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Abstract: Lentil (Lens culinaris Medikus) is an important source of protein for people in developing
countries. Aphanomyces root rot (ARR) has emerged as one of the most devastating diseases affecting
lentil production. In this study, we applied two complementary quantitative trait loci (QTL) analysis
approaches to unravel the genetic architecture underlying this complex trait. A recombinant inbred
line (RIL) population and an association mapping population were genotyped using genotyping
by sequencing (GBS) to discover novel single nucleotide polymorphisms (SNPs). QTL mapping
identified 19 QTL associated with ARR resistance, while association mapping detected 38 QTL and
highlighted accumulation of favorable haplotypes in most of the resistant accessions. Seven QTL
clusters were discovered on six chromosomes, and 15 putative genes were identified within the QTL
clusters. To validate QTL mapping and genome-wide association study (GWAS) results, expression
analysis of five selected genes was conducted on partially resistant and susceptible accessions.
Three of the genes were differentially expressed at early stages of infection, two of which may be
associated with ARR resistance. Our findings provide valuable insight into the genetic control of
ARR, and genetic and genomic resources developed here can be used to accelerate development of
lentil cultivars with high levels of partial resistance to ARR.
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1. Introduction

Lentil (Lens culinaris Medikus), an important grain legume, is widely grown throughout the
world with an annual production of 7.8 million tons [1]. In 2017, the major producers of lentils were
Canada (48.1%), India (15.7%), Turkey (5.5%), United States (4.4%), and Kazakhstan (4.0%). Lentils
have high concentrations of protein, minerals, carbohydrates, and fiber and are an inexpensive food
that can help alleviate malnutrition in developing countries. Through a symbiotic association with
Rhizobium leguminosarum, lentils are able to fix atmospheric nitrogen, which offers significant benefits
in cereal-based cropping systems [2].

Root rot disease caused by Aphanomyces euteiches Drechs. is one of most devastating diseases
in lentil production and can cause yield losses up to 80% [3]. A. euteiches belongs to the phylum
Oomycota, and this soil-borne pathogen has a wide host range within Fabaceae, including pea, lentil,
faba bean, dry bean, alfalfa, and red clover [3–6]. Species-specific A. euteiches isolates were reported by
Moussart et al. [7], Malvick and Percich [8], and Levenfors et al. [9]. Aphanomyces root rot (ARR) was
first described by Jones and Drechsler in 1927 and was reported as a prevalent pathogen in pea fields
worldwide. Kraft et al. [10] determined that the progress of the disease in lentil was rapid and severe,
and none of the cultivars and the accessions they evaluated were resistant. Further testing of lentil
cultivars with a French isolate confirmed the lack of resistance in lentil lines [7]. While it was known
previously, lentil root rot caused by A. euteiches was first identified in the US in 2008 [11] and in Canada
in 2012 [12]. It is now recognized to be widespread in lentil growing areas across most of the northern
Great Plains of the U.S. and Canada [13,14]. The severe root damage caused by A. euteiches dramatically
restricts water and nutrient transport from the roots and results in stunted plants and tremendous
yield loss [15]. The thick-walled oospores can survive in soil more than 10 years [16], making crop
rotation an ineffective method of disease management. Given that limited information exists regarding
the pathogenic variability and the physiologic specialization of this pathogen, comprehensive races of
A. euteiches have not been identified [17]. Nevertheless, differences in the ability of different isolates to
infect plants were well characterized, and two Pathotypes (I and III) were identified. Pathotypes I and
III were found in North America, while only Pathotype I was documented in France [18]. Cultural
practices, fungicides, biological control, and soil fumigants are undesirable approaches to manage ARR,
as they were proven to be either ineffective or environmentally unfriendly [15]. The most effective,
economical, and sustainable management of ARR is utilizing genetic resistance in the development of
cultivars with high levels of partial resistance.

However, no lentil cultivars resistant to ARR are currently available, which makes economic loss
and the costs of managing this disease significant. Developing other legume cultivars with resistance to
ARR through traditional breeding has been hampered by the difficulty of pyramiding resistance genes
given the polygenic nature of inheritance [19]. A genome-wide approach provides an unprecedented
opportunity for breeding programs to accelerate the development of lentil cultivars with high levels
of resistance to ARR. Limited genetic and genomic resources have been available for lentil due to
its relatively large genome (~4.2 GB) and minor crop status. Recently, an international collaboration
developed a draft lentil genome reference [20] and the advent of inexpensive, high-throughput
sequencing and marker development made possible genetic and genomic research required to
investigate highly quantitative characteristics in lentil [21]. Quantitative trait loci (QTL) analysis, by
integrating genome-wide association study (GWAS) and QTL mapping, is an efficient and effective
approach to unravel genetic architecture and detect variations underlying complex traits, particularly
polygenic resistance to plant disease [22–24]. Over the last two decades, QTL mapping has become
a powerful tool in identifying genomic regions associated with traits of interests in bi-parental
populations. The low allelic diversity and recombination rates in bi-parental populations, however,
limit the ability to detect natural variations in diverse genetic backgrounds. To overcome the limitations
inherent in QTL mapping, GWAS is able to assess wider genetic diversity and probe greater amounts
of recombination due to the evolutionary history of natural populations. By mitigating each other’s
limitations, combining the two QTL analysis approaches provides a complementary, powerful, and
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robust assay to uncover the genetic basis underlying complex traits [25]. Moreover, with the advent
of plant sensing technologies, image-based high-throughput phenotyping enables acquisition of
high-quality phenotypic data rapidly, accurately, and objectively [26]. Integration of traditional and
image-based phenotyping tools offers us a robust assay to uncover the genetic basis underlying
complex traits.

Due to the relatively recent identification of ARR and the lack of genomic resources in lentil,
no QTL studies on this disease have been reported in lentil to date. Conversely, the genomic regions
associated with ARR resistance in pea and Medicago are well characterized. Twenty-seven meta-QTL
were identified in pea in four recombinant inbred line (RIL) populations, seven of which were major
resistance QTL detected consistently across multiple environments [27]. Subsequently, GWAS validated
seven major resistance QTL and discovered numerous novel QTL associated with resistance to ARR in
pea [19,28]. In Medicago truncatula, a candidate gene encoding an F-box protein was identified, using
GWAS, as a negative regulator of resistance to ARR [29]. To bridge the gap between ARR genetic
and genomic knowledge and breeding application in lentil, in the present work, we performed QTL
mapping and GWAS to discover genomic regions associated with genetic resistance to A. euteiches
in lentil. We investigated the genetic variations in a USDA lentil single plant-derived (LSP) core
collection, an international collection from the International Center for Agricultural Research in the Dry
Areas (ICARDA), and an RIL population derived from a susceptible line and a partially resistant line.
We integrated large-scale single nucleotide polymorphism (SNP) data generated via genotyping by
sequencing (GBS) and high-throughput image-based phenotyping to decipher the genetic architecture.
This study provides promising insights of ARR resistance in lentil and will accelerate the development
of resistant cultivars.

2. Results

2.1. Phenotypic Data Analysis

The RIL population evaluated for reaction to A. euteiches in a controlled condition (189 RILs)
and an infested field condition (173 RILs) displayed transgressive segregation for all the resistance
traits (Supplementary Figure S1). The analysis of variance (ANOVA), shown in Table 1, indicated all
the genotypes had significant differences for each of the resistance traits (p < 0.05). In terms of the
environmental (replicate) effects, there were no significant differences for most of the traits; however,
shoot dry weight loss per plant (SDL), root dry weight loss per plant (RDL), average intensity of
blue channel acquired from an Red-Green-Blue (RGB) camera (RGB.blue), above ground index (AGI),
and canopy area acquired from a multispectral camera (Multispectral.canopy) showed significant
environmental effects. Broad-sense heritability appeared to be relatively low in the RIL population and
ranged from 0.05 (Multispectral.canopy) to 0.52 (RGB.blue) (Table 1). Frequency distributions of most
traits fit normal curves, whereas SDL, RDL, number of pixels loss per plant in shoot acquired from an
RGB camera (RGB.SPL), and number of pixels loss per plant in root acquired from an RGB camera
(RGB.RPL) had moderately skewed distributions toward high scores. All the traditional ARR traits,
root rot index (RRI), SDL, RDL, and AGI, were significantly and positively correlated with each other
(p < 0.01) except between AGI and SDL/RDL. The correlation coefficient analysis showed correlations
between the two environments were relatively low (0.15 <|r|< 0.30). Image-derived traits, RGB.blue,
standard deviation of saturation channel acquired from an RGB camera (RGB.saturation), RGB.SPL,
RGB.RPL, standard deviation of normalized difference vegetation index acquired from a multispectral
camera (Multispectral.NDVI), and Multispectral.canopy, were significantly and highly correlated with
corresponding traditional ARR traits (0.15 < |r| < 0.82) (Figure 1).
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Table 1. Statistical analysis results of all the Aphanomyces root rot (ARR) resistance traits in the recombinant inbred line (RIL) population and the association
mapping population.

Population Trait a Number
of Lines

Number of
Observations Min b Max b Mean b SE b Skew c Kurtosis c Normality Test d,f G Effect e,f R Effect e,f H2 e

RIL RRI 189 1564 0 5 1.54 0.04 0.19 0.30 ns *** ns 0.24
SDL 189 551 1 4 1.69 0.03 0.76 0.70 *** *** * 0.10
RDL 189 554 1 4 1.9 0.04 0.71 1.02 *** *** * 0.13

RGB.blue 189 1563 131.19 197.79 171.2 0.27 −0.21 −0.18 ns *** *** 0.52
RGB.saturation 189 1563 0.05 0.17 0.10 0.00 0.30 −0.24 ns *** ns 0.47

RGB.SPL 189 541 1 5 1.54 0.03 0.58 −0.13 *** *** ns 0.17
RGB.RPL 189 541 1 5 1.65 0.03 0.72 −0.02 *** *** ns 0.21

AGI 173 505 0.31 4.81 2.58 0.03 0.09 −0.20 ns *** * 0.13
Multispectral.NDVI 173 497 0.01 0.24 0.12 0.00 0.06 −0.11 ns ** ns 0.13
Multispectral.canopy 173 497 −0.19 0.93 0.33 0.01 −0.04 0.25 ns * * 0.05

Association RRI 326 3052 0 5 3.35 0.01 −1.05 2.07 *** *** *** 0.73
SDL 326 2910 1 5 2.19 0.02 0.28 −0.81 ns *** *** 0.53
RDL 326 2911 1 5 2.11 0.02 0.62 −0.62 *** *** *** 0.50

RGB.blue 326 3052 50.53 119.67 79.82 0.20 0.41 −0.06 *** *** *** 0.62
RGB.saturation 326 3052 0.31 0.43 0.38 0.00 −0.20 0.12 ** *** *** 0.73

RGB.SPL 326 2895 1 5 2.57 0.02 −0.08 −0.78 * *** *** 0.50
RGB.RPL 326 2895 1 5 2.52 0.02 0.16 −0.93 ns *** *** 0.54

a ARR resistance traits are abbreviated as follows: RRI-root rot index, SDL-shoot dry weight loss per plant, RDL-root dry weight loss per plant, RGB.blue-average intensity of blue channel
acquired from an RGB camera, RGB.saturation-standard deviation of saturation channel acquired from an RGB camera, RGB.SPL-number of pixels loss per plant in shoot acquired from an
RGB camera, RGB.RPL-number of pixels loss per plant in root acquired from an RGB camera, AGI-above ground index, Multispectral.canopy-canopy area acquired from a multispectral
camera, Multispectral.NDVI-standard deviation of normalized difference vegetation index acquired from a multispectral camera. b Minimum, maximum, mean, and standard error. c Skew
and Kurtosis values used for testing normality. d Normality tested by Shapiro–Wilk test. e G effect: genotype effect; R effect: replicate effect; H2: heritability. f *** < 0.001, ** < 0.01, * < 0.05,
not significant (ns) > 0.05.
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Figure 1. Heatmaps of correlation coefficients between the ARR resistance traits in (a) the RIL 
population and (b) the association mapping population. Blue color represents positive correlation and 
red color indicates negative correlation. Cross mark shows there is no significant correlation observed 
between the given traits (p > 0.05). 
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high-throughput sequencing (Supplementary Table S1), and 2.9 billion reads (74% of raw data) were 
retained after demultiplexing and cleaning. The average number of reads per sample was 15 million 
with a range from 5.1 million to 34 million reads. With Freebayes-based SNP calling, 164,099 SNPs 
were identified among the two parents and the RILs. Those SNPs that were polymorphic between 
the two parents without unknown and heterozygous genotypes, with minor allele frequency (MAF) 
> 0.3, and with missing values < 0.2 were retained, leaving 2880 SNPs for analysis.  

For the association mapping population, the same two-enzyme approach was used for GBS 
library construction, but the libraries were sequenced on an Illumina HiSeqTM 2500 platform. 
Subsequently, 1.7 billion raw reads were generated through the sequencing platform (Supplementary 
Table S1), and 1.5 billion cleared reads (86% of raw data) were retained. The number of reads per 
sample ranged from 1.4 million to 11.6 million with an average of 4.5 million reads. Using the Stacks 
pipeline, 28,593 SNPs were identified in this population. With filtering the SNPs with MAF > 0.05 and 
missing values < 0.3, 4558 SNPs were retained for further GWAS. 
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groups. The estimated map had a length of 978.1 cM and a density of 2.9 markers per cM with 99% 
of the intervals between adjacent markers being smaller than 5 cM (Supplementary Table S2). QTL 
associated with ARR were identified across all the chromosomes except Chr 1. A total of two QTL 
were identified for RRI, one QTL for SDL, and two QTL for AGI. In terms of image-derived features, 
three QTL for RGB.blue, three QTL for RGB.saturation, one QTL for RGB.SPL, two QTL for RGB.RPL, 
two QTL for Multispectral.canopy and three QTL for Multispectral.NDVI were identified (Table 2). 
The detected QTL explained from 5.2% to 12.1% of the phenotypic variance. It is worthwhile to note 
that two co-localization regions were identified on Chr 2 and Chr 5, respectively, where five QTL 
(Q.RRI-Lc2.1, Q.BLU-Lc2.1, Q.SAT-Lc2.1, Q.CAN-Lc2.1, and Q.AGI-Lc2.1) were clustered between 
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Figure 1. Heatmaps of correlation coefficients between the ARR resistance traits in (a) the RIL population
and (b) the association mapping population. Blue color represents positive correlation and red color
indicates negative correlation. Cross mark shows there is no significant correlation observed between
the given traits (p > 0.05).

Using a GWAS approach, 326 diverse accessions were evaluated for Aphanomyces resistance
under controlled conditions at the seedling stage. ANOVA of all the traits indicated highly significant
genotype effects (p < 0.001) and environmental (replicate) effects (p < 0.001) (Table 1). Frequency
distributions of SDL and RGB.RPL fit a normal curve, while RRI, RGB.saturation, and RGB.SPL had
moderately skewed distributions toward low scores, and RDL and RGB.blue skewed toward high
scores (Supplementary Figure S1). Broad-sense heritability was high for RRI and RGB.saturation
(H2 = 0.73) but moderate for the rest of the traits (0.50 < H2 < 0.62). All the traditional ARR traits (RRI,
SDL, and RDL) of the association mapping population were significantly and positively correlated with
each other (p < 0.001), where the correlation coefficient was higher between SDL and RDL (r = 0.62)
than between RRI and SDL (r = 0.25) and RRI and RDL (r = 0.24). Image-derived traits (RGB.blue,
RGB.saturation, RGB.SPL, and RGB.RPL) were significantly and highly related with traditional ARR
traits with |r| ranging from 0.13 to 0.85, especially between RDL and RGB.RPL (r = 0.85) (Figure 1).

2.2. Genotypic Data Analysis

GBS libraries of the RIL population were constructed using the two-enzyme GBS approach and
sequenced on an Illumina HiSeqTM 4000 platform. A total of 3.9 billion reads were obtained from the
high-throughput sequencing (Supplementary Table S1), and 2.9 billion reads (74% of raw data) were
retained after demultiplexing and cleaning. The average number of reads per sample was 15 million
with a range from 5.1 million to 34 million reads. With Freebayes-based SNP calling, 164,099 SNPs
were identified among the two parents and the RILs. Those SNPs that were polymorphic between the
two parents without unknown and heterozygous genotypes, with minor allele frequency (MAF) > 0.3,
and with missing values < 0.2 were retained, leaving 2880 SNPs for analysis.

For the association mapping population, the same two-enzyme approach was used for GBS library
construction, but the libraries were sequenced on an Illumina HiSeqTM 2500 platform. Subsequently,
1.7 billion raw reads were generated through the sequencing platform (Supplementary Table S1),
and 1.5 billion cleared reads (86% of raw data) were retained. The number of reads per sample
ranged from 1.4 million to 11.6 million with an average of 4.5 million reads. Using the Stacks pipeline,
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28,593 SNPs were identified in this population. With filtering the SNPs with MAF > 0.05 and missing
values < 0.3, 4558 SNPs were retained for further GWAS.

2.3. QTL Mapping

In total, 2865 out of 2880 SNPs identified from the RIL population were assigned to seven linkage
groups. The estimated map had a length of 978.1 cM and a density of 2.9 markers per cM with
99% of the intervals between adjacent markers being smaller than 5 cM (Supplementary Table S2).
QTL associated with ARR were identified across all the chromosomes except Chr 1. A total of two QTL
were identified for RRI, one QTL for SDL, and two QTL for AGI. In terms of image-derived features,
three QTL for RGB.blue, three QTL for RGB.saturation, one QTL for RGB.SPL, two QTL for RGB.RPL,
two QTL for Multispectral.canopy and three QTL for Multispectral.NDVI were identified (Table 2).
The detected QTL explained from 5.2% to 12.1% of the phenotypic variance. It is worthwhile to note
that two co-localization regions were identified on Chr 2 and Chr 5, respectively, where five QTL
(Q.RRI-Lc2.1, Q.BLU-Lc2.1, Q.SAT-Lc2.1, Q.CAN-Lc2.1, and Q.AGI-Lc2.1) were clustered between
22.8 cM and 31 cM on Chr 2 and two QTL (Q.RRI-Lc5.1 and Q.AGI-Lc5.1) were co-localized between
51.7 cM and 64.8 cM on Chr 5.

2.4. Genome-Wide Association Study

With an analysis using unimputed 4558 SNPs in Haploview, linkage disequilibrium (LD) decay
was estimated to range from 128 kb to 762 kb with an average of 331 kb over all the chromosomes
(Supplementary Figure S2). In the principle component (PC) analysis, the first three PCs explained
19.1%, 11%, and 7.8% (37.9% total) of genetic variance (Figure 2a,b) and clearly separated the lentil
accessions collected in Asia from other regions (Figure 2b). The first three PCs were used as covariates
to account for population structure in GWAS. The VanRaden kinship coefficient matrix (Figure 2c)
ranged from −0.68 to 2.78, with 79% of pairwise kinship coefficients ranging from −0.5 to 0.5 (Figure 2d).

GWAS identified a total of 38 QTL across seven chromosomes associated with five ARR related
traits, including two traditional phenotypic traits (RRI and RDL) and three image-derived traits
(RGB.saturation, RGB.blue, and RGB.RPL). The p-values ranged from 3.4 × 10−10 to 8.9 × 10−4,
explaining 1.4% to 21.4% of phenotypic variance (Table 3). Nine QTL exceeded the experiment-wise
threshold p < 2.2 × 10−6, 13 reached the marker-wise threshold p < 0.0001, and 16 had a marker-wise
p-value between 0.0001 and 0.001. Four co-localization regions were detected on four chromosomes.
Two QTL (G.RRI-Lc1.1 and G.BLU-Lc1.1) were co-localized on Chr 1 with a highly significant
trait-associated SNP marker (1569_6) consistently detected for RRI and RGB.blue, explaining 10.7%
and 13.7% of the phenotypic variance, respectively. A co-localization region on Chr 4 included two
QTL (G.RDL-Lc4.1 and G.RPL-Lc4.2) for RDL and RGB.RPL. Two QTL (G.RRI-Lc5.1 and G.SAT-Lc5.1)
were clustered on Chr 5 where a trait-associated SNP marker (7154_47) was consistently detected for
RRI and RGB.saturation, explaining 10% of phenotypic variance for RRI. A co-localization region was
identified on Chr 6 for RDL, RGB.saturation, and RGB.RPL (Table 3).
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Table 2. Quantitative trait loci (QTL) for ARR resistance traits in the RIL population across two environments.

Trait QTL a Environment b Closest Marker Chr Position LOD c R2 CI d Parental Allele e

RRI Q.RRI-Lc2.1 CC LcChr2-10483056 2 10483056 3.2** 6.2% 22.8−31.0 K191-2
Q.RRI -Lc5.1 CC LcChr5-229370222 5 229370222 2.7* 5.3% 62.0−64.8 K192-1

SDL Q.SDL-Lc3.1 CC LcChr3-124302109 3 124302109 2.8* 5.9% 81.8−83.9 K192-1
RGB.blue Q.BLU-Lc2.1 CC LcChr2-10483056 2 10483056 3.3** 6.5% 22.8−30.8 K192-1

Q.BLU-Lc5.1 CC LcChr5-257437930 5 257437930 3.5** 6.9% 110.6−119.7 K192-1
Q.BLU-Lc7.1 CC LcChr7-93158569 7 93158569 3.1** 6.0% 48.8−60.0 K192-1

RGB.saturation Q.SAT-Lc2.1 CC LcChr2-8058084 2 8058084 2.7* 5.2% 22.8−23.8 K191-2
Q.SAT-Lc3.1 CC LcChr3-65935857 3 65935857 2.7* 5.7% 35.0−38.1 K192-1
Q.SAT-Lc7.1 CC LcChr7-93158569 7 93158569 4.2** 8.1% 47.0−61.0 K191-2

RGB.SPL Q.SPL-Lc2.1 CC LcChr2-4851535 2 4851535 2.6* 5.3% 13.1−13.1 K191-2
RGB.RPL Q.RPL-Lc4.1 CC LcChr4-83603021 4 83603021 4.8** 9.5% 35.5−53.2 K192-1

Q.RPL-Lc4.2 CC LcChr4-175357959 4 175357959 2.8* 5.7% 71.44−71.44 K191-2
AGI Q.AGI-Lc2.1 Field LcChr2-10483056 2 10483056 2.7* 5.6% 28.7−28.8 K191-2

Q.AGI-Lc5.1 Field LcChr5-229370222 5 229370222 3.4** 7.0% 51.7−63.1 K192-1
Multispectral.canopy Q.CAN-Lc2.1 Field LcChr2-10483056 2 10483056 2.6* 5.7% 29.8−31.0 K192-1

Q.CAN-Lc7.1 Field LcChr7-61352757 7 61352757 3.2** 6.8% 8.3−16.7 K192-1
Multispectral.NDVI Q.NDVI-Lc6.1 Field LcChr6-170967409 6 170967409 4.1** 8.8% 77.0−86.8 K191-2

Q.NDVI-Lc6.2 Field LcChr6-196641316 6 196641316 5.6** 12.1% 104.1−120.0 K191-2
Q.NDVI-Lc7.1 Field LcChr7-63933214 7 63933214 3.7** 7.8% 22.2−33.6 K192-1

a QTL names are assigned by the analysis method (QTL-mapping), ARR related trait, the initial of genus and species (Lens culinaris), chromosome numbers, and the order of the QTL. b CC
represents controlled conditions. c ** represents nominal QTL, where LOD > LODthreshold. The LODthreshold values are 3.06 (RRI), 3.11 (SDL), 3.18 (RGB.blue), 3.07 (RGB.saturation), 3.14
(RGB.SPL), 3.00 (RGB.RPL), 3.07 (AGI), 3.01 (Multispectral.canopy), and 2.98 (Multispectral.NDVI) * indicates suggestive QTL, where 2.5 < LOD < LODthreshold. d CI is the confidence
interval of QTL regions. e Parental allele contributing to the trait.
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Table 3. QTL for the ARR resistance traits in the association mapping population.

Trait QTLa Trait-Associated
Marker Chr Position CI b Number of

Markers c p-Value d MAF e R2 Favorable Allele f

RRI G.RRI-Lc.1.1 1569_6 1 72094185 71880185-72308185 2 3.4 × 10−10 *** 24% 10.7% G/A
G.RRI-Lc.1.2 869_19 1 271625013 271384013-271839013 3 6 × 10−5 ** 18% 3.9% G/A
G.RRI-Lc.2.1 1827_75 2 102752889 102361889-103143889 7 1.4 × 10−5 ** 39% 19.3% T/C
G.RRI-Lc.2.2 2799_53 2 283548685 283157685-283939685 2 1.7 × 10−4 * 27% 13.4% G/T
G.RRI-Lc.4.1 5009_13 4 109679991 109524991-109834991 6 2.6 × 10−4 * 25% 1.4% G/A
G.RRI-Lc.5.1 7154_47 5 225981924 225823924-226139924 2 2.7 × 10−5 ** 20% 10.0% T/A
G.RRI-Lc.6.1 9084_41 6 51508203 50746203-52270203 4 3.6 × 10−4 * 5% 3.1% C/T
G.RRI-Lc.6.2 8442_65 6 155091517 154329517-155853517 4 9.2 × 10−10 *** 49% 2.3% A/C
G.RRI-Lc.7.1 9286_7 7 101144016 101016016-101272016 1 3.8 × 10−4 * 6% 8.4% A/G

RDL G.RDL-Lc.1.1 1604_28 1 75421049 75207049-75635049 2 4.6 × 10−5 ** 11% 5.5% G/T
G.RDL-Lc.2.1 2065_7 2 14688732 14369732-15007732 4 1.3 × 10−4 * 6% 6.5% G/A
G.RDL-Lc.2.2 2066_11 2 146997456 146678456-147316456 1 1.6 × 10−4 * 17% 4.9% C/T
G.RDL-Lc.2.3 2770_18 2 279028234 278709234-279347234 1 8.4 × 10−7 *** 24% 2.4% C/T
G.RDL-Lc.3.1 4445_35 3 192079718 191596718-192562718 5 4.1 × 10−4 * 14% 2.3% G/T
G.RDL-Lc.4.1 5190_31 4 145662855 145507855-145817855 1 2.1 × 10−4 * 37% 3.3% A/T
G.RDL-Lc.6.1 9009_9 6 40654874 39892874-41416874 3 5 × 10−6 ** 45% 4.2% A/G
G.RDL-Lc.7.1 10617_29 7 9677731 9549731-9805731 1 2.3 × 10−4 * 31% 6.4% C/T

RGB.saturation G.SAT-Lc1.1 1323_60 1 329974767 329760767-330188767 4 5.1 × 10−5 ** 29% 4.2% G/A
G.SAT-Lc2.1 1913_55 2 1176134 857134-1495134 7 5 × 10−5 ** 48% 8.3% G/A
G.SAT-Lc2.2 3450_21 2 9515161 9196161-9834161 8 2.1 × 10−4 * 17% 21.0% A/T
G.SAT-Lc4.1 5069_30 4 123435206 123280206-123590206 2 2 × 10−7 *** 36% 1.7% T/C
G.SAT-Lc5.1 7154_47 5 225981924 225823924-226139924 2 8.4 × 10−9 *** 20% 3.5% T/A
G.SAT-Lc5.2 7541_42 5 258022703 257864703-258180703 5 2.3 × 10−6 ** 13% 1.7% T/C
G.SAT-Lc6.1 9009_9 6 40654874 39892874-41416874 3 2.6 × 10−6 ** 45% 1.9% A/G
G.SAT-Lc7.1 10394_17 7 62649254 62521254-62777254 3 3.3 × 10−5 ** 25% 3.8% C/T
G.SAT-Lc7.2 9492_47 7 157790680 157662680-157918680 3 5.6 × 10−7 *** 39% 21.4% A/T

RGB.blue G.BLU-Lc1.1 1569_6 1 72094185 71880185-72308185 2 1.1 × 10−6 *** 24% 13.7% G/A
G.BLU-Lc2.1 3136_31 2 41405986 41086986-41724986 1 3.2 × 10−4 * 39% 3.2% T/C
G.BLU-Lc3.1 4814_43 3 75993537 75510537-76476537 3 2.4 × 10−6 ** 40% 5.9% T/A
G.BLU-Lc3.2 4403_39 3 189225788 188742788-189708788 4 6.1 × 10−7 *** 27% 2.1% A/C
G.BLU-Lc7.1 9616_9 7 197564498 197436498-197692498 4 1.6 × 10−4 * 47% 2.6% G/A
G.BLU-Lc7.2 10127_27 7 245915689 245787689-246043689 2 7.9 × 10−5 ** 22% 8.6% G/T

RGB.RPL G.RPL-Lc2.1 3028_63 2 309553121 309234121-309872121 6 2.1 × 10−6 *** 13% 7.1% C/T
G.RPL-Lc3.1 3562_32 3 110087057 109604057-110570057 2 4.8 × 10−4 * 12% 7.7% C/T
G.RPL-Lc4.1 6453_18 4 9587251 9432251-9742251 2 1.9 × 10−5 ** 25% 16.2% T/C
G.RPL-Lc4.2 5190_31 4 145662855 145507855-145817855 1 8.9 × 10−4 * 37% 1.9% A/T
G.RPL-Lc5.1 6649_58 5 127185901 127027901-127343901 1 1.5 × 10−4 * 20% 6.2% T/C
G.RPL-Lc6.1 9009_9 6 40654874 39892874-41416874 3 1.3 × 10−4 * 45% 7.8% A/G

a QTL names are assigned by the analysis method (GWAS), ARR related traits, the initial of genus and species (Lens culinaris), chromosome number and the order of the QTL. b CI is the
confidence interval of QTL regions derived from ± linkage disequilibrium (LD) decays for each chromosome. c Number of markers within the LD block. d ***represents major QTL
(p < 2.2 × 10−6), ** for nominal QTL (p < 0.0001), * for suggestive QTL (p < 0.001). e Minor allele frequency (MAF). f Favorable alleles in bold and underlined text.
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Figure 2. Population structure of the association mapping population. (a) The scree plot of first 10 
principle components (PCs). (b) The three-dimensional principle component analysis (PCA) plot 
represents the distribution of the lentil accessions on the first three PCs. The colors represent various 
continents: red-Africa, green-America, blue-Asia, light blue-Europe, and black-data not available. (c) 
Cluster heatmap of the Kinship matrix. (d) Histogram of kinship coefficients.

Figure 2. Population structure of the association mapping population. (a) The scree plot of first
10 principle components (PCs). (b) The three-dimensional principle component analysis (PCA) plot
represents the distribution of the lentil accessions on the first three PCs. The colors represent various
continents: red-Africa, green-America, blue-Asia, light blue-Europe, and black-data not available.
(c) Cluster heatmap of the Kinship matrix. (d) Histogram of kinship coefficients.

2.5. LD Block Haplotypes

Thirty-three LD blocks were identified containing all the markers in LD r2 > 0.5 with marker-trait
associations (MTAs). Three to 13 haplotypes were detected within each of the LD blocks. Twenty-seven
favorable haplotypes and 30 unfavorable haplotypes were selected in accordance with comparison
of phenotypic mean values between each group (Supplementary Table S3). Among the association
mapping population, the ARR resistant lentil lines with multiple factor analysis coordinates (MFA.dim1)
< −2 (13 favorable haplotypes on average) had a significantly higher number of favorable haplotypes
than the intermediate lines (nine favorable haplotypes on average) and the susceptible lines (six favorable
haplotypes on average) (Figure 3). Lentil lines ILL_1861 and ILL_4830 carried the 17 favorable LD block
haplotypes, whereas PI_432237 and PI_299215 had only two favorable haplotypes (Supplementary
Table S4).
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Figure 3. Comparison of numbers of favorable LD block haplotypes in resistant (Res), intermediate
(Int), and susceptible (Sus) groups in the association mapping population. (a) A box plot of the
number of favorable LD block haplotypes among three groups. The three groups were categorized by
coordinates of first PC of multiple factor analysis (MFA.dim1). Numbers in the box plot indicate mean
values of numbers of favorable haplotypes in the given groups. Letters represent significant differences
among the three groups based on the mean comparison. (b) Frequency distribution of MFA.dim1 in
the association mapping population. Res group (MFA.dim1 < −2, yellow color) carried the highest
number of favorable haplotypes, Int group (−2 < MFA.dim1 < 2, gray color) had an intermediate
number of favorable haplotypes, and Sus group (MFA.dim1 > 2, blue color) carried the lowest number
of favorable haplotypes.

2.6. QTL Clusters

According to the GWAS and the QTL mapping results, seven clusters (QTL_cluster1- QTL_cluster7)
were defined on Chr 1, Chr 2, Chr 4, Chr 5, Chr 6, and Chr 7 (Figure 4), where the cluster was considered
as a co-localization region consisting of at least two QTL identified using GWAS and/or QTL mapping.
Among the seven clusters, five contained QTL from both GWAS and QTL mapping, whereas two
(QTL_cluser1 and QTL_cluster6) were only GWAS-based clusters. Furthermore, QTL_cluster2,
QTL_cluster3, QTL_cluster4, and QTL_cluster7 were major QTL clusters. QTL_cluster2 included six
QTL for five traits, including two traditional phenotypic traits (RRI and AGI) and three image-derived
traits (RGB.blue, RGB.saturation, and Multispectral.canopy), with a GWAS-based trait-associated SNP
marker (3450_21) explaining 21% of phenotypic variance. QTL_cluster3 and QTL_cluster4, the second
major clusters, each contained five QTL. QTL_cluster7 consisted of four QTL for three traits with a
trait-associated marker explaining 21.4 % of phenotypic variance.
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Figure 4. Genetic map of ARR resistance QTL identified using QTL mapping and genome-wide association study (GWAS). The solid bars represent GWAS-based QTL,
and the hollow bars indicate QTL-mapping-based QTL. QTL clusters are highlighted by blue-shaded banding. QTL significance levels are labeled using *** for major
QTL, ** for nominal QTL, * for suggestive QTL.
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2.7. Prediction of Candidate Genes and Expression Analysis

With annotations of 106 SNPs identified in the 33 ARR-related LD blocks, 92 SNPs were located
in genes, 43 of which were in coding sequences, 42 were in introns, and seven were in untranslated
regions (Supplementary Table S5). In addition, 34 SNPs were discovered in the seven QTL clusters and
assigned to 15 types of genes. Among these genes, five were chosen for validation, encoding Leucine
Rich Repeat Receptor-like Kinase (LRR-RLK), cytochrome P450 family 71 protein (CYP71), ATP binding
cassette transporter A family protein (ABCA), pectin esterase (PE), and chalcone-flavanone isomerase
family protein (CHI). It was reported in previous studies that these genes are potentially associated
with ARR resistance in pea [19] and Medicago [29,30].

Expression profiles of five candidate genes were examined among four lentil accessions (partially
resistant accessions: PI 432001 and ILL 5509; and susceptible accessions: PI 320935 and PI 431824)
during interaction with A. euteiches at 6 hpi (hours post inoculation) and 24 hpi (Figure 5). Expression
of ABCA was significantly (p < 0.05) downregulated three-fold in the resistant accession ILL 5509 at
6 hpi in response to A. euteiches, while there was no significant difference (p > 0.05) between inoculated
and non-inoculated plants in the resistant accession PI 432001 at the same time point. No expression
polymorphism was observed in the four accessions at 24 hpi. CHI expression level was significantly
up-regulated (2.8-fold) in the susceptible accession PI 320935 at 24 hpi, but there was no significant
change at 6 hpi. Surprisingly, expression of CHI was much higher in the susceptible accession PI
431824 than other accessions at 6 hpi under both inoculated and non-inoculated conditions. Expression
of CYP71 was higher in the susceptible accessions than resistant accessions at 24 hpi, but no significant
expression difference was observed between inoculated and non-inoculated plants in any of the
accessions. It indicated that such expression differences are ecotype-specific and may not relate with
ARR disease. PE was more dramatically suppressed in the resistant accessions PI 432001 (10-fold)
and ILL 5509 (five-fold) than the susceptible accession (two-fold) at 6 hpi, but the gene expression
level was significantly downregulated (eight-fold) in the susceptible accession PI 431824. Expression
of LRR-RLK was unchanged in the four accessions at both time points. The quantitative reverse
transcriptase-polymerase chain reaction (qRT-PCR) analysis revealed that ABCA, CHI, and PE were
differentially expressed after A. euteiches inoculation, and two, ABCA and PE, may be associated with
ARR resistance. CYP71 and LRR-RLK may not be directly linked to this disease.
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Figure 5. Expression profiles of putative genes. Relative expression levels were normalized by ß-tubulin-3.
Four accessions (two partially resistant accessions: PI 432001 and ILL 5509; two susceptible accessions:
PI 320935 and PI 431824) were analyzed in non-inoculated (N) and inoculated (I) with A. euteiches conditions
at two time-points (6 and 24 hours post inoculation: 6 hpi and 24 hpi). Error bars represent standard error
of the mean. Asterisks indicate statistically significant differences (p < 0.05) between inoculated plants
and non-inoculated plants. Capital letters represent significant differences among all four accessions
under the non-inoculated condition, while lowercase letters indicate significant differences among all
four accessions under the inoculated condition. Abbreviations: ABCA gene encoding ABC transporter
A family protein (ABCA), CYP71 gene encoding Cytochrome P450 family 71 protein (CYP71), LRR-RLK
gene encoding LRR receptor-like kinase (LRR-RLK), CHI gene encoding Chalcone-flavanone isomerase
family protein (CHI), and PE gene encoding Pectin esterase (PE).

3. Discussion

Genetic and genomic resources for lentil have been limited due to its relatively large genome
size (~4.2 GB) [31]. However, with the emerging technologies in DNA sequencing, this is changing
rapidly, including online access to the lentil reference genome for lentil cultivar CDC Redberry [20],
an exome capture set for lentil [2], and assorted GBS data sets [32–35]. In this study, we demonstrated
the first QTL mapping and GWAS in lentil to decipher the genetic basis of resistance to a major root
disease, ARR, by evaluating two types of populations using advanced phenotyping and genotyping
technologies. With the RIL population derived from two distinct parents and the association mapping
population with a very wide genetic diversity, the two complementary QTL analysis approaches
enabled us to precisely detect natural variations underlying this complex trait. We utilized GBS to
discover novel SNPs for both populations, which significantly enhanced the genetic and the genomic
resources available to help overcome the devastating impact of ARR in lentil production. Utilizing an
advanced imaging-based phenotyping technology, we conducted the QTL analysis with image-derived
features along with traditional phenotypic traits. Finally, our study reported novel QTL for resistance to
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ARR in lentil, pinpointed favorable haplotypes in the resistance lines, and identified putative candidate
genes associated with ARR resistance.

ARR is a complex polygenic trait with low heritability and is strongly affected by the
environment [36,37]. Our study supports the observations of previous studies showing heritability
ranged from 0.05 to 0.73 in the two mapping populations. With climate and soil structure as well as
microbiome variations present in the field condition, the heritability shown in the field was lower than
in the controlled conditions. In addition, a relatively low correlation was detected between these two
conditions, as was also observed in the study of Pilet-Nayel et al. [38]. To effectively and precisely
capture resistance variations among all the lentil lines and accessions, we integrated high-throughput
phenotyping with RGB imaging and unmanned aerial system-based multispectral imaging in this
study. With strong and significant correlations discovered between the image-derived traits and
traditional phenotypic traits, the high-throughput phenotyping technology is considered an excellent
alternative tool to phenotype this complex trait.

QTL and association mapping approaches have proven to be complementary to and effective in
detecting QTL across many species [39–41]. In the present study, we identified 19 QTL-mapping-based
QTL and 38 GWAS-based QTL. Notably, limited co-localizations occurred among QTL discovered
in the RIL population and the association mapping population. This highlighted the importance of
integrating QTL mapping and association mapping for a comprehensive assessment of ARR resistance
QTL. Seven QTL clusters were detected with at least two co-localized QTL found through GWAS and/or
QTL mapping. Five clusters were both GWAS-based and QTL-mapping-based QTL. It is noteworthy
that QTL_cluster2 on chromosome 2, QTL_cluster3 on chromosome 4, QTL_cluster4 on chromosome
5, and QTL_cluster7 on chromosome 7 accumulated the most QTL and explained large portions of
the phenotypic variance. Interestingly, the majority of QTL within QTL_cluster2 were detected in
the RIL population in both environments, but only one GWAS-based QTL for an image-derived trait
(RGB.saturation) co-localized within this region. The saturation channel is in accordance with the
pureness or the depth of certain colors that are difficult to detect with human eyes [42]. To some extent,
therefore, the color features derived from imaging technology captured more information than the
traditional traits, since RRI and AGI are subjective, and SDL and RDL are surrogate traits that may not
be accurate when the disease symptoms have not been fully developed.

With various molecular events underlying quantitative disease resistance, limited resistance QTL
have been cloned, and resistance genes are largely unknown [43,44]. Diverse mechanisms underlying
resistance QTL involve plant-pathogen recognition, signal transduction, plant development, and basal
defense [44,45]. In our study, we explored five putative candidate genes selected from the QTL clusters
using qRT-PCR. A putative candidate gene, ABCA, discovered in QTL_cluster7, was repressed in
one of the resistant accessions at an early stage of infection. ABCA is a subfamily of ABC, one of the
largest families of membrane proteins, and plays an important role in hormone transport, secondary
metabolites, xenobiotics, and pathogen responses [46]. The functions of the plant ABCA protein
subfamily are currently not well known. It was reported that AtABCA1 functions in pollen germination
and seed maturation germination in Arabidopsis thaliana [47,48] and SlABCA1 are associated with
secretion activity in tomato roots [49]. A transcriptome analysis of M. truncatula reported that genes
encoding ABC transporters were significantly detected at one day post inoculation (dpi) with A. euteiches
in both resistant and susceptible lines and repressed at 6 dpi only in the resistant line [30]. The findings
in this M. truncatula study reflect the importance of ABCA as well, but the expression differences were
observed at a later stage of infection. Further gene functional analysis, therefore, is essential to validate
ABCA in response to A. euteiches in a future study.

We also identified a putative gene encoding PE in QTL_cluster7. Pectin is a critical component
of plant cell walls, considered to be the first external barrier against pathogens [50]. PE is a cell wall
degrading enzyme and has an important role in cell wall modification and breakdown by catalyzing
pectin into pectate and methanol [51]. It was found that pectin methylesterase inhibitors enhance
resistance to Verticillium wilt in cotton [52], Fusarium graminearum and Bipolaris sorokiniana in wheat [53],
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and Botrytis cinerea in Arabidopsis [54]. In addition, in a previous GWAS, PE was identified underlying a
QTL associated with ARR resistance in pea [19]. In this study, we found that the expression of PE was
more suppressed in the resistant accessions than one of the susceptible accessions (PI 320935) at 6 hpi
but not in the other susceptible accession (PI 431824). Additional resistant and susceptible accessions,
therefore, should be included in further gene expression studies to better clarify this conclusion.

The other three genes, CYP71, CHI, and LRR-RLK, identified in QTL clusters may not be directly
associated with the ARR resistance. For CYP71, expression differences were only elucidated between
susceptible accessions and resistant accessions at 24 hpi but not between inoculated and non-inoculated
plants in any of the accessions. This indicates that such gene expression differences could be
ecotype-specific, and this gene may not play a direct role in response to A. euteiches. As for the
second gene, CHI is a key gene in plant flavonoid biosynthesis, and flavonoids have been shown to be
very important in plants’ resistance to pathogens [55,56]. Furthermore, in the transcriptome analysis
of M. truncatula’s response to A. euteiches, flavonoid biosynthesis-related genes encoding chalcone
synthase, chalcone O-methyltransferases, and isoflavonol reductase were significantly detected in
resistant genotypes at 6 dpi [30]. In our study, however, we found CHI expression level was significantly
upregulated in one of the susceptible accessions at 24 hpi. This result, inconsistent with previous
studies, did not provide us enough assurance of CHI’s relatedness with ARR resistance. For the third
gene, LRR-RLK expression was not changed in any of the accessions at either time point, indicating
this gene may not be associated with ARR at an early stage of infection.

4. Materials and Methods

4.1. Plant Materials

An RIL population was developed from a cross between a breeding line (K192-1) with high partial
resistance and a susceptible breeding line (K191-2). The two parents were selected from an ARR
nursery in a farmer’s field near Kendrick, Idaho. The cross was made in Pullman, WA in 2013 and
advanced using single-seed decent to the F6 generation. The final population contained 189 RILs and
the two parents.

The association mapping population consisted of 326 accessions from 60 countries on four
continents, Asia (166), Europe (76), the Americas (47), Africa (30), and unknown origin (7). Among
them, 109 accessions were from ICARDA, and 217 accessions were from the LSP collection obtained
from the Western Regional Plant Introduction Station, USDA-ARS (Supplementary Table S6).

4.2. Inoculation Precedure

A pure culture of A. euteiches, isolate Ae-16-04D, belonging to Pathotype I (personal communication
with Dr. Julie S. Pasche) was used in all controlled conditions. Prior to sowing, lentil seeds were
surface sterilized in 95% ethanol for one minute followed by 10% bleach for one minute and then
rinsed in distilled water. The seeds were individually planted in 8.25 cm deep Cone-tainers (Stuewe &
Sons, Tangent, OR, USA) filled with perlite medium (AFCO Distribution & Milling, Spokane Valley,
WA, USA). In order to produce the zoospores required for inoculation, the A. euteiches isolate was
grown in pea broth and incubated in the dark at room temperature for six days. Mycelia mats were
then removed from the pea broth, rinsed three times in distilled water, and incubated in mineral
nutrient solution (0.26% CaCl2·2H2O, 0.49 MgSO4·7H2O, and 0.074% KCl) for 16 h to induce zoospore
production [57]. The concentration of zoospores was calculated with a hemocytometer and adjusted to
104 spores/mL. Fourteen-day old seedlings were inoculated with the zoospore suspension by pipetting
2 mL of inoculum at the base of each plant’s stem. The non-inoculated controls were “inoculated” with
2 mL of sterile distilled water.
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4.3. Traditional and Image-Based Phenotyping under Controlled Condition

The RIL population and the association mapping population were evaluated in controlled conditions
(25 ◦C 16 h/23 ◦C 8 h). The RIL population was planted using a completely randomized design with three
inoculated replications and three non-inoculated replications (three plants/genotype/replication/treatment).
The association mapping population was planted under the same controlled conditions in a randomized
complete block design with 10 inoculated replications and 10 non-inoculated replications (one
plant/genotype/replication/treatment).

At 14 dpi with A. euteiches, plants were uprooted, and RRI was determined by assessing roots using
a 0 (healthy plants) to 5 (dead plants) scoring scale adapted from McGee et al. [17]. Each entire plant
was imaged using an RGB digital camera (Canon PowerShot SX530 HS, Canon U.S.A. Inc., Huntington,
NY, USA), where one shoot feature (Shoot.projected.area-total number of pixels of shoots) and three
root features (Root.projected.area-total number of pixels of roots, RGB.blue, and RGB.saturation) were
extracted using MATLAB (MathWorks Inc., Natick, MA, USA), adopted from Marzougui et al. [58].
Shoots and roots were subsequently separated and placed in a forced-air drying room for seven
days prior to collecting dry weights. As a surrogate measure of resistance, the dry weight loss of the
inoculated vs. the non-inoculated plants was calculated. SDL and RDL were calculated with SDL/RDL
= (dry weight per plant of non-inoculated treatment—dry weight per plant of inoculated treatment) /

dry weight per plant of non-inoculated treatment. Subsequently, SDL and RDL were recorded using a
1 to 5 scoring scale, where 1 = greater than 100% of normal growth, 2 = 76–100% of normal growth,
3 = 51–75% of normal growth, 4 = 26–50% of normal growth, and 5 = 0–25% of normal growth [59].
In addition, RGB.SPL and RGB.RPL were calculated using the SDL/RDL formula described above and
thereafter recorded via the same scale.

4.4. Traditional and Image-Based Phenotyping under Field Condition

The RIL population was assessed for Aphanomyces resistance in a naturally infested field near
Kendrick, Idaho. The 173 RIL lines were planted using a randomized complete block design with three
replications, 30 seeds/genotype/replicate. An adjacent susceptible control (Avondale) was planted every
four lines and used to adjust for local disease variation using the formula as described in [60]. The plants
were evaluated at flowering stage using AGI with a 1 (healthy plants) to 5 (dead plants) scoring scale
adapted from Hamon et al. [60]. Aerial images were collected on the same day using a quadcopter
unmanned aerial system (AgBot, ATI Inc., Oregon City, OR, USA) with a five-band multispectral
camera (RedEdgeTM, Micasense Inc., Seattle, WA, USA). Two features, Multispectral.NDVI and
Multispectral.canopy, were extracted from the images [58].

4.5. Genotyping

Total DNA were extracted from each lentil accession using the DNeasy 96 Plant Kit (QIAGEN,
Valencia, CA, USA) from approximately 0.1 g of young leaf tissue collected from fourteen-day old
plants grown in controlled conditions (25 ◦C 16 h/23 ◦C 8 h). DNA concentration was quantified using
a NanoDrop ND-1000 spectrophotometer (Nano-Drop Technologies, Wilmington, DE, USA) following
the manufacturer’s instructions and normalized to 50 ng/µl. GBS libraries were constructed using
the two-enzyme approach described in Poland et al. [61] with minor modifications. Five hundred ng
of DNA from each line was digested with the two restriction enzymes, PstI and MspI, followed by
ligation using 48 barcode adapters with 4–9 bp sequence [61]. Then, 5 µl of ligated DNA from each line
was multiplexed in a single tube and then cleaned up using AMPure XP beads (Beckman Coulter, High
Wycombe, UK). The multiplexed DNA was amplified using Illumina primers followed by purification.
The GBS libraries of the association mapping population were sequenced on an Illumina HiSeqTM 2500
platform using single-read 100 bp at the Washington State University Genomics Core Lab. The GBS
libraries of the RIL population were sequenced on an Illumina HiSeqTM 4000 platform using paired-end
reads 150 bp long at Novogene Bioinformatics Technology Co., Ltd, Beijing, China.
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Two reference-based GBS pipelines, Stacks and FreeBayes, were used for SNP discovery of
the association mapping population and RIL population, respectively. For the Stacks pipeline (the
association mapping population), raw sequencing reads with intact barcodes were demultiplexed,
cleaned, and truncated to 80 bp with the process_radtags function in Stacks (v 2.0) [62]. Demultiplexed
reads were then aligned to the lentil reference genome pre-release v1.2 [20] using the Burrows–Wheeler
Aligner [63]. Aligned sequences were filtered using SAMtools (v 0.1.19) [64] to discard multiple
mapped reads. SNPs were called using ref_map.pl function with default parameters. For the FreeBayes
pipeline (the RIL population), raw reads were demultiplexed and cleaned with process_radtags in
Stacks, followed by aligning to the lentil reference genome with Burrows–Wheeler Aligner. SAMtools
was used to convert Sequence Alignment Map (SAM) files to Binary Alignment Map (BAM) files,
sort the BAM files, and discard the multiple mapped reads. Read groups were added to BAM files
using Picard (v 2.18). SNPs were called using Freebayes (v1.2) [65] using the following parameters:
—min-base-quality 20, —read-mismatch-limit 2, —min-coverage 10, —no-indels, —genotype-qualities,
—ploidy 2, —no-mnps, —no-complex. Using an in-house Perl script, the polymorphic SNPs between
two parents were kept, whereas the SNPs with unknown and heterozygous genotypes in one or two of
the parents were filtered out. To filter the SNPs for further analysis, VCFtools (v 0.1.16) [66] was used
for both GBS pipelines with the following criteria: 1) the association mapping population: MAF > 0.05,
missing values < 0.3; 2) the RIL population: MAF > 0.3, missing values < 0.2. For the SNP dataset of
the association mapping population, the filtered SNPs were imputed using BEAGLE (v 3.3.2) [67].

4.6. Statistical Analysis of Phenotypic Data

The trait data of the RIL population and the association mapping population were analyzed
by ANOVA using ordinal logistic regression (R function polr of MASS package [68]) for categorical
variables and general linear model (R function lm of stats package and R function lmer of lme4
package [69]) for numerical variables with genotype as a fixed effect and replication as a random
effect by the R 3.5.1 program [70]. The normality of residuals was tested using Skewness, Kurtosis,
and Shapiro–Wilk tests (R function describe of psych package; shapiro.test). Frequency distribution
histograms of mean values of each trait were drawn by the R function hist. The broad-sense heritability
(H2) was calculated as H2 = σG

2/[σG
2 + σe

2/r], where σG
2 = genotypic variance, σe

2 = error
variance, and r = number of replicates. Pearson’s correlation coefficients were calculated between
each trait within each population (R function cor), and heatmaps of Pearson’s correlation coefficients
were drawn using the R function corrplot.

4.7. Linkage Map Construction and QTL Mapping

The genetic linkage map was made using the Kosambi mapping function [71] in the R OneMap
package [72] with an LOD value of 6 and a recombination frequency less than 0.3. The recombination
counting and ordering algorithm was used for ordering the SNPs. QTL were identified with QTL
Cartographer 2.5 software (North Carolina State University, Raleigh, NC, USA) [73] using the composite
interval mapping method. Significant QTL were determined by two levels of LOD thresholds: (1) LOD
> LODthreshold for nominal QTL, where LODthreshold was calculated for each ARR resistance trait by
permutation tests (1000 times) at a p value of 0.05; (2) 2.5 < LOD < LODthreshold for suggestive QTL.
Mapchart (V 2.2) was used to draw the linkage map and place the QTL.

4.8. LD, Population Structure, and GWAS

Pairwise LD in the form of r2 between SNPs was estimated within each chromosome using
Haploview (v 4.2) [74]. The LD decay curve was assessed using the method of Hill and Weir [75] in

R 3.5.1 program [70] with
(
r2
)
=
[

10+C
(2+C)(11+C)

][
1 +

(3+C)(12+12C+C2)
n(2+C)(11+C)

]
, where n is sample size, and C

indicates the product of the recombination parameter (4Ner) and the genetic distance. The LD decay
rate over each chromosome was measured at r2 = 0.5. Population structure was estimated using
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PCA and kinship relatedness matrix generated from MLM in the Genome Association and Prediction
Integrated Tool (GAPIT) R package [76]. A three-dimensional PCA plot was drawn using a plot3d
function of rgl package in R program. A kinship relatedness matrix was calculated with the VanRaden
algorithm in GAPIT.

GWAS was performed using a multi-locus model, FarmCPU [77], implemented in the R package
FarmCPU. SNPs with missing values < 0.3 and MAF > 0.05 were used to perform GWAS in the
association mapping population. The first three PCs were used as covariates in this model. The MTAs
were assessed by three levels of p values: (1) experiment-wise p < 2.2 × 10−6 (−log10 p > 5.7) for major
MTAs; (2) marker-wise p < 0.0001 (−log10 p > 4) for nominal MTAs; (3) marker-wise p < 0.001 (−log10 p
> 3) for suggestive MTAs. The experiment-wise threshold was set according to a Bonferroni-corrected
threshold at p = 0.01 corresponded to a threshold of −log10 (α/n) > 5.7, with α = 0.01 and n = 4558, the
number of markers. The LD blocks were defined using a four gamete rule algorithm [78] in Haploview
(v 4.2) [74].

4.9. Haplotype Analysis

LD haplotypes were identified among all the accessions of the association mapping population
at each LD block using imputed genotypic data. For each haplotype, the phenotypic mean values
were calculated for associated traits in a given LD block. The Tukey-HSD test (α = 5%) was used to
perform multiple mean comparisons among haplotypes in each LD block. Favorable and unfavorable
haplotypes were defined as follows: (1) carrying favorable and unfavorable alleles; (2) representing
more than seven lentil accessions (2% of total number of lentil accessions); (3) showing significantly
higher or lower values than other haplotypes. Each accession was thereafter described for the number of
favorable and unfavorable alleles in each LD block. To classify all the lentil accessions into three groups
(resistant-Res, intermediate-Int, susceptible-Sus), a multiple factor analysis (MFA) was performed
for the associated traits (RRI, RDL, RGB.blue, RGB.saturation, and RGB.RPL) using the R package
FactoMineR [79]. The Res group included the accessions with MFA.dim1 < −2, whereas the Int group
and the Sus group referred to −2 < MFA.dim1 < 2 and MFA.dim1 > 2, respectively. A Tukey-HSD test
was used to compare the mean numbers of favorable alleles in the three groups.

4.10. Prediction of Candidate Genes and Expression Analysis

The lentil reference genome pre-release v1.2 (http://knowpulse.usask.ca) was used to predict
putative genes in each LD block. Putative protein functions were assigned to the SNPs underlying the
putative genes. To validate the response of each candidate gene to ARR, expression levels of the genes
were explored using qRT-PCR. Briefly, the seeds of two partially resistant accessions (PI 432001 and
ILL 5509) and two susceptible accessions (PI 320935 and PI 431824) were grown in moist autoclaved
ragdolls in a controlled condition (25 ◦C 16 h/23 ◦C 8 h). The roots of seven-day-old lentil seedlings
were incubated in 50 mL A. euteiches zoospore suspension (104 spores/ mL) for 30 min or in 50 mL
autoclaved distilled water for 30 min, followed by harvesting at 6 hpi and 24 hpi. Each treatment was
carried out in three replications consisting of 10 lentil roots. The roots were cut about 2 cm from the tips
and stored at −80 ◦C. Total RNA was extracted using RNeasy Plant Mini Kit (Qiagen, Hilden, Germany)
followed by DNAse treatment using Turbo DNA-freeTM kit (Ambion, Austin, TX, USA). cDNA was
synthesized from total RNA of each sample using the High-Capacity cDNA Reverse Transcription Kit
with RNase Inhibitor (Applied Biosystems, Foster City, CA, USA). qRT-PCR was performed in 10 µL
reaction volumes with 2 µl of diluted cDNA (20x dilution for LRR-RLK, ABCA, and CHI; 4x dilution for
CYP71 and PE), 500 nM of each primer, and 5 µl SsofastTM EvaGreen supermix (Bio-Rad Laboratories
Inc., Hercules, CA, USA). The qRT-PCR reactions were conducted on Bio-Rad CFX96 Real-Time PCR
System (Hercules, CA, USA) using the following conditions: 95 ◦C for 1 min, 40 cycles of 95 ◦C for 5 s,
and 60 ◦C for 20 s. Melting curve analysis was performed by increasing the temperature from 65 ◦C
to 95 ◦C in increments of 0.5 ◦C for 5 s. qRT-PCR primers were designed for targeted lentil genes to
amplify amplicons using Primer 3 (v 0.4.0) [80] (Supplementary Table S7). Each qRT-PCR reaction

http://knowpulse.usask.ca
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was replicated two times for each biological replicate in each treatment. Relative expression values for
target genes were calculated using the 2−∆∆CT method [81], and the expression of ß-tubulin-3 was used
for normalization [82].

5. Conclusions

Taken together, this two-pronged approach based on linkage analysis and association mapping
enabled us to dissect comprehensively the genetic architecture of ARR resistance in lentil. In this study,
we identified 19 QTL-mapping-based QTL and 38 GWAS-based QTL using both traditional phenotyping
traits and image-derived features. Seven QTL clusters were discovered on six chromosomes. Gene
expression analysis used to explore five putative candidate genes indicated three of them (ABCA, CHI,
and PE) were differentially expressed at early stages of infection, and two of them (ABCA and PE)
may be associated with ARR resistance. This study provides valuable genomic resources to aid the
development of lentil varieties resistant to ARR. Future functional analyses of the candidate genes will
enable us to illustrate more completely the molecular mechanisms in lentil for ARR resistance.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/6/2129/
s1. Figure S1. Frequency distribution of ARR resistance traits in the RIL population and the association mapping
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SNPs on a linkage map for the RIL population; Table S3. Description of LD block haplotypes in the association
mapping population; Table S4. LD block haplotype distribution of the association mapping population; Table S5.
Putative annotation of SNPs in detected LD blocks; Table S6. Description of the association population; Table S7.
Primers used for qRT-PCR in this study.
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Abbreviations

ARR Aphanomyces root rot
LD Linkage disequilibrium
GBS Genotyping by sequencing
SNP Single nucleotide polymorphism
QTL Quantitative trait loci
LSP Lentil single plant-derived
ICARDA International Center for Agricultural Research in the Dry Areas
RIL Recombinant inbred line
RGB Red-Green-Blue
RRI Root rot index
AGI Above ground index
SDL Shoot dry weight loss per plant
RDL Root dry weight loss per plant
RGB.SPL Number of pixels loss per plant in shoot
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RGB.RPL Number of pixels loss per plant in root
RGB.blue Average intensity of blue channel
RGB.saturation Standard deviation of saturation channel
Multispectral.NDVI Standard deviation of normalized difference vegetation index
Multispectral.canopy Canopy area
MAF Minor allele frequency
ANOVA Analysis of variance
PCA Principle component analysis
PCs Principle components
GAPIT Genome Association and Prediction Integrated Tool
MTAs Marker-trait associations
MFA Multiple factor analysis
qRT-PCR Quantitative reverse transcriptase-polymerase chain reaction
hpi Hours post inoculation
dpi Days post inoculation
LRR-RLK Leucine Rich Repeat Receptor-like Kinase
CYP71 Cytochrome P450 family 71 protein
ABCA ABC transporter A family protein
PE Pectin esterase
CHI Chalcone-flavanone isomerase family protein
SAM Sequence Alignment Map
BAM Binary Alignment Map
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