experimentally evaluated distributions of the reflection coefficient P(R) for the microwave graphs 
with violated T invariance at γ = 19.4 (red open cirles) and γ = 48.4 (red full circles). They are compared with 
the theoretical ones calculated from the Eq. (5). The theoretical results are denoted by green (γ = 19.4) and blue 
(γ = 48.4) solid lines, respectively. The inset shows the distributions of the reflection coefficient P(R) in semi-log 
scale. The straight lines ln(P(R)) = aR + b fitted to the experimental results yielded the slopes a = −19.6 ± 0.2 
and a = −48.9 ± 0.5 for the networks with 1 dB and 2 dB attenuators, respectively.

γ W Wth

19.4 ± 3.8 1.01 ± 0.07 1.04

48.4 ± 4.5 1.04 ± 0.10 1.03

Table 1.  The experimental enhancement factor W of the microwave graphs with violated time reversal 
symmetry compared to the theoretical one Wth for two experimental values of the effective parameter γ.

https://doi.org/10.1038/s41598-019-42123-y
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experimental and theoretical results is observed. However, one may indicate that in the vicinity of the maximum 
(−0.1 < u < 0.1) the experimental distribution P(u) for γ = 48.4 lies slightly above the theoretical one. Such a 
behavior of the experimental distribution P(u) suggests the excess of small values of the imaginary part of the 
normalized impedance |Imzii|, whose origin is not known. For comparison, in Fig. 5 we show the theoretical dis-
tribution P(u) for the GOE systems for the same values of the parameter γ = 19.4 (green dashed line) and γ = 48.4 
(blue dashed line), respectively. Similarly to the situation for the distributions P(ʋ) the distributions P(u) for the 
systems with violated T invariance are significantly more peaked than the ones with T invariance. One should 
point out that also in this case the agreement between the exact formula (9) and the approximated one (11) was 
excellent. We do not show the inset with this comparison because the former results obtained for P(R) and P(ʋ) 
distributions have already very firmly proved that we deal with the regime of large absorption.

Figure 4.  Experimentally evaluated distributions of the imaginary part of the diagonal elements of the Wigner’s 
matrix P(ʋ) for the microwave graphs with violated T invariance for two values of the mean absorption 
parameter γ = 19.4 (red open circles) and γ = 48.4 (red full circles). The theoretical distributions P(ʋ) evaluated 
from the Eq. (8) are marked by green (γ = 19.4) and blue (γ = 48.4) solid lines, respectively. The theoretical 
distribution P(ʋ) for the GOE systems (with T invariance) for the same values of the parameter γ = 19.4 and 
γ = 48.4 are shown with green and blue dashed lines, respectively. The inset shows the comparison of the 
theoretical distribution P(ʋ) calculated for the parameter γ = 19.4 from the exact formula (8) (green solid line) 
with the approximated one evaluated from the formula (13) (green triangles).

Figure 5.  Experimentally evaluated distributions of the real part of the diagonal elements of the Wigner’s 
matrix P(u) for the microwave graphs with violated T invariance for two values of the mean absorption 
parameter γ = 19.4 (red open circles) and γ = 48.4 (red full circles). The experimental results are compared to 
the theoretical ones evaluated from the Eq. (12): green (γ = 19.4) and blue (γ = 48.4) solid lines, respectively. 
The theoretical distributions P(u) for the systems with T invariance for the same values of the parameter 
γ = 19.4 and γ = 48.4 are shown with green and blue dashed lines, respectively.

https://doi.org/10.1038/s41598-019-42123-y
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Conclusions
We present the first experimental investigation of the distributions P(ʋ) and P(u) of the imaginary and the real 
parts of the diagonal elements of the Wigner’s K̂  matrix for irregular microwave graphs with broken time-reversal 
invariance in the case of large absorption. We showed that the experimentally evaluated distributions P(ʋ) and 
P(u) are in good agreement with the theoretical ones. In this study the effective absorption strength γ was evalu-
ated using the distribution of the reflection coefficient P(R). However, a posteriori, we clearly see that the distribu-
tions P(ʋ) and P(u) can also be used for the same purpose. Their advantage over the reflection coefficient P(R) 
stems from the fact that in the case of the diagonal elements of the Wigner’s reaction K̂  matrix we deal with a 
self-consistent method which simultaneously uses both distributions P(ʋ) and P(u). Therefore, our results suggest 
that the distributions P(ʋ) and P(u) of the imaginary and the real parts of the diagonal elements of the Wigner’s 
reaction K̂  matrix together with the enhancement factor W can be used as a very powerful tool for identification 
of systems with violated T symmetry and evaluation of their absorption strength γ. This is especially important in 
the limit of large absorption where the other measures connected with the short- and long-range spectral corre-
lation functions cannot be applied.

References
	 1.	 Wigner, E. P. On a class of analytic functions from the quantum theory of collisions. Ann. Math. 53, 36, https://doi.

org/10.2307/1969342 (1951).
	 2.	 Stöckmann, H.-J. Cambridge University Press, Cambridge. (Quantum Chaos 2000).
	 3.	 Haake, F. Springer-Verlag, Heidelberg. (Quantum Signatures of Chaos 2001).
	 4.	 Weidenmüller, H. A. & Mitchell, G. E. Random matrices and chaos in nuclear physics: Nuclear structure. Rev. Mod. Phys. 81, 539, 

https://doi.org/10.1103/RevModPhys.81.539 (2009).
	 5.	 Hul, O. et al. Experimental simulation of quantum graphs by microwave networks. Phys. Rev. E 69, 056205, https://doi.org/10.1103/

PhysRevE.69.056205 (2004).
	 6.	 Ławniczak, M., Bauch, S., Hul, O. & Sirko, L. Experimental investigation of the enhancement factor for microwave irregular 

networks with preserved and broken time reversal symmetry in the presence of absorption. Phys. Rev. E 81, 046204, https://doi.
org/10.1103/PhysRevE.81.046204 (2010).

	 7.	 Pauling, L. J. The diamagnetic anisotropy of aromatic molecules. Chem. Phys. 4, 673, https://doi.org/10.1063/1.1749766 (1936).
	 8.	 Kottos, T. & Smilansky, U. Quantum chaos on graphs. Phys. Rev. Lett. 79, 4794, https://doi.org/10.1103/PhysRevLett.79.4794 (1997).
	 9.	 Kottos, T. & Smilansky, U. Periodic orbit theory and spectral statistics for quantum graphs. Ann. Phys. 274, 76, https://doi.

org/10.1006/aphy.1999.5904 (1999).
	10.	 Tanner, G. Spectral statistics for unitary transfer matrices of binary graphs. J. Phys. A 33, 3567, https://doi.org/10.1088/0305-

4470/33/18/304 (2000).
	11.	 Barra, F. & Gaspard, P. On the level spacing distribution in quantum graphs. Journal of Statistical Physics 101, 283, https://doi.

org/10.1023/A:1026495012522 (2000).
	12.	 Kottos, T. & Schanz, H. Quantum graphs: a model for quantum chaos. Physica E 9, 523, https://doi.org/10.1016/S1386-

9477(00)00257-5 (2001).
	13.	 Pakoński, P., Życzkowski, K. & Kuś, M. Classical 1D maps, quantum graphs and ensembles of unitary matrices. J. Phys. A 34, 9303, 

https://doi.org/10.1088/0305-4470/34/43/313 (2001).
	14.	 Blümel, R., Dabaghian, Y. & Jensen, R. V. Explicitly solvable cases of one-dimensional quantum chaos. Phys. Rev. Lett. 88, 044101, 

https://doi.org/10.1103/PhysRevLett.88.044101 (2002).
	15.	 Pakoński, P., Tanner, G. & Życzkowski, K. Families of line-graphs and their quantization. J. Stat. Phys. 111, 1331, https://doi.

org/10.1023/A:1023012502046 (2003).
	16.	 Kottos, T. & Smilansky, U. Chaotic scattering on graphs. Phys. Rev. Lett. 85, 968, https://doi.org/10.1103/PhysRevLett.85.968 (2000).
	17.	 Ławniczak, M., Hul, O., Bauch, S., Seba, P. & Sirko, L. Experimental and numerical investigation of the reflection coefficient and the 

distributions of Wigner’s reaction matrix for irregular graphs with absorption. Phys. Rev. E 77, 056210, https://doi.org/10.1103/
PhysRevE.77.056210 (2008).

	18.	 Pluhař, Z. & Weidenmüller, H. A. Universal quantum graphs. Phys. Rev. Lett. 112, 144102, https://doi.org/10.1103/
PhysRevLett.112.144102 (2014).

	19.	 Jooya, H. Z., Reihani, K. & Chu, S.-I. A graph-theoretical representation of multiphoton resonance processes in superconducting 
quantum circuits. Sci. Rep. 6, 37544, https://doi.org/10.1038/srep37544 (2016).

	20.	 Namarvar, O. F., Dridi, G. & Joachim, C. Parallel quantum circuit in a tunnel junction. Sci. Rep. 6, 30198, https://doi.org/10.1038/
srep30198 (2016).

	21.	 Krenn, M., Gu, X. & Zeilinger, A. Quantum experiments and graphs: multiparty states as coherent superpositions of perfect 
matchings. Phys. Rev. Lett. 119, 240403, https://doi.org/10.1103/PhysRevLett.119.240403 (2017).

	22.	 Arrighi, P. & Martiel, S. Quantum causal graph dynamics. Phys. Rev. D 96, 024026, https://doi.org/10.1103/PhysRevD.96.024026 
(2017).

	23.	 Brier, M. R. et al. Functional connectivity and graph theory in preclinical Alzheimer’s disease. Neurobiology of Aging 35, 757, https://
doi.org/10.1016/j.neurobiolaging.2013.10.081 (2014).

	24.	 Ławniczak, M., Bauch, S., Sirko, L. Handbook of Applications of Chaos Theory. CRC Press, Boca Raton USA eds. Christos Skiadas and 
Charilaos Skiadas, 559 (2016).

	25.	 Hul, O. et al. Are scattering properties of graphs uniquely connected to their shapes? Phys. Rev. Lett 109, 040402, https://doi.
org/10.1103/PhysRevLett.109.040402 (2012).

	26.	 Dietz, B. et al. Nonuniversality in the spectral properties of time-reversal-invariant microwave networks and quantum graphs. Phys. 
Rev. E 95, 052202, https://doi.org/10.1103/PhysRevE.95.052202 (2017).

	27.	 Rehemanjiang, A. et al. Microwave realization of the Gaussian Symplectic Ensemble. Phys. Rev. Lett. 117, 064101, https://doi.
org/10.1103/PhysRevLett.117.064101 (2016).

	28.	 Allgaier, M., Gehler, S., Barkhofen, S., Stöckmann, H.-J. & Kuhl, U. Spectral properties of microwave graphs with local absorption. 
Phys. Rev. E 89, 022925, https://doi.org/10.1103/PhysRevE.89.022925 (2014).

	29.	 Białous, M. et al. Power spectrum analysis and missing level statistics of microwave graphs with violated time reversal invariance. 
Phys. Rev. Lett. 117, 144101, https://doi.org/10.1103/PhysRevLett.117.144101 (2016).

	30.	 Ławniczak, M. et al. Analysis of missing level statistics for microwave networks simulating quantum chaotic graphs without time 
reversal symmetry - the case of randomly lost resonances. Acta Phys. Pol. A 132, 1672–1676, https://doi.org/10.12693/
APhysPolA.132.1672 (2017).

	31.	 López, G., Mello, P. A. & Seligman, T. H. The statistical distribution of the S-matrix in the one-channel case. Z. Phys. A 302, 351, 
https://doi.org/10.1007/BF01414267 (1981).

https://doi.org/10.1038/s41598-019-42123-y
https://doi.org/10.2307/1969342
https://doi.org/10.2307/1969342
https://doi.org/10.1103/RevModPhys.81.539
https://doi.org/10.1103/PhysRevE.69.056205
https://doi.org/10.1103/PhysRevE.69.056205
https://doi.org/10.1103/PhysRevE.81.046204
https://doi.org/10.1103/PhysRevE.81.046204
https://doi.org/10.1063/1.1749766
https://doi.org/10.1103/PhysRevLett.79.4794
https://doi.org/10.1006/aphy.1999.5904
https://doi.org/10.1006/aphy.1999.5904
https://doi.org/10.1088/0305-4470/33/18/304
https://doi.org/10.1088/0305-4470/33/18/304
https://doi.org/10.1023/A:1026495012522
https://doi.org/10.1023/A:1026495012522
https://doi.org/10.1016/S1386-9477(00)00257-5
https://doi.org/10.1016/S1386-9477(00)00257-5
https://doi.org/10.1088/0305-4470/34/43/313
https://doi.org/10.1103/PhysRevLett.88.044101
https://doi.org/10.1023/A:1023012502046
https://doi.org/10.1023/A:1023012502046
https://doi.org/10.1103/PhysRevLett.85.968
https://doi.org/10.1103/PhysRevE.77.056210
https://doi.org/10.1103/PhysRevE.77.056210
https://doi.org/10.1103/PhysRevLett.112.144102
https://doi.org/10.1103/PhysRevLett.112.144102
https://doi.org/10.1038/srep37544
https://doi.org/10.1038/srep30198
https://doi.org/10.1038/srep30198
https://doi.org/10.1103/PhysRevLett.119.240403
https://doi.org/10.1103/PhysRevD.96.024026
https://doi.org/10.1016/j.neurobiolaging.2013.10.081
https://doi.org/10.1016/j.neurobiolaging.2013.10.081
https://doi.org/10.1103/PhysRevLett.109.040402
https://doi.org/10.1103/PhysRevLett.109.040402
https://doi.org/10.1103/PhysRevE.95.052202
https://doi.org/10.1103/PhysRevLett.117.064101
https://doi.org/10.1103/PhysRevLett.117.064101
https://doi.org/10.1103/PhysRevE.89.022925
https://doi.org/10.1103/PhysRevLett.117.144101
https://doi.org/10.12693/APhysPolA.132.1672
https://doi.org/10.12693/APhysPolA.132.1672
https://doi.org/10.1007/BF01414267


9Scientific Reports |          (2019) 9:5630  | https://doi.org/10.1038/s41598-019-42123-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

	32.	 Doron, E. & Smilansky, U. Some recent developments in the quantum theory of chaotic scattering. Nucl. Phys. A 545, 455, https://
doi.org/10.1016/0375-9474(92)90484-2 (1992).

	33.	 Brouwer, P. W. Generalized circular ensemble of scattering matrices for a chaotic cavity with nonideal leads. Phys. Rev. B 51, 16878, 
https://doi.org/10.1103/PhysRevB.51.16878 (1995).

	34.	 Savin, D. V., Fyodorov, Y. V. & Sommers, H.-J. Reducing nonideal to ideal coupling in random matrix description of chaotic 
scattering: Application to the time-delay problem. Phys. Rev. E 63, 035202, https://doi.org/10.1103/PhysRevE.63.035202 (2001).

	35.	 Fyodorov, Y. V. Induced vs. Spontaneous breakdown of S-matrix unitarity: Probability of no return in quantum chaotic and 
disordered systems. JETP Letters 78, 250, https://doi.org/10.1134/1.1622041 (2003).

	36.	 Fyodorov, Y. V., Savin, D. V. & Sommers, H.-J. Scattering, reflection and impedance of waves in chaotic and disordered systems with 
absorption. J. Phys. A 38, 10731, https://doi.org/10.1088/0305-4470/38/49/017 (2005).

	37.	 Kuhl, U., Martinez-Mares, M., Méndez-Sánchez, R. A. & Stöckmann, H.-J. Direct processes in chaotic microwave cavities in the 
presence of absorption. Phys. Rev. Lett. 94, 144101, https://doi.org/10.1103/PhysRevLett.94.144101 (2005).

	38.	 Fyodorov, Y. V. & Savin, D. V. Statistics of impedance, local density of states, and reflection in quantum chaotic systems with 
absorption. JETP Letters 80, 725, https://doi.org/10.1134/1.1868794 (2004).

	39.	 Savin, D. V., Sommers, H.-J. & Fyodorov, Y. V. Universal statistics of the local Green’s function in wave chaotic systems with 
absorption. JETP Letters 82, 544, https://doi.org/10.1134/1.2150877 (2005).

	40.	 Méndez-Sánchez, R. A., Kuhl, U., Barth, M., Lewenkopf, C. V. & Stöckmann, H.-J. Distribution of reflection coefficients in absorbing 
chaotic microwave cavities. Phys. Rev. Lett. 91, 174102–1, https://doi.org/10.1103/PhysRevLett.91.174102 (2003).

	41.	 Hemmady, S., Zheng, X., Ott, E., Antonsen, T. M. & Anlage, S. M. Universal impedance fluctuations in wave chaotic systems. Phys. 
Rev. Lett. 94, 014102, https://doi.org/10.1103/PhysRevLett.94.014102 (2005).

	42.	 Hemmady, S. et al. Universal properties of two-port scattering, impedance, and admittance matrices of wave-chaotic systems. Phys. 
Rev. E 74, 036213, https://doi.org/10.1103/PhysRevE.74.036213 (2006).

	43.	 Hul, O., Tymoshchuk, O., Bauch, S., Koch, P. M. & Sirko, L. Experimental and numerical determination of the correlation function 
of level velocities for microwave networks simulating quantum graphs. J. Phys. A 38, 10489, https://doi.org/10.1088/0031-
8949/2013/T153/014041 (2005).

	44.	 Hul, O., Bauch, S., Ławniczak, M. & Sirko, L. Experimental investigation of reflection coefficient and Wigner’s reaction matrix for 
microwave graphs. Acta Phys. Pol. A 112, 655, https://doi.org/10.12693/APhysPolA.120.A-185 (2007).

	45.	 Ławniczak, M., Bauch, S., Hul, O. & Sirko, L. Experimental investigation of properties of hexagon networks with and without time 
reversal symmetry. Phys. Scr. T135, 014050, https://doi.org/10.1088/0031-8949/2009/135/014050 (2009).

	46.	 Exner, P. & Lipovský, J. Non-Weyl resonance asymptotics for quantum graphs in a magnetic field. Phys. Lett. A 375, 805, https://doi.
org/10.1016/j.physleta.2010.12.042 (2011).

	47.	 Ławniczak, M., Bauch, S., Hul, O. & Sirko, L. Experimental investigation of the enhancement factor and the cross-correlation 
function for graphs with and without time-reversal symmetry: the open system case. Phys. Scr. T143, 014014, https://doi.
org/10.1088/0031-8949/2011/T143/014014 (2011).

	48.	 Akguc, G. & Reichl, L. E. Effect of evanescent modes and chaos on deterministic scattering in electron waveguides. Phys. Rev. E 64, 
056221, https://doi.org/10.1103/PhysRevE.64.056221 (2001).

	49.	 Fyodorov, Y. V. & Nock, A. On Random Matrix Averages Involving Half-Integer Powers of GOE Characteristic Polynomials. J. Stat. 
Phys. 159, 731–751, https://doi.org/10.1007/s10955-015-1209-x (2015).

	50.	 Nock, A., Kumar, S., Sommers, H. J. & Guhr, T. Distributions of off-diagonal scattering matrix elements: Exact results. Annals of 
Physics 342, 103–132, https://doi.org/10.1016/j.aop.2013.11.006 (2014).

	51.	 Mehta, M. L. Random Matrices. Academic Press, London (1990).
	52.	 Breeden, K. H. & Sheppard, A. P. Reply to L. V. Blake’s Comments. Radio Sci. 3, 205, https://doi.org/10.1002/rds196839976 (1968).
	53.	 Savytskyy, N., Kohler, A., Bauch, S., Blümel, R. & Sirko, L. Parametric correlations of the energy levels of ray-splitting billiards. Phys. 

Rev. E 64, 036211, https://doi.org/10.1103/PhysRevE.64.036211 (2001).
	54.	 Jones, D. S. Theory of Electromagnetism. Pergamon Press, Oxford, 254 (1964).
	55.	 Savin, D. V., Fyodorov, Y. V. & Sommers, H.-J. Correlation functions of impedance and scattering matrix elements in chaotic 

absorbing cavities. Acta Physica Polonica A 109, 53, https://doi.org/10.12693/APhysPolA.109.53 (2006).
	56.	 Dietz, B. et al. Quantum chaotic scattering in microwave resonators. Phys. Rev. E 81, 036205, https://doi.org/10.1103/

PhysRevE.81.036205 (2010).
	57.	 Ławniczak, M., Bauch, S., Hul, O. & Sirko, L. Experimental investigation of microwave networks simulating quantum chaotic 

systems: the role of direct processes. Phys. Scr. T147, 014018, https://doi.org/10.1088/0031-8949/2012/T147/014018 (2012).
	58.	 Kharkov, Y. & Sokolov, V. Elastic enhancement factor as a quantum chaos probe. Physics Letters B 718, 1562, https://doi.

org/10.1016/j.physletb.2012.12.054 (2013).
	59.	 Sokolov, V. & Zhirov, O. Elastic enhancement factor: From mesoscopic systems to macroscopic analogous devices. Phys. Rev. E 91, 

052917, https://doi.org/10.1103/PhysRevE.91.052917 (2015).
	60.	 Ławniczak, M., Białous, M., Yunko, V., Bauch, S. & Sirko, L. Experimental investigation of the elastic enhancement factor in a 

transient region between regular and chaotic dynamics. Phys. Rev. E 91, 032925, https://doi.org/10.1103/PhysRevE.91.032925 
(2015).

	61.	 Ławniczak, M., Białous, M., Yunko, V., Bauch, S. & Sirko, L. Numerical and experimental studies of the elastic enhancement factor 
for 2D Open Systems. Acta Phys. Pol. A 128, 974, https://doi.org/10.12693/APhysPolA.128.974 (2015).

	62.	 Zheng, X., Hemmady, S., Antonsen, T. M. Jr., Anlage, S. M. & Ott, E. Characterization of fluctuations of impedance and scattering 
matrices in wave chaotic scattering. Phys. Rev. E 73, 046208, https://doi.org/10.1103/PhysRevE.73.046208 (2006).

	63.	 Michielsen, B., Isaac, F., Junqua, I., Fiachetti, C. Universal fluctuations in response parameters of systems in isotropic random 
environments. arxiv:math-ph/0702041v1 13 Feb. (2007).

	64.	 Yeh, J.-H. et al. Impedance and scattering variance ratios of complicated wave scattering systems in the low loss regime. Acta Phys. 
Pol. A 124, 1045, https://doi.org/10.12693/APhysPolA.124.1045 (2013).

	65.	 Beenakker, C. W. J. & Brouwer, P. W. Distribution of the reflection eigenvalues of a weakly absorbing chaotic cavity. Physica E 9, 463, 
https://doi.org/10.1016/S1386-9477 (2001).

	66.	 Kogan, E., Mello, P. A. & Liqun, H. Wave scattering through classically chaotic cavities in the presence of absorption: An 
information-theoretic model. Phys. Rev. E 61, R17, https://doi.org/10.1103/PhysRevE.61.R17 (2000).

Acknowledgements
This work was supported in part by the National Science Centre Grant No. UMO-2016/23/B/ST2/03979.

Author Contributions
M.Ł. performed the experiment. M.Ł. and L.S. provided the interpretations and wrote the manuscript. All authors 
reviewed the manuscript.

https://doi.org/10.1038/s41598-019-42123-y
https://doi.org/10.1016/0375-9474(92)90484-2
https://doi.org/10.1016/0375-9474(92)90484-2
https://doi.org/10.1103/PhysRevB.51.16878
https://doi.org/10.1103/PhysRevE.63.035202
https://doi.org/10.1134/1.1622041
https://doi.org/10.1088/0305-4470/38/49/017
https://doi.org/10.1103/PhysRevLett.94.144101
https://doi.org/10.1134/1.1868794
https://doi.org/10.1134/1.2150877
https://doi.org/10.1103/PhysRevLett.91.174102
https://doi.org/10.1103/PhysRevLett.94.014102
https://doi.org/10.1103/PhysRevE.74.036213
https://doi.org/10.1088/0031-8949/2013/T153/014041
https://doi.org/10.1088/0031-8949/2013/T153/014041
https://doi.org/10.12693/APhysPolA.120.A-185
https://doi.org/10.1088/0031-8949/2009/135/014050
https://doi.org/10.1016/j.physleta.2010.12.042
https://doi.org/10.1016/j.physleta.2010.12.042
https://doi.org/10.1088/0031-8949/2011/T143/014014
https://doi.org/10.1088/0031-8949/2011/T143/014014
https://doi.org/10.1103/PhysRevE.64.056221
https://doi.org/10.1007/s10955-015-1209-x
https://doi.org/10.1016/j.aop.2013.11.006
https://doi.org/10.1002/rds196839976
https://doi.org/10.1103/PhysRevE.64.036211
https://doi.org/10.12693/APhysPolA.109.53
https://doi.org/10.1103/PhysRevE.81.036205
https://doi.org/10.1103/PhysRevE.81.036205
https://doi.org/10.1088/0031-8949/2012/T147/014018
https://doi.org/10.1016/j.physletb.2012.12.054
https://doi.org/10.1016/j.physletb.2012.12.054
https://doi.org/10.1103/PhysRevE.91.052917
https://doi.org/10.1103/PhysRevE.91.032925
https://doi.org/10.12693/APhysPolA.128.974
https://doi.org/10.1103/PhysRevE.73.046208
https://doi.org/10.12693/APhysPolA.124.1045
https://doi.org/10.1016/S1386-9477
https://doi.org/10.1103/PhysRevE.61.R17


1 0Scientific Reports |          (2019) 9:5630  | https://doi.org/10.1038/s41598-019-42123-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-42123-y
http://creativecommons.org/licenses/by/4.0/

	Investigation of the diagonal elements of the Wigner’s reaction matrix for networks with violated time reversal invariance

	Results

	Conclusions

	Acknowledgements

	Figure 1 The experimental setups for the evaluation of the Wigner’s matrix.
	Figure 2 An example of the measured S11 element of the two-port scattering matrix .
	Figure 3 Experimentally evaluated distributions of the reflection coefficient P(R) for the microwave graphs with violated T invariance at γ = 19.
	Figure 4 Experimentally evaluated distributions of the imaginary part of the diagonal elements of the Wigner’s matrix P(ʋ) for the microwave graphs with violated T invariance for two values of the mean absorption parameter γ = 19.
	Figure 5 Experimentally evaluated distributions of the real part of the diagonal elements of the Wigner’s matrix P(u) for the microwave graphs with violated T invariance for two values of the mean absorption parameter γ = 19.
	Table 1 The experimental enhancement factor W of the microwave graphs with violated time reversal symmetry compared to the theoretical one Wth for two experimental values of the effective parameter γ.




