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Abstract: The photoprotective role of anthocyanin remains controversial. In this study, we explored
the effects of anthocyanin on photosynthesis and photoprotection using transgenic ‘Galaxy Gala’
apple plants overexpressing MdMYB10 under high light stress. The overexpression of MdMYB10
dramatically enhanced leaf anthocyanin accumulation, allowing more visible light to be absorbed,
particularly in the green region. However, through post-transcriptional regulation, anthocyanin
accumulation lowered leaf photosynthesis in both photochemical reaction and CO2 fixation capacities.
Anthocyanin accumulation also led to a decreased de-epoxidation state of the xanthophyll cycle and
antioxidant capacities, but this is most likely a response to the light-shielding effect of anthocyanin,
as indicated by a higher chlorophyll concentration and lower chlorophyll a/b ratio. Under laboratory
conditions when detached leaves lost carbon fixation capacity due to the limitation of CO2 supply,
the photoinhibition of detached transgenic red leaves was less severe under strong white, green, or
blue light, but it became more severe in response to strong red light compared with that of the wild
type. In field conditions when photosynthesis was performed normally in both green and transgenic
red leaves, the degree of photoinhibition was comparable between transgenic red leaves and wild
type leaves, but it was less severe in transgenic young shoot bark compared with the wild type.
Taken together, these data show that anthocyanin protects plants from high light stress by absorbing
excessive visible light despite reducing photosynthesis.

Keywords: anthocyanin; apple; high light; light attenuation; photoprotection; photosynthesis

1. Introduction

Anthocyanins comprise a group of water-soluble pigments synthesized by the flavonoid
metabolic pathway and are responsible for the red, purple, and blue colors of plant leaves,
fruits, flowers, and other tissues. The biosynthesis of anthocyanin begins with 4-coumaroyl-
CoA and is catalyzed by key enzymes, including chalcone synthase (CHS), chalcone
isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3′-hydroxylase (F3′H), dihy-
droflavonol 4-reductase (DFR), anthocyanin synthase (ANS), and UDP-glycose: flavonoid
glycosyltransferase (UFGT). In most plants, the MYB-bHLH-WD40 complex regulates
the expression of genes encoding these enzymes [1–4]. After synthesis, anthocyanin is
transported and stored in vacuoles.

Anthocyanin has an absorption spectrum in visible light, especially in the green light
region. Like red and blue light, green light may also efficiently drive photosynthesis, especially
at a high photosynthetic photon flux density [5,6]. Therefore, it is generally accepted that epider-
mal anthocyanin may protect plants from photoinhibition/photodamage by lowering the light
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intensity irradiation of chloroplasts under high light stress [7–10]. However, in approximately
30% of published reports, the physiological responses of red and green leaves to high light
were either comparable, or red leaves performed worse than their green counterparts [7]. The
difference in genetic backgrounds between green and red plants might partly account for this
inconsistency [7,11]. However, it should be noted that green light can regulate the expression
of many genes, as well as the growth and development of plants [9,12–15]. Attenuation of
blue light by anthocyanin may also alter gene expression in plants [11]. Thus, in addition to
reducing the light intensity irradiation of plant cells, anthocyanin accumulation might also
affect plant resistance to high light stress by changing the light quality.

Under high light stress, the absorbed light energy cannot be consumed in a timely manner
by photosynthesis, and photoprotective mechanisms, such as thermal dissipation, are enhanced
to consume the excess excited light energy [16,17]. If the excess excited light energy is still
not dissipated in a timely manner, then the production of reactive oxygen species (ROS) may
be triggered, which are then scavenged by antioxidant systems to reduce the photooxidative
stress [18,19]. Therefore, if anthocyanin has certain negative effects on photosynthesis, thermal
dissipation, antioxidant systems, or other photoprotective mechanisms, it may counteract the
positive effect via anthocyanin shielding and the subsequent resistance of plants to high light
stress. Indeed, relatively lower levels of key photosynthetic enzymes and photoprotective
capacities have been reported in red plants compared with their green counterparts [20–23].
However, the effects of anthocyanin on photosynthesis and photoprotective mechanisms
remain controversial, because photosynthesis, the xanthophyll cycle, or antioxidant systems
were also found to be comparable or even enhanced in red tissues [7,11,24,25].

As anthocyanin may react with oxidants or ROS in vitro, it is implied that antho-
cyanin may also scavenge ROS in vivo to protect plants from oxidative stress [23,26,27].
Nevertheless, unlike anthocyanin, which is only present in certain specialized plants, an-
tioxidant systems, such as the ascorbate-glutathione cycle, are ubiquitous in the plant
kingdom. Moreover, compared with anthocyanin, which is mainly localized in vacuoles,
the antioxidant system is situated in more direct positions against the excess accumulation
of ROS [18–20,25]. It has been reported that chloroplast-derived ROS are not associated
with anthocyanin accumulation under high light stress [28]. Whether anthocyanins may
scavenge ROS in vivo is still debated.

In recent years, red-flesh apple breeding programs have attracted more attention.
Usually, the leaves of red-flesh apple genotypes are also rich in anthocyanins. However, it is
unclear whether the accumulated anthocyanin may affect photosynthesis or photoinhibition
of apple leaves. In the present study, the ‘Galaxy Gala’ apple plant and its transgenic lines
with abundant anthocyanin, which share the same genetic background with the exception
of anthocyanin, were used to explore the effects of anthocyanin on photosynthesis and
photoprotection under high light stress.

2. Results
2.1. Effects of MdMYB10 Overexpression on Anthocyanin Accumulation

The overexpression of MdMBY10 enhanced the expression of chalcone synthase (MdCHS),
chalcone isomerase (MdCHI), flavanone 3-hydroxylase (MdF3H), flavonoid 3′-hydroxylase
(MdF3′H), dihydroflavonol 4-reductase (MdDFR), anthocyanin synthase (MdANS), UDP-
glycose: flavonoid glycosyltransferase (MdUFGT), and glutathione S-transferase (MdGST),
the key genes involved in anthocyanin synthesis and transfer in transgenic leaves (Figure 1).
As a result, the overexpression of MdMYB10 caused the leaves to accumulate abundant an-
thocyanin content and become red. Regarding the other flavonoid compounds, the content
of phlorizin was not altered, whereas that of flavonol was increased by approximately 30%
in MdMYB10 overexpression leaves (Figure S2). Moreover, quercetin-3-O-glycosides showed
distinct change patterns in transgenic leaves, with the contents of three of them (quercetin-3-
O-galactoside, quercetin-3-O-xyloside, and quercetin-3-O-arabinoside) increasing while two of
them (quercetin-3-O-glucoside and quercetin-3-O-rhamnoside) decreased. The overexpression
of MdMYB10 also increased the accumulation of anthocyanin in young branch barks (Figure S3).
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Figure 1. Leaf phenotypes (A), differentially expressed genes involved in anthocyanin synthesis (B),
and contents of anthocyanins (C) in the leaves of ‘Galaxy Gala’ (WT) and its transgenic lines (L8,
L9) with overexpression of MdMYB10. Panel A, scale bar = 2 cm; Panel B, data were extracted
from the RNA-sequence assay between transgenic lines and wild type, the RNA-sequence data are
shown in Supplemental Table S1, with three biological replicates; Panel C, five biological replicates
were performed for each point. For the statistical analysis, “**” above the bars indicates a significant
difference at p < 0.01, t-test. CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase;
F3′H, flavonoid 3′-hydroxylase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanin synthase; UFGT, UDP-
glycose: flavonoid glycosyltransferase; GST, glutathione S-transferase.

2.2. Effects of Anthocyanin Accumulation on Photosynthesis

Dark respiratory rate was comparable between WT and transgenic red leaves (Figure 2A).
When the photon flux density (PFD) was higher than 150 µmol m−2 s−1, the net photo-
synthetic rate was significantly lower in transgenic red leaves compared with WT leaves
(Figure 2A). Under saturated PFD, the photosynthetic rate was approximately 70% in trans-
genic compared with WT plants. Apparent quantum yield was also lower in transgenic red
leaves. With the increase in intercellular CO2 concentration, photosynthetic rates increased in
transgenic and WT leaves (Figure 2B). When the intercellular CO2 concentration was approxi-
mately 500 µmol mol−1, the photosynthetic rates reached the maximum in transgenic and WT
leaves. Apparent carboxylation efficiency was significantly lower in transgenic compared with
WT plants.

Based on the leaf reflection spectra, MdMYB10 overexpression leaves showed more
absorption in visible light, especially in green light (550–600 nm, Figure 3A). Stomatal
phenotypes were similar between transgenic and WT plants (Figure S4). The synthesis of
anthocyanin increased the contents of chlorophylls, especially chlorophyll b. As a result,
the chlorophyll a/b ratio decreased in transgenic red leaves (Figure 3B).



Int. J. Mol. Sci. 2022, 23, 12616 4 of 15

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW  4  of  16 
 

 

transgenic red leaves. With the increase in intercellular CO2 concentration, photosynthetic 

rates increased in transgenic and WT leaves (Figure 2B). When the intercellular CO2 con‐

centration was approximately 500 μmol mol−1, the photosynthetic rates reached the max‐

imum in transgenic and WT leaves. Apparent carboxylation efficiency was significantly 

lower in transgenic compared with WT plants. 

 

Figure 2. Photosynthesis light response (A) and CO2 response (B) curves for the leaves of ‘Galaxy 

Gala’ (WT) and its transgenic lines (L8, L9) with overexpression of MdMYB10. Five biological repli‐

cates were performed  for each point. Pn, Net photosynthetic  rate; PFD, photon  flux density; Ci, 

intercellular CO2 concentration. 

Based on the leaf reflection spectra, MdMYB10 overexpression leaves showed more 

absorption  in visible  light, especially  in green  light  (550–600 nm, Figure 3A). Stomatal 

phenotypes were similar between transgenic and WT plants (Figure S4). The synthesis of 

anthocyanin increased the contents of chlorophylls, especially chlorophyll b. As a result, 

the chlorophyll a/b ratio decreased in transgenic red leaves (Figure 3B). 

Figure 2. Photosynthesis light response (A) and CO2 response (B) curves for the leaves of ‘Galaxy
Gala’ (WT) and its transgenic lines (L8, L9) with overexpression of MdMYB10. Five biological
replicates were performed for each point. Pn, Net photosynthetic rate; PFD, photon flux density; Ci,
intercellular CO2 concentration.

The chlorophyll a fluorescence transient and the 820 nm modulated reflection curves
were also altered by the accumulation of anthocyanin (Figure 4). Compared with WT,
transgenic leaves showed higher fluorescence signals from the O to I step but a slower
decrease in the 820 nm reflection from MRo to MRmin, indicating that the photosynthetic
electron transport capacity between the two photosystems was lower in transgenic red
leaves [29].

Regarding the differentially expressed genes between transgenic and WT leaves,
KEGG enrichment analysis revealed that many pathways were affected by anthocyanin
synthesis, including primary and secondary metabolism, transcription, translation, mem-
brane transport, and signal transduction, among others (Table S2). However, none of the
gene involved in photosynthesis showed different expression levels between transgenic
and WT leaves (Table S1). Interestingly, the activities of Rubisco, GAPDH, PRK, A6PR
and SPS, key enzymes involved in photosynthesis, were significantly lower in MdMYB10
overexpression leaves (Figure 5; Table S5). To further assay the effects of anthocyanin
accumulation on photosynthesis, a targeted metabolomics assay was performed via LC-
MS/MS to quantify the changes in metabolites directly involved in the Calvin cycle. The
produced photosynthates, including sorbitol, sucrose, and intermediate products such as
3-phosphoglycerate, sorbitol-6-phosphate, sucrose-6-phosphate, adenosine diphosphate
glucose, ribulose-1,5-bisphosphate, and others, were all decreased in transgenic red leaves
compared with WT leaves (Figure 5; Table S4). Thus, the decreased contents of these
metabolites further confirmed that the overall photosynthetic capacity was impaired in the
transgenic lines.
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Figure 3. Leaf reflection spectra (A) and chlorophyll content, as well as the ratio of chlorophyll a
to b (B) in leaves of ‘Galaxy Gala’ (WT) and its transgenic lines (L8, L9) with overexpression of
MdMYB10. Five biological replicates were performed for each point. For statistical analysis, “*” or
“**” indicates a significant difference at p < 0.05 or p < 0.01, respectively, t-test.
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820 nm reflection (MRt/MRo) curves for the leaves of ‘Galaxy Gala’ (WT) and its transgenic lines (L8,
L9) with overexpression of MdMYB10. Five biological replicates were performed for each point.
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Figure 5. Comparison of expressions of key genes, activities of key enzymes, and contents of key
metabolites involved in photosynthesis and other related metabolisms between the leaves of ‘Galaxy Gala’
(WT) and its transgenic lines (L8, L9) with overexpression of MdMYB10. As none of the gene involved
in photosynthesis showed different expression levels between transgenic and WT leaves (Table S1),
only genes involved in respiration and other carbon and nitrogen metabolism were shown in Figure 5.
For the expression of each gene, please see Supplemental Tables S1 and S3. The absolute values of
metabolites and enzyme activities are shown in Supplemental Tables S4 and S5. Rubisco, ribulose-
1,5-bisphosphate carboxylase/oxygenase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PRK,
phosphoribulokinase; A6PR, aldose-6-phosphate reductase; 3-PGA, 3-phosphoglycerate; DHAP, dihy-
droxyacetone phosphate; FBP, fructose-1,6-bisphosphate; F6P, fructose-6-phosphate; S7P, Sedoheptulose
7-phosphate; Ribose5P, ribose 5 phosphate; XU5P, xylulose-5-phosphate; RU5P, ribulose 5-phosphate;
RUBP, ribulose-1,5-bisphosphate; G6P, glucose-6-phosphate; G1P, glucose-1-phosphate; ADPG, adenosine
diphosphate glucose; UDPG, uridine diphosphate glucose; Suc6P, sucrose-6-phosphate; sorbitol-6-P,
sorbitol-6-phosphate; 2-PGA, 2-phosphoglycerate; 2-OG, 2-oxoglutarate; PEP, phosphoenolpyruvate.
WT/WT, L8/WT, and L9/WT denote the values of the log2 fold change between genotypes. For the tran-
scriptome assay, three biological replicates were performed; for the enzyme activities and metabolomics
assay, five biological replicates were conducted. For the statistical analysis, “*” or “**” indicates a signifi-
cant difference at p < 0.05 or p < 0.01, respectively, t-test.
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Concerning the expression of genes involved in respiration and other carbohydrate
metabolism, 23 genes were upregulated, and 11 were downregulated (Figure 5, Table S3). With
respect to the levels of genes involved in amino acid metabolism, 15 genes were upregulated,
and 8 were downregulated. For metabolites involved in carbon metabolism, the contents
of 15 kinds of non-structural carbohydrates and organic acids were decreased, including
2-phosphoglycerate, aconitate, 2-oxoglutarate, malate, myo-inositol, glucose, ribose, erythritol,
phosphoenolpyruvate, glycerate, xylitol, isocitrate, shikimate, citrate, and succinate, while
those of the other 12 kinds of metabolites, such as xylulose, pyruvate, maltose, galactose,
maltitol, fumarate, rhamnose, quinate, maleic acid, fructose, or xylose, remained unchanged in
transgenic red leaves compared with WT leaves (Figure 5, Table S4). For nitrogen metabolism,
nine kinds of free amino acids had reduced contents, including histidine, glycine, proline,
isoleucine, γ-aminobutyrate, leucine, phenylalanine, serine, and alanine, whereas the contents
of glutamine and asparagine were significantly higher in transgenic red leaves. Other amino
acids, such as methionine, valine, arginine, tyrosine, threonine, glutamate, ornithine, and
aspartate, showed comparable contents in WT and transgenic leaves.

2.3. Effects of Anthocyanin Accumulation on Photoprotection

Without high light treatment, the accumulation of anthocyanin did not affect the
xanthophyll cycle pool size and its de-epoxidation (Figure 6). Upon exposure to strong red
or green light, the pool size remained unchanged, whereas the de-epoxidation level was
significantly lower in transgenic red leaves compared with WT leaves.
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after strong red or green light treatment. Panel A, the inserted heat maps with blocks from left to
right are the values of the log2 fold change of the xanthophyll cycle pool size of WT, L8, and L9 before
and after strong red (R) or green (G) light treatment, respectively. Five biological replicates were
performed for each point; Panel B, ‘0 h’, ‘R3h’ and ‘G3h’ represented before (0 h) and after strong
green (G3h) or red (R3h) light treatment for 3 h, respectively. For the statistical analysis, “*” or “**”
indicates a significant difference at p < 0.05 or p < 0.01, respectively, t-test.

The accumulation of anthocyanin did not affect the activities of APX, MDHAR, and
DHAR (Figure 7). However, the activities of SOD and GR and the contents of ascorbate
and glutathione were decreased in transgenic compared with WT leaves. Under strong red
or green light treatment, the activities of antioxidant enzymes and the contents of ascorbate
and glutathione changed in similar patterns in WT and transgenic red leaves, except that
the activity of MDHAR showed a greater decrease in transgenic leaves following exposure
to red light.
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Figure 7. Antioxidant enzyme activity (A) and metabolite content (B) in leaves of ‘Galaxy Gala’
(WT) and its MdMYB10 overexpression transgenic lines (L8, L9) before and after strong red or green
light treatment. The inserted heat maps with blocks from left to right are the values of the log2

fold change in enzyme activity or metabolite content of WT, L8, and L9 before and after strong red
(R) or green (G) light treatment, respectively. Five biological replicates were performed for each
point. SOD, superoxide dismutase; APX, ascorbate peroxidase; MDHAR, monodehydroascorbate
reductase; DHAR, dehydroascorbate reductase; GR, glutathione reductase. Five biological replicates
were performed for each point. For the statistical analysis, “*” or “**” indicates a significant difference
at p < 0.05 or p < 0.01, respectively, t-test.

The stomata of apple leaves are mainly distributed on the abaxial side. In this study,
when treated under different high light stresses, the abaxial surface of apple leaves was
closely attached to wet gauze. In this way, the stomata were sealed with water and
the carbon fixation capacity of detached leaves was almost fully inhibited due to the
limitation of CO2 supply (Under this condition, the Fv/Fm values decreased in similar
patterns in transgenic red leaves and WT leaves with strong UV-B and UV-A irradiation
(Figure 8A). However, the values of Fv/Fm decreased at a slower rate in transgenic red
leaves compared with WT leaves upon exposure to strong white, green, or blue light
(Figure 8A and Figure S5). Moreover, the values of Fv/Fm decreased at a faster rate in red
leaves following exposure to strong red light.
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Figure 8. The maximum quantum yield of photosystem II (Fv/Fm) in leaves of ‘Galaxy Gala’ (WT)
and its transgenic lines (L8, L9) with MdMYB10 overexpression after treatment with different artificial
light sources under laboratory conditions (A) or exposure to sunlight in the field (B), and in young
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branches from one plant assayed for each replicate. For the statistical analysis, different lowercase
letters below symbols or above bars indicate a significant difference at p < 0.01, LSD.
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In field conditions, the values of Fv/Fm were slightly but significantly higher in
red leaves than in WT leaves in the morning (Figure 8B). However, the values became
comparable between WT and transgenic leaves in the afternoon. For young branch barks,
the values of Fv/Fm were higher in transgenic red barks than in WT in the morning
(Figure 8C). In the afternoon, the values of Fv/Fm remained unchanged in transgenic red
barks but decreased significantly in WT.

3. Discussion

The findings of the present study clearly showed that anthocyanin played two op-
posing roles in photoprotection under high light stress. On the one hand, anthocyanin
accumulation may shade chloroplasts by absorbing visible light, especially green light
(Figure 3A), causing leaves to absorb less light energy and thus having a positive effect on
photoprotection. On the other hand, the accumulation of anthocyanin could also decrease
photosynthesis and the thermal dissipation dependent on the xanthophyll cycle, especially
the former (Figures 2 and 4–6), the major pathways in the consumption of absorbed light
energy. This phenomenon had a negative effect on photoprotection. In field conditions
when photosynthesis performed normally in both green and transgenic red leaves, the
positive and negative effects of anthocyanin on photoprotection might be comparable.
The photoinhibition degree was then similar in green and red leaves (Figure 8B). Under
laboratory conditions, as carbon fixation capacity was almost fully inhibited in detached
leaves due to the limitation of CO2 supply, the positive effect of anthocyanin was far greater
than the negative effect. Consequently, light attenuation by anthocyanin could alleviate the
degree of photoinhibition under white, green, or blue light stress conditions (Figure 8A).
Under red light stress without any light attenuation by anthocyanin, the lower thermal
dissipation in red leaves (Figure 6) might partly account for the more severe photoinhibition
in transgenic red leaves in contrast to WT (Figure 8A). The decreased thermal dissipation
was most likely a response to the light-shielding effect of anthocyanin, as indicated by
higher chlorophyll concentration and lower chlorophyll a/b ratio (Figure 3). Young branch
bark contains chlorophylls and has a normal photochemical reaction capacity. However,
the carbon fixation capacity of branch bark is very low similar to other non-leaf green
tissues. Under field conditions, the observation that exposed young branch barks of Md-
MYB10 overexpression plants lacked any photoinhibition in contrast to WT (Figure 8C) also
supports the two opposing roles of anthocyanin in photoprotection under high light stress.

Compared with that in their green counterpart, the reduced photosynthesis in trans-
genic red leaves might be related to the lower photochemical reaction and CO2 fixation
capacities (Figures 2, 4 and 5). A stomatal effect could be excluded, as the phenotypes of
stomata were similar between the transgenic and WT leaves (Figure S4). In previous stud-
ies, it has been reported that green light might regulate gene expression in plants [12,13].
Moreover, anthocyanin content can also alter the gene expression in plants by attenuating
blue light [11]. While purple leaves display an overexpression of genes that promote
chlorophyll biosynthesis and light harvesting, genes involved in the stability/repair of
photosystems were substantial overexpressed in green leaves [11]. Compared with that in
WT, the changes in the expression of more than 1000 genes in transgenic red leaves (Table
S1) could be mainly attributed to the visible light attenuation by anthocyanin. Moreover,
the comparable expression of genes involved in photosynthesis between transgenic and WT
leaves (Table S1) indicated that anthocyanin accumulation might decrease photosynthesis
in apple leaves by regulating photosynthetic genes at the post-transcriptional level. Indeed,
the KEGG enrichment analysis revealed that expressions of transcription, translation, mem-
brane transport, and signal transduction genes were changed in the transgenic red leaves
(Table S3). The lower production of photosynthates resulted in lower contents of carbon
and nitrogen metabolites in transgenic red leaves (Figure 5), as both carbon and nitrogen
metabolism depend on the carbon skeleton supply from photosynthates. The greater accu-
mulation of glutamine and asparagine in transgenic red leaves (Figure 5) further support
this notion, as glutamine and asparagine have a relatively lower carbon/nitrogen ratio
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compared with glutamate and aspartate. Previous studies have also found that anthocyanin
accumulation increases the asparagine content in pear peel [30].

Using Arabidopsis and mutants deficient in anthocyanin synthesis, it has been re-
ported that the light attenuation role of anthocyanin is more important than its antioxidant
role in photoprotection under long-term high light treatment [10]. In the present study,
although anthocyanin accumulation decreased the antioxidant capacity in apple leaves
(Figure 7), it might not be involved in ROS scavenging in vivo under high light stress,
as the antioxidant systems changed in similar patterns in transgenic red leaves and WT
leaves after green or red high light treatment (Figure 7). This is a reasonable supposition as
the major production of ROS occurs at the chloroplast under high light stress [19], while
anthocyanin is mainly stored in vacuoles.

In previous studies, flavonoids were shown to protect plants from strong UV irradi-
ation stress [31,32]. In the present study, however, the accumulated anthocyanin neither
changed the leaf reflection spectrum in the UV range (Figure 3) nor protected the leaves
from strong UV stress under either field or laboratory conditions (Figure 8). We speculate
that several reasons might account for these observations. First, the different results were
attributed to the different compounds, plants, or UV treatments. Second, in addition to
anthocyanin, the changes in other metabolites (Figure 5) might also affect the absorption of
UV light. Third, we used Fv/Fm, an indicator for the status of the photosynthetic apparatus,
especially photosystem II [29], to reflect the UV damage to leaves in this study. However,
the chloroplast might not be the most sensitive organelle in plants in response to UV stress.
Thus, the UV stress damage might not be reflected by the Fv/Fm values over time. Further
studies are needed to clarify this phenomenon.

In general, anthocyanin may protect plants from high light stress by absorbing exces-
sive visible light despite reducing photosynthesis. However, anthocyanin cannot protect
plants from high UV light stress.

4. Materials and Methods
4.1. Plant Materials and Treatments

A transcription factor, MdMYB10, which has been demonstrated to regulate the syn-
thesis of anthocyanin in apple plants [2], was overexpressed in ‘Galaxy Gala’ (WT) to
obtain the plants with anthocyanin accumulation. Transformation of ‘Galaxy Gala’ was
performed as previously described [33,34]. Briefly, ‘Galaxy Gala’ shoots were subcultured
on proliferation medium [35] at 4-week intervals, and were then transferred to leaf ex-
pansion medium (MS supplemented with 0.1 mg/L naphthyleneacetic acid and 8.3 mg/L
6-(γ,γ-dimethylallylamino) purine 4 weeks before transformation. The youngest unfolded
leaf was exercised from in vitro shoots, and the leaf was wounded using a pair of non-
traumatic forceps [36] and co-cultivated with EHA105 (pCH32) harboring the binary vector
pSAK277-MdMYB10 [2]. After co-cultivation, the leaves were washed with distilled water
containing half-strength MS salt mixture and cefotaxim sodium (500 mg/L) to remove
excess inoculum and placed on regeneration medium containing 100 ppm kanamycin. The
regenerated shoots were propagated in vitro. Wood buds of two transgenic lines (L8 and
L9) and wild type (WT) were grafted onto M9-T337 rootstock and grown in the field for
2 years. During the growth period, no blossoms were found on any of the trees. The trees
were subjected to standard horticultural management with pest and disease control.

For the high light treatment with artificial light sources, fully expanded leaves were
sampled in the morning, punched into leaf discs (diameter 1.5 cm). The abaxial surface
of leaf discs was closely attached to four layers of wet gauze, and then treated under high
light for 0, 1, 2, and 3 h at room temperature. The UV-B, UV-A, blue, green, and red lights
were provided by custom-made LED-light sources, with a wavelength of approximately
280, 370, 450, 520, and 670 nm, respectively (Figure S1). A custom-made light source with
mixed red, green, and blue LED-light beads was considered as white light. During the
treatments, the light intensities used to irradiate leaf discs were approximately 90 µW cm−2

for UV-B, 3000 µW cm−2 for UV-A, and 2000 µmol m−2 s−1 for visible light. For each
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treatment at each sampling time, five replicates were used for the chlorophyll a fluorescence
transient and 820 nm modulated reflection measurements with M-PEA (Hansatech, Norfolk,
UK) as described by Gao et al. [29]. The wavelength of the red light source of M-PEA
is 627 ± 10 nm, which is not absorbed by anthocyanin, thereby excluding any possible
interference of anthocyanin in the measurements [37]. The maximum quantum yield of
photosystem II (Fv/Fm) was calculated as Fv/Fm = (Fm − Fo)/Fm, where Fm and Fo
are the maximum and minimum chlorophyll fluorescence intensity, respectively. Before
performing the measurements, leaves were dark-adapted for 1 h. The leaf samples were
also collected and stored at −80 ◦C for biochemical analysis. Fully expanded leaves and
new young branches were also collected from the southern canopy of the plants in the field
at 8:00 in the morning or 14:00 in the afternoon, transferred to the laboratory, and then
immediately used for measurements of chlorophyll a fluorescence transients after dark
adaption. During plant growth, the maximum solar UV-B, UV-A, and visible light intensity
were 60 µW cm−2, 1100 µW cm−2, and 1800 µmol m−2 s−1, respectively, on sunny days.

4.2. Metabolite Content and Enzyme Activity Analysis

Anthocyanin, chlorophyll, and xanthophyll cycle pigments were extracted and as-
sayed as described by Zhang et al. [38]. A 20A HPLC (Shimadzu, Kyoto, Japan) was used
for the anthocyanin and xanthophyll cycle pigment content assay, and a UV-2450 spec-
trophotometer (Shimadzu) was used for the chlorophyll content determination. Isolated
cyanidin-3-O-galactoside with a purity over 98% at different concentrations was used to
generate a standard curve to calculate the concentration of anthocyanin in plants.

Non-structural carbohydrates, organic acids, and free amino acids were assayed as
described by Li et al. [39], using an Agilent 7890A GC/5975C MS (Agilent Technology,
Palo Alto, CA) and an Agilent 1100 HPLC equipped with a fluorescence detector (Agilent
Technology), respectively. Sugar phosphates and other highly polar intermediates were
determined on an AB Sciex QTRAP 4000 Mass Spectrometer (Applied Biosystems/MDS
Sciex, Waltham, MA) linked to a Shimadzu HPLC according to Ma et al. [40].

Contents of ascorbate and glutathione as well as the activity of superoxide dismutase
(SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehy-
droascorbate reductase (DHAR), and glutathione reductase (GR) were assayed as described
by Zhang et al. [38]. The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase
(Rubisco), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoribulokinase
(PRK), sucrose phosphate synthase (SPS), and aldose-6-phosphate reductase (A6PR) were
assayed according to previous method [41].

4.3. Photosynthesis, Leaf Reflection Spectra, and Stomatal Phenotype Assay

On sunny days in June, light-response and CO2-reponse curves of photosynthetic
rates were measured from 9:00 to 11:00 a.m. using a LI-6800 portable photosynthesis
system (Li-Cor Biosciences, Lincoln, NE, USA). For light-response curves measurement,
the photosynthetic irradiation light (red:blue = 90:10) was provided by the light source of
the LI-6800, changing the intensity from high to low in the following sequence: 1800, 1400,
1000, 750, 500, 250, 150, 100, and 50 µmol m−2 s−1. Respiration was measured without
any irradiation of the leaves. Apparent quantum yield was calculated from the initial
slope of the light-response curves. The CO2 concentration was set as 400 µmol mol−1. For
CO2-response curves measurement, the CO2 concentrations were changed in the following
sequence: 400, 300, 200, 100, 400, 550, 700, 900, 1200, and 1400 µmol mol−1. The light
intensity was set at 1600 µmol m−2 s−1. Fully expanded leaves were kept in each intensity
or CO2 concentration for at least 3 min until the photosynthetic rates became stable. Leaf
reflection spectra were assayed using a UV-2600 spectrophotometer equipped with an IS-
2600 plus integrated sphere (Shimadzu). The phenotypic assay of stomata was carried out
as described by Li et al. [42] using an Olympus BX-63 microscope (Olympus Corp., Tokyo,
Japan) with cellSens Entry software (Tokyo, Japan).
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4.4. RNA-Seq Analysis

Total RNA was isolated from fully expanded leaves using the SDS-phenol method [43]
and subjected to Novogene in Beijing (https://en.novogene.com (accessed on 3 December
2019)) for library construction and RNA sequencing with an Illumina NovaSeq 6000. The
clean data for each sample were mapped to the GDDH13 genome [44] with Hisat2, and
the corresponding read counts were analyzed by Deseq2 to select differentially expressed
genes. The resulting p values were adjusted using Benjamini and Hochberg’s approach for
controlling the false discovery rate, padj < 0.05 and the absolute value of log2(fold change)
≥ 1 were set as the threshold for significantly different expression. Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways of differentially expressed genes were determined
using the clusterProfiler R package at the website https://www.kegg.jp/kegg/pathway
(accessed on 15 March 2020).

4.5. Statistical Analysis

All data are presented as means ± SE and were analyzed with the t-test or least signif-
icant difference (LSD) test using SPSS 16.0 software (SPSS, Chicago, IL, USA). Heatmap
representations were produced using the TBtools [45].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232012616/s1.
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