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Abstract: Polo-like kinase 4 (PLK4) is a cell cycle-regulated protein kinase (PK) recruited at
the centrosome in dividing cells. Its overexpression triggers centrosome amplification, which
is associated with genetic instability and carcinogenesis. In previous work, we established that
PLK4 is overexpressed in pediatric embryonal brain tumors (EBT). We also demonstrated that PLK4
inhibition exerted a cytostatic effect in EBT cells. Here, we examined an array of PK inhibitors
(CFI-400945, CFI-400437, centrinone, centrinone-B, R-1530, axitinib, KW-2449, and alisertib) for their
potential crossover to PLK4 by comparative structural docking and activity inhibition in multiple
established embryonal tumor cell lines (MON, BT-12, BT-16, DAOY, D283). Our analyses demonstrated
that: (1) CFI-400437 had the greatest impact overall, but similar to CFI-400945, it is not optimal for
brain exposure. Also, their phenotypic anti-cancer impact may, in part, be a consequence of the
inhibition of Aurora kinases (AURKs). (2) Centrinone and centrinone B are the most selective PLK4
inhibitors but they are the least likely to penetrate the brain. (3) KW-2449, R-1530 and axitinib are the
ones predicted to have moderate-to-good brain penetration. In conclusion, a new selective PLK4
inhibitor with favorable physiochemical properties for optimal brain exposure can be beneficial for
the treatment of EBT.
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1. Introduction

Protein kinases (PKs) have the ability to transfer a γ-phosphate group from ATP to serine,
threonine, or tyrosine residues. The human genome encodes 538 PKs. Most of them stimulate cell
proliferation, survival, and migration, when constitutively overexpressed and, therefore, are associated
with human cancer initiation and progression [1]. Targeted cancer therapies with small-molecule
protein kinase inhibitors (PKI) have been developed to specifically block molecules that are either
upregulated and overexpressed or mutated in tumor cells, thus minimizing toxicities, while improving
treatment effectiveness [1,2]. PKI drugs represent a shift from the dominant cytotoxicity therapeutic
approach to a signal transduction modulator (STM) approach. The STM approach, which is based
on selective PKI drug candidates, offers the potential for an improved therapeutic safety index and a
potential for better efficacy through treatment with selective PKI drug combinations to address the
challenge of tumor heterogeneity.

Centrosomes are subcellular organelles, which form the bipolar spindle during mitosis through
microtubule organization. Each centrosome has two centrioles embedded within a pericentriolar
material, which contains critical proteins for microtubule nucleation as well as regulators of the cell
cycle and its checkpoints. Centrioles are conserved microtubule-based organelles that form the core of
the centrosome and have important roles in most microtubule-related processes, including motility,
cell division, and cell signaling.

During mitosis, the two parental centrioles undergo centriole duplication to form centrosomes,
which, after duplication, migrate to opposite poles of the cell, coordinating bipolar spindle formation
for the perfect transmission of genetic material to the daughter cells [3]. Abnormalities in this process,
such as the presence of three or more centrosomes in a cell (centrosome amplification), can result in
genomic instability and aneuploidy, which have been shown to drive tumorigenesis [4–7]. Centrosome
numbers are tightly controlled and coupled with DNA replication, cell cycle signaling, and progression.
This regulation is key to protect genomic integrity [8].

Small molecules targeting centrosome components have been developed and tested in vitro and
in vivo with some currently undergoing clinical trials [9]. The three main targets to centrosome
control involve: (1) Centrosome duplication proteins (PLK1, CDK2, PLK4, AURKA), (2) centrosome
amplification proteins (CHK1, PI3K, AKT, PLK4), and (3) centrosome clustering proteins (APC, HSP70,
Stathmin) [9].

The polo-like kinase 4 (PLK4), a member of the polo-like kinase (PLK) family of the serine/threonine
PKs, is a cell cycle-regulated protein recruited to the centrosome to promote the duplication of centrioles
in dividing cells. Increase in PLK4 expression and kinase activity can lead to supernumerary centrioles,
while PLK4 depletion can result in decreased centriole numbers [10]. Due to its critical role, in order to
prevent centrosome amplification, PLK4 levels and activity must be strictly controlled.

All PLKs contain one or more Polo-box (PB) motifs. PB dimerization and binding to
phosphoproteins regulate the activity of PKs by causing a change in its conformation. When aligned
to PLK1, PLK4 has the lowest sequence homology (37%) of the catalytic domain, compared to PLK2
(53%) and PLK3 (54%), which influences substrate specificity [11]. While PLKs 1, 2, and 3 have two PB
domains at their C-terminus, PLK4 possess three, which have important implications for its regulation
and substrate selection [12,13]. Due to this characteristic, PLKs 1 through 3 bind to proteins that have
previously been phosphorylated via their tandem PBs and form intramolecular heterodimers. Unlike
the other PLKs, newly translated PLK4 is autoinhibited, which is quickly relieved by PB1-PB1- and
PB2-PB2-mediated homodimerization of PLK4 monomers. Upon homodimerizing, both monomers of
PLK4 are trans-autophosphorylated at Ser305, which generates a phosphodegron recognized by the
ubiquitin ligase complex SCF/β-TRCP. Ubiquitination of PLK4 dissociates the homodimer and leads to
the degradation of PLK4 [13–18].

PLK4 mRNA expression has been demonstrated to be comparatively low during quiescence, G0
phase, and early-to-mid-G1 phase, while gradually increasing in the late G1, S, and G2 phases, and
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peaking during mitosis. PLK4 protein becomes active only during S phase with the activity increasing
to almost double in G2 phase [19].

Besides cancer, PLK4 aberrations also contribute to other human diseases. During development,
autosomal recessive mutation of PLK4 leads to impairment of cell division through defects in the
mitotic spindle. The resulting phenotype is one of delayed cell division, leading to microcephaly
and primordial dwarfism in a Seckel syndrome spectrum. Furthermore, generalized retinopathy can
occur with malformation of photoreceptor cells and apoptosis, probably due to disturbance of cilia
development and retinal metabolic malfunction [20–24].

PLKs are of interest as therapeutic targets due to their druggability and a central role in cellular
growth and proliferation. PLK4 overexpression and over-activation have been associated with a
number of peripheral adult tumors like colorectal [25], breast [26,27], lung [28] cancer, melanoma [29],
lymphoma [30], bone [31], gastric [32] and pancreatic [33] cancer; pediatric peripheral tumors like
osteosarcoma [31], and adult central nervous system (CNS) tumors like glioblastoma multiforme
(GBM) [34]. Paradoxically, downregulation of PLK4 has been discovered in liver cancer [35]. Recently,
we reported PLK4 overexpression in pediatric embryonal tumors including peripheral malignant
rhabdoid tumors (RT), atypical teratoid rhabdoid tumors (AT/RT) of the brain, medulloblastomas (MB),
and neuroblastoma of the CNS (CNS-NB) [36–39].

Malignant RT (MRT) are rare, highly aggressive malignancies arising predominantly, but not
exclusively, in infants and young children below the age of three years. They are commonly located in
the CNS (65%) where they are called AT/RT. MRT can also be found in extracranial locations like the
kidneys (9%) or other soft tissues (26%) including head and neck, liver, thorax, retroperitoneum, pelvis,
and heart, among others [40,41]. AT/RTs are the most common malignant CNS tumors of children
below six months of age [42,43]. Within registries (e.g., the Central Brain Tumor Registry of the United
States, with 16,044 children registered from 2007–2011), AT/RTs account for approximately 40–50% of
all embryonal CNS tumors in the first year of life [44]. Recently, integrated genomic, epigenetic, and
clinicopathological data of large cohorts of patients’ samples have resulted in a better understanding of
the clinical heterogeneity of these tumors and the identification of molecular subgroups with potential
prognostic and therapeutic implications [45–47].

MB is the most common malignant brain tumor in children, accounting for nearly 20% of all
childhood brain cancers and 40% of all childhood tumors in the posterior fossa. Similar to AT/RT,
MBs are also embryonal in nature and consist of four distinct molecular subgroups: WNT, Sonic
Hedgehog (SHH), group 3 (G3-MB), and group 4 (G4-MB). Each subgroup differs in demographics,
transcriptomes, somatic genetic events, and clinical outcomes [48–54].

CFI-400945 is a multi-kinase inhibitor with relative selectivity for PLK4. It blocks PLK4 kinase
activity and the associated aberrant mitoses [15,27,55]. We established that treatment with CFI-400945
impaired proliferation, survival, migration, and invasion as well as induced apoptosis, senescence, and
polyploidy of MRT, AT/RT and MB tumor cells while sparing non-tumor human fibroblasts [36,37]. We
also demonstrated synergy with classical DNA-damaging agents like doxorubicin and etoposide [36].

CFI-400945 is an optimized, indolinone-derived, selective ATP-competitive kinase inhibitor with
nanomolar affinity for PLK4 [55]. While displaying minimal inhibition of the other members of the PLK
family, CFI-400945 has been shown to inhibit members of the Aurora kinase (AURK) and tropomyosin
receptor kinase (TRK) families but requiring concentrations in order of magnitude higher than PLK4 [55].
CFI-400945 has been shown to be efficacious in decreasing tumor size in vivo in xenograft models
of colon [56], pancreatic [33], breast [27], lung [28], and AT/RT [36]. This small molecule inhibitor is
currently being tested in clinical trials for breast (NCT03624543), prostate (NCT03385655), advance adult
solid tumors (NCT01954316), and acute myeloid leukemia/myelodysplastic syndromes (NCT03187288).

Besides CFI-400945, a handful of PKIs with PLK4 crossover potential and anticancer activity have
been described in the literature including: R1530 [57,58], centrinone/centrinone B [59], CFI-400437 [60],
axitinib [60–62], KW-2449, [63,64], and alisertib [65,66].
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CFI-400437 is an indolinone-derived, ATP-competitive kinase inhibitor [60] with high selectivity
for PLK4, but also displays lower levels of inhibitory activity for the other members of the PLK family.
CFI-400437 was found to significantly impair the growth of breast cancer cells in vitro, as well as
decreasing tumor size in mouse xenograft tumor models [60].

Centrinone and centrinone B are selective, reversible PLK4 inhibitors (PLK4i) developed using the
pan-AURK inhibitor VX-680 as a template. Centrinone reversibly depleted centrioles by preventing
centriole assembly in HeLa cells resulting in a p53-dependent cell cycle arrest in G1 phase. Centrinone
B exhibited comparable outcomes with centrinone [59].

R1530 is a member of a series of pyrazolobenzodiazepine compounds, which were identified as
mitotic inhibitors. R1530 is a multi-kinase inhibitor which was shown to target all the five members
of the PLK family. It induced polyploidy that led to apoptosis of cancer cells by interfering with the
mitotic checkpoint kinase BubR1, which is likely to be a result of its PLK4 inhibition [58].

Axitinib was developed as a tyrosine kinase inhibitor, specifically with high affinity for
VEGFR1–3 [67]. Prior to FDA approval, axitinib was found to inhibit PLK4 with an IC50 value
of 4.2 nM [67]. Axitinib was used during the synthesis of CFI-400437, as a model of a potent PLK4i [60].
In 2012, axitinib was approved by the FDA for use in renal cell carcinoma [57,68,69] and has since
been in clinical trials to treat thyroid [70] and advanced non-small cell lung [71] cancer as well as
melanoma [61,72].

KW-2449 is an analog of CFI-400945 that we identified in an attempt to find a candidate molecule
with potentially better brain exposure based on its chemical properties. It has been previously described
as a multi-kinase inhibitor of FLT3, ABL, ABL-T315I, and AURKs. Potent inhibitory growth effects on
leukemia cells with FLT3 mutations were achieved by inhibition of the FLT3 kinase, with subsequent
down-regulation of phosphorylated-FLT3/STAT5, G1 arrest, and apoptosis [63,64].

Alisertib is a pyrimidobenzazepine, ATP competitive inhibitor for the AURK family with the
highest selectivity for Aurora kinase A (AURKA) [73]. AURKA has previously been described to
be overexpressed in AT/RT [74] and alisertib is currently in a phase II clinical trial for its treatment
(NCT02114229).

It is estimated that >95% of approved drugs lack sufficient blood-brain-barrier (BBB) penetration
to allow efficacy [75–77]. The tissue exposure challenge is even greater for PKI drugs [78]. Briefly,
an initial informatics analysis of differences in molecular properties between approved CNS drugs
and PKI drugs approved or in public domain clinical trials databases identified a cluster of three
molecular properties that distinguished PKIs from approved CNS drugs. CNS drugs clustered around
a multiproperty profile of molecular weight (MW ≤ 400), lipophilicity (LogP ≤ 4), and polar surface
area (PSA ≤ 80), with extant PKIs often falling outside this multi-property profile, especially PSA. This
pioneering observation was updated and extended to undisclosed internal CNS candidates within
Pfizer as well approved CNS drugs [79,80]. The investigators proposed a CNS multiproperty profile,
based on analysis of their proprietary database, that could be used for late stage medicinal chemistry
optimization [79]. Continuing trends in multi-property consideration for CNS drug candidate design
and refinement are now embedded in commercially available computational packages such as ACD
Labs Percepta as a virtual screen for early alerts related to potential brain penetration.

Herein, we evaluate multiple small molecule PKI with potential PLK4 crossover for their effects in
a pre-clinical cellular model of EBT, potential to occupy the PLK4 active site in virtual docking analyses,
and their potential liability for BBB penetration based on computed multi-property profile.

Our aim was to evaluate the abovementioned inhibitors (Figure 1) in a pre-clinical model of
embryonal tumors (RT and MB) in regard to their anti-cancer properties and potential for brain
exposure. The predicted binding modes of these inhibitors were also examined, with the goal of
identifying the structural requirements for potential to binding to the PLK4 active site.
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Figure 1. Chemical structures of the evaluated protein kinase inhibitors.

2. Results

2.1. Structural Analysis of the Inhibitors

2.1.1. Docking Simulations

Docking simulations using the PLK4 catalytic cavity and each of the various PKIs with PLK4
crossover activity (Figure 1) demonstrated that all of the tested inhibitors, except axitinib, exhibited
similar interactions within the binding cavity, engaging in H-bonding with backbone residues Glu-89
and Cys-91 (Figure 2A–H). Only axitinib did not engage in H-bonds at the hinge region (Figure 2I)
with Glu-89 and Cys-91. Instead, axitinib exhibited two H-bonds with the backbone of Leu-17 and the
side chain of Arg-98 at the ribose pocket (Figure 2I). Interestingly, alisertib (Figure 2A) and axitinib
(Figure 2B) engaged in an additional cation-π interaction with Lys-40, while the empirical structure
of centrinone [59] (Figure 2C) and the docking pose of centrinone B (Figure 2D) both engaged in
cation–dipole interactions with this residue (−NH3

+ F). These findings may explain the higher docking
scores obtained for these inhibitors (Table 1). Compounds CFI-400437 and CFI-400945 displayed extra
H-bonding with Gly-18 and Arg-98, respectively, and a similar exploration of the phosphate-binding
site (Figure 2E,F,I,J). Compounds KW-2449 and R1530 only exhibited polar interactions at the hinge
region that may explain their lower scores as presented in Table 1. Noteworthy, the docking findings
also highlighted the potential of KW-2449 and R1530 to guide further structure–activity relationship
(SAR) studies as well as the design of novel compounds with improved exploration of the PLK4
binding cavity.
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Figure 2. PLK4 in silico findings. (A) Docking pose of alisertib (carbons are depicted in purple).
(B) Docking pose of axitinib (carbons are depicted in cyan). (C) Empirical complex of centrinone bound
to PLK4 (Protein Data Bank (PDB) entry: 4YUR, carbons are depicted in green). (D) Docking pose of
centrinone B (carbons are depicted in navy blue). (E) Docking pose of CFI-400437 (carbons are depicted
in magenta). (F) Docking pose of CFI-400945 (carbons are depicted in yellow). (G) Docking pose of
KW-2449 (carbons are depicted in light pink). (H) Docking pose of R1530 (carbons are depicted in
orange). (I) Two-dimensional (2D, left) and three-dimensional (3D, right) schematic representation of
the ATP-binding pocket of PLK4. (J) Superimposed pose of the inhibitors at the PLK4 binding cavity.
Cartoon protein depicted in white. Carbons of PLK4 are depicted in white. Oxygen is depicted in red.
Nitrogen is depicted in blue. In panels C and D, sulfur is depicted in yellow. In panels A, C, D, and
H, fluorine is depicted in cyan. In panels A and H, chlorine is depicted in green. Hydrogen bonds
are indicated as green dashed lines. Interatomic distances in angstroms (Å). A: alanine; C: cysteine; E:
glutamate; G: glycine; K: lysine; L: leucine; V: valine; R: arginine.

Table 1. In silico molecular docking scores of the protein kinase inhibitors to the binding cavity of
PLK4 (GOLD 5.2, CCDC). Six simulations per kinase inhibitor were performed. Green—highest score;
Red—lowest score.

Best Score Found (per Simulation)

Docking 1 Docking 2 Docking 3 Docking 4 Docking 5 Docking 6 Mean
centrinone B 83.58 78.20 79.18 83.800 79.86 81.40 81.00
centrinone 80.10 85.33 73.78 79.86 81.74 70.87 78.61

alisertib 65.55 68.66 69.23 69.50 69.78 69.32 68.67
axitinib 64.46 63.49 64.41 65.92 62.97 65.55 64.47

CFI-400945 59.99 62.26 61.15 60.61 58.18 63.14 60.89
R-1530 55.23 62.02 62.05 62.01 62.03 62.01 60.89

CFI-400437 58.74 59.94 60.68 61.31 60.15 61.10 60.32
KW-2449 51.85 57.68 58.51 59.05 59.12 58.49 57.45

Additional hydrophobic interactions have also been observed through the cavity for all inhibitors
especially—but not exclusively—with Leu-17, Val-25, Ala-38, and Leu-142 (Figure 2A–H). The
overlapping poses of the compounds (Figure 2J) indicated a similar exploitation of the binding cavity
by the eight compounds examined. Therefore, compounds bearing polar groups like piperazine
(CFI-400437 and KW-2449) and morpholine (centrinone and CFI-400945) had a better fit within the
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hydrophilic regions of the pocket (i.e., phosphate-binding site and ribose pocket, Figure 2I,J), or turned
their polar moieties to the solvent-exposed region.

2.1.2. Physical Property Analysis

The logBB is a logarithm index that express the brain/plasma concentration ratio of drugs, and it
is indicative of the permeation of drugs through the BBB. The logBB values from ACD Labs Percepta
2016 (Build 2911) identify differences among the inhibitors, including those with a common indazole
core (Table 2).

Table 2. (A) Physical multi-property analysis for each inhibitor, calculated using ACD Percepta
2016 (Build 2911). (B) LogBB values, obtained using ACD Labs Percepta software v16, for PKIs.
Green—highest logBB; Red—lowest logBB.

A CFI-400945 CFI-400437 Centrinone
CNS MPO Calculator CNS MPO Calculator CNS MPO Calculator
Property Value Property Value Property Value

clogP 5.05 clogP 4.07 clogP 4.03
LogD7.4 4.98 LogD7.4 3.98 LogD7.4 4.03
TPSA 79.48 TPSA 86.38 TPSA 204.84
MW 534.65 MW 492.57 MW 633.65
HBD 2 HBD 2 HBD 2
pKa 6.6 pKa 7.2 pKa 2.3

Centrinone B R1530 KW-2449
CNS MPO Calculator CNS MPO Calculator CNS MPO Calculator
Property Value Property Value Property Value

clogP 4.31 clogP 3.82 clogP 2.56
LogD7.4 4.31 LogD7.4 3.82 LogD7.4 2.14
TPSA 195.61 TPSA 62.3 TPSA 61.02
MW 631.68 MW 356.78 MW 332.40
HBD 2 HBD 2 HBD 2
pKa 4.2 pKa 5.6 pKa 8.3

Axitinib Alisertib B Compound logBB
CNS MPO Calculator CNS MPO Calculator CFI-400945 0.88
Property Value Property Value R1530 0.3

clogP 3.65 clogP 5.82 KW-2449 −0.07
LogD7.4 3.65 LogD7.4 2.9 Centrinone B −0.18
TPSA 95.97 TPSA 105.93 Centrinone −0.27
MW 386.47 MW 518.92 Axitinib −0.34
HBD 2 HBD 2 CFI-400437 −0.73
pKa 4.3 pKa 2.1 Alisertib −0.96

In this regard, the CFI-400945 profile is: MW = 534.65, PSA = 79.48, and calculated LogP (cLogP)
= 5.05, which puts CFI-400945 at the cusp of multiple property profiles for drugs with good brain
exposure. Similarly, other tested compounds had one or more of the multi-property computed values:
Centrinone (MW = 633.65, PSA = 204.84, cLogP = 4.03); centrinone B (MW = 631.68, PSA = 195.61,
cLogP = 4.31); and alisertib (MW = 518.92, PSA = 105.93, cLogP = 5.82). Inhibitors with profiles that
forecast less risk for BBB penetrance include: CFI-400437 (MW = 492.57, PSA = 86.38, cLogP = 4.07);
R1530 (MW = 356.78, PSA = 62.30, cLogP = 3.82); KW-2449 (MW 332.40, PSA =61.02, cLogP = 2.56);
axitinib (MW = 386.47, PSA = 95.97, cLogP = 3.65).

Overall, centrinone and centrinone B represent those with higher computed risk based on total
polar surface area (TPSA) > 190 Å2 as well as > 600 MW. Clearly, future studies for brain tumor
treatment research warrant an exploration of dose-dependent brain exposure in order to provide a
firm experimental foundation.
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2.2. Kinase Assays

Kinase assays were performed to determine the half-maximum inhibitory concentrations (IC50)
for PLK4. Because PLK4 has high catalytic similarities with AURKs [60,81,82], the IC50 for AURKA,
Aurora kinase B (AURKB), and Aurora kinase C (AURKC) were also determined for each of the
inhibitors included in this study. Results shown in Figure 3 and Table 3 indicate the following: (1)
CFI-400437 had the lowest IC50 value for PLK4 (1.55 nM) followed by centrinone (2.71 nM) and
CFI-400945 (4.85 nM); (2) centrinone and centrinone B were the most specific to PLK4; (3) CFI-400437
inhibited both AURKB and AURKC at concentrations <15 nM, while CFI-400945 inhibited AURKB
at a higher concentration (70.7 nM) and AURKs A and C at even higher concentrations (188 nM and
106 nM, respectively); (4) high IC50 for PLK4 was observed for KW-2449 (52.6 nM) which inhibited all
three AURKs more efficiently than PLK4; (5) finally and not surprisingly, alisertib, which is known to
be a primary inhibitor of AURKA, had the highest IC50 for PLK4 (62.7 nM) with the best inhibitory
activity of all AURKs.
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Figure 3. Kinase activity curves for PLK4, Aurora kinase A (AURKA), Aurora kinase B (AURKB), and
Aurora kinase C (AURKC) in the presence of various concentrations of for each inhibitor. (SelectScreen™
Kinase Profiling Services—Thermo Fisher Scientific, Carlsbad, CA, USA).
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Table 3. Half maximal inhibitory concentrations (IC50 nM) of each inhibitor on the activity of PLK4,
AURKA, AURKB, and AURKC. Green—lowest IC50; Red—highest IC50.

PLK4 AURKA AURKB AURKC
CFI-400437 1.55 37.2 13.1 4.88
centrinone 2.71 108 680 493
CFI-400945 4.85 188 70.7 106

axitinib 6.51 13.1 16.9 31.2
R1530 7.06 6.22 42.6 30.9

centrinone B 8.69 623 10,000 5810
KW-2449 52.6 45.8 23.8 23.2
alisertib 62.7 0.55 6.7 9.43

2.3. Cell-Based Studies

The evaluation of the impact of each inhibitor over cell phenotype (proliferation, viability, colony
formation, senescence, and cell cycle/polyploidy) demonstrated that: (1) Decrease in viability and
proliferation was consistent with the results of the kinase assay (Figure 3 and Table 3) being more
significant for CFI-400437 and centrinone (Table 4, Figures 4 and 5), followed by CFI-400945, which
has been previously tested in our system [36,37]; (2) although KW-2449 had the second highest IC50

on the kinase assay, significant impact over viability/proliferation, inhibition of colony formation,
induction of senescence and polyploidy were observed, but in higher concentrations (1–2 µM) (Figure 6);
(3) centrinone, which is the most selective inhibitor for PLK4, together with centrinone B, did not induce
polyploidy in the cell lines tested (Figure 5). AURKB proper function during mitosis is crucial for
ensuring the prevention of mitotic errors, endoreduplication, and polyploidy [83–85]. Therefore, this
phenomenon could stem from the absence of AURKB-associated inhibition, which may be necessary
for induction of polyploidy [86].

Table 4. Results from cell-based studies. In the first column: Half-maximal inhibitory concentrations
(IC50) (SelectScreen, ThermoFisher, USA) from the kinase assay. MTT: IC50 of the proliferation assay;
PB: IC50 of the PrestoBlue Viability assay (all values in nM) of each cell line (MON, BT-12, BT-16, DAOY,
and D283). Green—lowest IC50; Red—highest IC50.

SelectScreen
IC50 (nM)

MON BT-12 BT-16 DAOY D283
MTT PB MTT PB MTT PB MTT PB MTT PB

CFI-400437 1.55 722 640 61.6 604 1920 >10,000 684 768 >10,000 6304
centrinone 2.71 1840 5000 3875 3400 1557 2220 1250 4500 6950 6650
CFI-400945 4.85 67.4 5130 7250 8470 3300 5830 47.1 94 71 8400

axitinib 6.51 >10,000 4500 >10,000 >10,000 5950 >10,000 1147 1430 0.394 0.918
R-1530 7.06 3200 3750 >10,000 >10,000 3895 >10,000 829 1852 >10,000 >10,000

centrinone-B 8.69 >10,000 >10,000 5188 6320 5467 >10,000 >10,000 >10,000 1240 1740
KW-2449 52.6 2452 1743 >10,000 >10,000 >10,000 1840 >10,000 >10,000 8050 >10,000
alisertib 62.7 358 213 >10,000 >10,000 >10,000 >10,000 340 31 9533 9133

2.4. KW-2449

Although kinase assays reveal this ligand to possess a high IC50 for PLK4 and cell-based assays
indicated a phenotype consistent with PLK4 inhibition at high concentrations, the docking simulations
indicated that KW-2449 has the potential to guide further structure–activity relationship (SAR) studies
and the design of novel compounds with improved exploration of the PLK4 binding cavity. For this
reason, and because of the favorable scores for BBB penetration, we further studied KW-2449.
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2.4.1. KW-2449 Potential for Cardio Toxicity and Drug-Drug Interaction Risk

Screening of a PKI for human ether-a-go-go-related gene (hERG) potassium channel inhibition
has become an early step in testing for potential drug dependent long QT syndrome that is linked to
sudden death [87]. Binding of KW-2449 at the hERG channel was not detected under standard assay
procedures at the highest concentration tested (IC50 > 10 µM) (Supplementary Figure S1). These data
suggest that KW-2449 is not in the high-risk category for cardiovascular toxicity. Similarly, cytochrome
P450 (CYP450) enzymes, which are drivers of first-pass metabolism for orally administered drugs,
can contribute to toxicities or therapeutic failures [88] with the two of the most significant in risk
being CYP3A4 and CYP2D6, which showed an IC50 value >10 µM (the highest tested concentration)
(Supplementary Figure S1).
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Figure 4. Phenotypic evaluation of CFI-400437 in multiple cells lines. (A) Clonogenic - colony formation
assay of RT and MB cells treated with 50nM CFI-400437 reveals complete inhibition of colony formation
in all cell lines. (B) Beta-galactosidase assay shows induction of cell senescence when treated with
CFI-400437 in all cell lines (*** p < 0.001 and **** p < 0.0001, one-way ANOVA). (C) Cell cycle analysis
reveals the induction of polyploidy with 500 nM CFI-400437.
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2.4.2. KW-2449 Kinase Inhibition Screen

We performed a kinase selectivity screen and established that KW-2449 has low selectivity,
inhibiting PLK4 among several other kinases. The screening revealed that 215 out of 486 (44%) kinases
had their activity inhibited above 80% by KW-2449 at 10 µM (Supplementary Table S1). The IC50 for
selected kinases was validated by a 10-point titration curve analysis. The IC50 values of AURKA,
AURKB, and AURKC were 45.8 nM, 23.8 nM, and 23.2 nM, respectively while the IC50 value of PLK4
was even higher: 52.2 nM (Figure 3 and Table 3). In summary, KW-2449 showed low selectivity and
efficient PLK4 inhibitory effect inducing a phenotype consistent with PLK4 inhibition in EBT cells. Key
features suggest a potential for low cardiotoxicity or drug–drug interaction risk.
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Figure 5. Phenotypic evaluation by centrinone inhibition in multiple cells lines. (A) Clonogenic - colony
formation assay of RT and MB cells treated with 50nM centrinone reveals complete inhibition of colony
formation in all cell lines except the MB cell line DAOY and the RT cell line BT-16. (B) Beta-galactosidase
assay shows induction of cell senescence when treated with centrinone in all cell lines (** p < 0.01, ***
p < 0.001 and **** p < 0.0001, one-way ANOVA). (C) Cell cycle analysis reveals no polyploidy when
treated with 1µM centrinone in all cell lines.
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Figure 6. Phenotypic evaluation by KW-2449 in multiple cells lines. (A) Clonogenic - colony formation
assay of RT and MB cells treated with 1µM KW-2449 reveals complete inhibition of colony formation
in all cell lines except the MB cell line DAOY. (B) Beta-galactosidase assay shows a dose-dependent
induction of cell senescence when treated with increasing doses of KW-2449 in all cell lines (** p < 0.01,
*** p < 0.001 and **** p < 0.0001, one-way ANOVA). (C) Cell cycle analysis reveals the induction of
polyploidy with 2µM KW-2449 in all cell lines except DAOY.

3. Discussion

PKIs have promised to overcome major disadvantages of traditional cancer treatments as they
potentially discriminate between non-malignant and rapidly proliferating cancer cells, leading to fewer
off-target effects and lower toxicity for the patients. We previously demonstrated overexpression of
PLK4 in embryonal tumors including RT, pediatric MB, and CNS-NB, for which only highly toxic and
poorly effective treatments are available. Our preliminary findings suggested that targeting PLK4 with
small-molecule inhibitors may represent a novel strategy to treat EBT and possibly other tumors of
the brain [36–38]. We have demonstrated that oral CFI-400945 delayed tumor growth and improved
survival in a xenograft model of AT/RT [35]. However, CFI-400945 is at the cusp of the multi-property
profile predictive of efficient brain exposure and therefore, this favorable outcome may be a result of
the disruption of the BBB by the xenografting procedures, rather than the ability of the molecule to
penetrate the brain. This type of BBB disruption can be responsible for over-predicting the efficacy
of agents that otherwise would not penetrate the brain. This explanation is one of the reasons why
certain agents that were shown to be active in preclinical studies failed in clinical trials [89].
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A brain penetrant PLK4i could be used to treat not only EBT but other aggressive CNS tumors
with PLK4 overexpression like GBM [34]. Therefore, we conducted the present study in order to
understand the potential of available PLK4is and explore the possibility to develop new chemical
entities with higher PLK4 selectivity and efficient BBB penetration.

3.1. Polyploidy and Aurora Kinases (AURKs)

Polyploid cells have more than two paired homologous chromosomes. Aberration of the
homeostatic diploid state, resulting in polyploidy, has been implicated in a number of cancers [90–93],
but it can also increase cancer cells’ susceptibility to cytotoxic therapies [94]. Cell fusion, cytokinesis
failure, and endoreduplication are three mechanisms that can lead to polyploidization [92].

It has been demonstrated that the well-balanced action of the PLK and AURK families of protein
kinases is essential for normal mitotic function. AURKs are members of a conserved family of
serine/threonine PKs involved in cell cycle progression [85]. AURKA is involved in organizing
cell polarity, regulating the assembly and organization of mitotic spindles, centrosome maturation,
and regulation of mitotic checkpoints [81,95]. AURKB is actively involved in mitosis, chromosomal
alignment and segregation, formation of the cleavage furrow, and control of checkpoints, and therefore
prevents the occurrence of aneuploidy [83,85,86]. In fact, inhibition of AURKB has been found to lead
to polyploidy in vitro in both cancer and non-cancer cells [83,84,86,96]. AURKC is the least-studied
member of the family. It is known to be highly expressed in testis and involved in the coordination of
meiotic spindles during spermatogenesis [81,82]. While the active sites of AURKB and AURKC are
identical, the active site of AURKA differs by only three amino acids [82]. Whereas inhibitors specific
to AURKB and pan-AURK inhibitors induced significant polyploidy in vitro, the phenotype was not
observed when subjected to inhibition by an AURKA selective inhibitor [84].

PLK4 shares 37% residue homology with that of AURKA, making the active site of PLK4 more
structurally similar to the members of the AURK family than to PLK1 [60,72,81,82]. This high degree
of homology between the ATP-dependent catalytic domains could explain the observed inhibition of
AURKs when subjected to PLK4is. Because of these catalytic similarities between PLK4 and AURKs,
we evaluated the kinase inhibitory activity of all three AURKs for each PLK4i.

Previously, we have observed induction of polyploidy after treating EBT cells with
CFI-400945 [36,37]. We interpreted this outcome as a result of DNA endoreduplication in the
absence of centriole replication, which would have been resultant from PLK4 inhibition. However, our
results showed that centrinone, the most selective inhibitor for PLK4, did not induce polyploidy of the
cancer cells (Figure 3B), which raises the hypothesis that the major factor responsible for polyploidy is
inhibition of AURKB rather than PLK4.

Although the majority of drug developing efforts have focused on selectivity for a single biological
target, there has been evidences implying that more selective drugs are less likely to work in
the clinic compared with drugs that target a set of molecular pathways implicated in the disease
pathophysiology [77]. In this scenario, aiming for a PKI targeting multiple desirable targets may be of
greater interest.

3.2. Considerations for Future Development of a Brain Penetrant PLK4i and its Therapeutic Use

In order to identify improved inhibitors for use in the treatment of brain cancers, it will be
important to design compounds that are not only selective for PLK4, but that also have appropriate
lipophilicity (logP) and as well as modest total polar surface areas (TPSA) to allow for brain penetration.
Thus, the use of multi-method predictive modules such as central nervous system multi-parameter
optimization (CNS MPO) should be considered in the compound optimization process. KW-2449 and
R1530 appear to have reasonable scores for brain exposure while centrinone and centrinone B are the
most selective in terms of their kinase profiles. These results together with further molecular docking
studies may lead to the design of compounds with improved selectivity and brain penetration, thus
allowing for improved cancer therapeutics.
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Kinase inhibitors can be used in combination with cytotoxic chemotherapy, radiation therapy,
or other STMs. In previous studies, we established the synergism of the PLK4i CFI-400945 with
cytotoxic chemotherapy drugs [35]. A key challenge in the clinics is to identify the most efficient
combination of kinase targets and then develop treatment combinations for specific cancer types.
Since the PLK4 inhibition has a well-defined mechanism of action, combination with drugs that act
on cooperating pathways are potentially significant. For example, Kawakami et al. [28] found that
combined treatments with CFI-400945 and seliciclib, a CDK2 inhibitor, exerted both additive and
synergistic effects to reduce lung cancer cell growth. Therefore, combining a PLK4i not only with
cytotoxic drugs but also with drugs that affect cooperating pathways may be promising.

4. Materials and Methods

4.1. Inhibitors Tested

We studied 8 PKI with PLK4 cross-over potential: CFI-400945 (CAS#1338800-06-8, Cat#16850)
(Cayman Chemical, Ann Arbor, MI, USA) [55]; CFI-400437 (CAS#1247000-76-5, Cat# SYN-1207)
(SynKinase, San Diego, CA, USA) [60]; centrinone (CAS#1798871-30-3, Ludwig Institute for Cancer
Research, New York, NY, USA) [59]; centrinone B (CAS#1798871-31-4, Ludwig Institute for Cancer
Research, New York, NY, USA) [59]; KW-2449 (CAS# 1000669-72-6, Cat#HY-10339) (MedChemExpress,
Monmouth Junction, NJ, USA) [63]; R1530 (CAS#882531-87-5, Cat#15225) (Cayman Chemical, Ann
Arbor, MI, USA) [57]; axitinib (CAS#319460-85-0, Cat#13813) (Cayman Chemical, Ann Arbor, MI,
USA) [61], and alisertib (CAS#1028486-01-2, Cat# HY-10971) (MedChemExpress, Monmouth Junction,
NJ, USA) [97] (Figure 1).

4.2. Structural Analysis of the Inhibitors

The crystallographic structure of PLK4 was obtained from the Protein Data Bank (PDB) with
access code 3COK (https://www.rcsb.org/structure/3cok). This structure has a resolution of 2.25 Å. All
the inhibitors’ structures were built and energy-minimized with the density functional theory (DFT)
method Becke-3-Lee Yang Parr (B3LYP) with the standard 6-31G* basis set available in the Spartan’14
program (Wavefunction, Inc., Irvine, CA, USA). Molecular docking was performed with the GOLD
5.2 program (CCDC). The scoring function used was ‘GoldScore’, which is the default function of
the GOLD 5.2 program. Hydrogen atoms were added to PLK4 according to the data inferred by the
GOLD 5.2 program on the ionization and tautomeric states. The docking interaction cavity in the
protein was established with a 10 Å radius from the co-crystalized ligand (phosphoaminophosphonic
acid-adenylate ester). The number of genetic operations (crossover, migration, mutation) in each
docking run that was used in the search procedure was set to 100,000. Docking simulations were
performed six times for each inhibitor. The figure of the best—and most frequent—docking pose
for each compound was generated by the PyMOL Delano Scientific LLC program (Palo Alto, CA,
USA). The experimental structure of centrinone bond to PLK4 was obtained from the PDB with the
access code 4YUR. CNS MPO scores were calculated as per the original method described by Pfizer.
Calculated logP, log D, TPSA, MW, pKa, and HBD were obtained using ACD Labs Percepta 2016 (Build
2911). The logBB values were obtained using ACD Labs Percepta software v16 (Advanced Chemistry
Development, Inc., Toronto, On, Canada).

4.3. Kinase Assay

Each inhibitor’s potency was determined by generating 10-point IC50 curves from a 4-fold
dilution series in DMSO (1 mM). Curves were generated from the compound concentration and
the corresponding percent (%) inhibition calculated for each concentration tested. For PLK4, we
used the LanthaScreen Eu Kinase Binding Assay (Thermo Fisher Scientific, Carlsbad, CA, USA) that
utilizes an Alexa Fluor conjugated “tracer” and an Eu-labeled anti-tag antibody to measure binding
of a compound to the kinase target. For AURKs (AURKA, AURKB and AURKC) we used the Z’
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LYTE Kinase Assay (Thermo Fisher Scientific, Carlsbad, CA, USA) that determines the differential
sensitivity of phosphorylated and non-phosphorylated peptide substrates to proteolytic cleavage using
a FRET-based readout.

4.4. Cell Culture

Six well-established and extensively characterized cell lines were used in this study: The rhabdoid
cells MON provided by Dr. Delattre (Institute Curie, Paris, France) [98], the AT/RT cell lines BT-12 and
BT-16, which have been extensively used in preclinical studies [99], and two MB cell lines (DAOY and
D2830). The cells were cultured as previously described.

4.5. Cell-Based Assays

For each cell line and each inhibitor, we performed proliferation, viability, senescence, colony
formation, and cell cycle analysis, as described below.

4.5.1. Proliferation Assay

To evaluate cell proliferation, the TACS MTT Cell Proliferation Assays (Trevigen, Gaithersburg,
MD, USA) were used. The RT cell lines (MON, BT-12, and BT-16) were plated at 2 × 103 cells on each
well of a 96-well plate. The MB cell lines (DAOY and D283) were plated at 5 × 104 and 5 × 105 cells per
well, respectively. The absorbance was measured after 24, 48, 72, and 96 h at concentrations ranging
from 0.001 to 10 µM of the inhibitor. All assays were performed in triplicates.

4.5.2. Viability Assay

Cell viability was assessed using the Presto Blue™ Cell Viability reagent (Thermo Fisher Scientific,
Carlsbad, CA, USA) following the manufacturer’s instructions. Cells were plated in 96-well plates at
the same densities described above for the proliferation assay. The fluorescence was measured after
24, 48, 72, and 96 h at concentrations ranging from 0.001 to 10 µM of the inhibitor. All assays were
performed in triplicate.

4.5.3. Clonogenic Assay

All cell lines were seeded at 200 cells per well in six-well plates and incubated overnight. After 24
h, the treatment medium was added and changed once a week. Cells were treated with 0.01, 0.05, 0.1,
0.2, 0.5, 1, 5, and 10 µM of PLK4i and 0.1% DMSO as control. After 14 days, the cells were washed
twice with 1x PBS, fixed with formalin, and stained with Cresyl violet (ACROS Organics, Pittsburgh,
PA, USA). Colonies were counted using the ImageJ software (www.imagej.nih.gov, accessed on April
21, 2017).

4.5.4. Beta-Galactosidase Assay

Senescence was evaluated using the Beta-galactosidase assay (Senescence Cells Histochemical
Staining Kit CS0030 (Sigma, St Louis, MO, USA) and clonogenic recovery assay as previously described.

4.5.5. Cell Cycle Analysis

Cell cycle analysis was performed by flow cytometry of cells stained with Propidium Iodide (PI)
(Thermo Fisher Scientific, Carlsbad, CA, USA) according to manufacturer’s instructions. Cells treated
with the top PLK4i candidates and 0.1% DMSO (control) were fixed in 80% ethanol overnight, stained
with PI, and then subjected to flow cytometric analysis using a BD Fortessa instrument (BD Biosciences,
San Jose, CA, USA). Data was analyzed using Modfit LT from Verity Software House (Topsham, ME,
USA). All experiments were performed in triplicate.

www.imagej.nih.gov
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4.6. Characterization of KW-2449

4.6.1. Kinase Activity Screening

The inhibitory activity of KW-2449 on various kinases was assessed through 486 biochemical
kinase assays using 10 µM of the compound (SelectScreen Kinase Profiling Services—Thermo Fisher
Scientific, Carlsbad, CA, USA). These assays utilized various formats appropriate to the kinase, its
substrate, and its activity. The IC50 for selected kinases was further measured by 10-point titration.

4.6.2. Drug Safety and Toxicology

Analysis of KW-2449 against a panel of P450s isoenzymes (1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2J2,
3A4, and 3A5) and substrates was performed using 10-point titrations, in duplicates to determine
IC50 values (SelectScreen P450 Profiling Service—Thermo Fisher Scientific, Carlsbad, CA, USA). To
determine if the compound binds the cardiac hERG channel, the IC50 value was quantitated using a
10-point titration, in duplicates in the Predictor hERG fluorescence polarization assay (SelectScreen
hERG Screening Service—Thermo Fisher Scientific, Carlsbad, CA, USA).

5. Conclusions

Our analyses demonstrated that: (1) CFI-400437′s inhibition of PLK4 had the greatest impact
overall, but similar to CFI-400945, its physiochemical properties are not optimal for brain exposure.
Also, their phenotypic anti-cancer impact may, in part, be a consequence of the inhibition of AURKs,
especially AURKB. (2) Centrinone and centrinone B are the most selective PLK4is but they are the
least likely to penetrate the brain. (3) KW-2449, R1530, and axitinib are the ones predicted to have
moderate-to-good BBB penetration. (4) The compound with the most chemically favorable molecular
properties for brain exposure, KW-2449, was also the least selective for PLK4.

In conclusion, we showed that PLK4 can be inhibited by a variety of structurally disparate
molecules, with varying degrees of in vitro phenotypic effects and that a selective PLK4i with
favorable physiochemical properties for optimal brain exposure will be beneficial for the treatment of
aggressive brain tumors with PLK4 overexpression. Finally, there is a need to improve the existing
inhibitors for better selectivity and brain exposure and/or to develop new chemical entities with these
desirable characteristics.

6. Patents

Simone Treiger Sredni and Tadanori Tomita, Northwestern University. INHIBITORS OF
POLO-LIKE KINASE 4 (PLK4) FOR TREATING PEDIATRIC EMBRYONAL TUMORS. Patent
application No. 20190070190. Filing Date: March 17, 2019.
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Abbreviations

AT/RT Atypical Teratoid Rhabdoid Tumor
AURK Aurora Kinase
AURKA Aurora Kinase A
AURKB Aurora Kinase B
AURKC Aurora Kinase C
B3LYP Becke-3-Lee Yang Parr
BBB Blood Brain Barrier
CNS MPO Central Nervous System Multi-Parameter Optimization
CYP450 Cytochrome P450
DFT Density Functional Theory
EBT Embryonal Brain Tumor
G3-MB Group 3 MB
G4-MB Group 4 MB
GBM Glioblastoma multiforme
hERG Human Ether-a-go-go-related gene
IC50 Half Maximal Inhibitory Concentration
LogP Lipophilicity
MB Medulloblastoma
MRT Malignant Rhabdoid Tumor
MW Molecular Weight
PB Polo-box
PBD Protein Data Bank
PI Propidium Iodide
PK Protein Kinase
PKI Protein Kinase Inhibitor
PLK Polo-like Kinase
PLK4 Polo-like kinase 4
PLK4i Polo-like kinase 4 inhibitor
PSA Polar Surface Area
RT Rhabdoid Tumor
SAR Structure-Activity Relationship
SHH Sonic hedgehog
STM Signal Transduction Modifiers
TPSA Total Polar Surface Area
TRK Tropomyosin Receptor Kinase
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