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Abstract

This study proposes SVM based Random Subspace (RS) ensemble classifier to discrimi-

nate different Power Quality Events (PQEs) in a photovoltaic (PV) connected Microgrid

(MG) model. The MG model is developed and simulated with the presence of different

PQEs (voltage and harmonic related signals and distinctive transients) in both on-grid and

off-grid modes of MG network, respectively. In the pre-stage of classification, the features

are extracted from numerous PQE signals by Discrete Wavelet Transform (DWT) analysis,

and the extracted features are used to learn the classifiers at the final stage. In this study,

first three Kernel types of SVM classifiers (Linear, Quadratic, and Cubic) are used to predict

the different PQEs. Among the results that Cubic kernel SVM classifier offers higher accu-

racy and better performance than other kernel types (Linear and Quadradic). Further, to

enhance the accuracy of SVM classifiers, a SVM based RS ensemble model is proposed

and its effectiveness is verified with the results of kernel based SVM classifiers under the

standard test condition (STC) and varying solar irradiance of PV in real time. From the final

results, it can be concluded that the proposed method is more robust and offers superior

performance with higher accuracy of classification than kernel based SVM classifiers.

1. Introduction

Microgrid (MG) generally provides reliable, economic, and secured energy supply to the criti-

cal loads and remote areas of communities, with following additional features: promotes

demand side management; low carbon emission of energy supply; accommodates multiple

generating options from different types of Distributed Generation (DG) sources, and so on

[1]. It is a major challenge to maintain the quality of energy supply in the MG network while
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penetration of nonlinear and unbalanced loads, renewable energy (RE) sources, and switching

of heavy loads, capacitor banks, and network faults, etc. The PQEs (voltage sag, swell, harmon-

ics, transients, interruptions, unbalanced voltage and current, etc.) can influence the overall

performance of MG operation and shorten the life time of power devices integrated into the

MG system [2, 3]. Therefore, to achieve improved PQ with safe and reliable operation of the

MG power system, the source of PQEs must be detected and classified by means of applying

advanced classification techniques [3, 4]. In view of this, many researchers have applied differ-

ent signal processing techniques (SPT) in the pre-processing stage along with several classifiers

during the classification phase of PQ analysis. The extracted features from the PQE signals

during pre-processing analysis can be used to learn and verify the advanced classifiers to get

class values of predictions at the final decision phase [3–5].

In the pre-processing stage, several signal analysing methods were used by the researchers

for extraction of features from PQEs. Authors [6] applied the spectral analysis of the Fast Fou-

rier Transform (FFT) and Discrete Fourier Transform (DFT) analysis techniques for discrimi-

nating of numerous PQEs in power systems. The Short Time Fourier Transform (STFT) in [5]

applied for analysis of nonlinear nature of PQEs in power system. These methods are incapable

of analysing the nonlinear nature of PQEs [7]. To nullify the issues of these transforms, Wave-

let Transform (WT) analysis was widely used by the researchers in PQ study. Because, WT is

more flexible in analysing PQEs in both time and frequency domains concurrently [8]. On the

other hand, computational burden and being less immune to the noise effect are the biggest

issues in the WT approach. In the view of PQEs and fault study applications, the Discrete

Wavelet Transform (DWT) of WT series is extensively used [9]. Nevertheless, the choice of

mother wavelet for a particular application can be considered as a main challenge in DWT

analysis [4]. The researchers extensively used a well-known mother wavelet, namely Daube-

chies-4 (db4), to analyse PQEs in the majority of the research works [10]. In comparison to the

existing SPT, the discrete method of wavelet analysis is broadly utilized since it takes minimum

processing time and offers higher accuracy while extracting features in fast manner from the

PQE signals [11]. Therefore, in this research work, the application of the DWT technique has

been considered for the extraction of features from various PQEs.

Numerous machine learning algorithms were used by the research experts in the classifica-

tion phase of the PQ studies. The most common techniques include decision trees (DT) [12],

Fuzzy logic (FL) based classifiers [13], artificial neural networks (ANN) [14], neural networks

with probabilistic function (PNN) [15], Naive Bayes method (NB) [16], K-nearest neighbour

(KNN) [14], and SVM [17, 18] have been utilized to classify the PQEs. Among all these classifi-

ers, SVM is one of the most powerful and effective for classifying linear and non-linear data

[19]. Additionally, it has superior generalisation performance and is capable of handling an

expansive, dimensional input vector proficiently in comparison with other conventional classi-

fiers [5]. Typically, the SVM is useful to avoid over-fitting problem (as encountered in neural

networks) and offers the highest accuracy of classification results, especially in high dimen-

sional data sets [20]. Thus, considering the advantages of the SVM classifier, many researchers

have applied SVM technique to classify complex PQEs in large power networks as well in MG

power systems. Authors [21] used a learning framework which was developed with WT and

SVM methods to classify complex PQEs. For the identification of different PQEs in the PV

integrated power network, authors [22] applied the SVM learning method with multi-class fea-

tures. Ray et al. [23] proposed SVM with Independent Component Analysis (ICA) to distin-

guish between different PQEs in the MG power network. Wang Y et al. [24] applied SVM with

Multi Resolution Analysis of DWT to categorise different PQEs. Cortes Robles et al. [25] pro-

posed multi-scale recurrence quantification decomposition (MSRQD) method along with

SVM classifier for classification of complex PQEs in grid connected MG system. Furthermore,
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SVM with different kinds of kernel functions can be used to enhance the classifier perfor-

mance while solving the non-linear nature of classification problems in PQ study [26]. The

kernel function can transform the inseparable data from a small dimensional area to a large

dimensional area where the information can be separated more accurately. The different types

of kernel functions of SVM include linear kernel, polynomial kernel, and Gaussian kernel

(Radial Basis Function), etc. [27]. Biswal et al. [28] proposed a multiclass SVM using linear

kernel function with a combination of disturbances versus normal (DVN) approach of feature

extraction for classifying complex PQEs in power systems. Radial Basis Function (RBF) and

polynomial kernel-based SVM were introduced by the authors of [29] in a hybrid DG environ-

ment of a power system network. Similarly, the authors in [30] utilised SVM with RBF based

kernel to detect the disturbance patterns in the three-phase simulated signals. Most of the

intelligent classifiers, like ANN, PNN, NB, KNN, SVM, and different kernels of SVM, are

stated in literature to have their own strengths and weaknesses. For enhancing the precision

and generalisation ability of individual weak learners, several ensemble classifiers are used by

the researchers. Ensemble classifiers are mainly used to improve the overall performance and

stability of weak classifiers through computing their output predictions in different ways [31].

From several research studies, it can be proven that the ensemble approach to classification

offers promising results of accuracy compared to individual weak classifiers.

Several ensemble classifiers have been used by researchers to discriminate between different

PQEs in conventional and RE integrated power system networks. The Bagging ensemble clas-

sifier with the flexible analytic wavelet transform (FAWT) method in [32] is applied to dis-

criminate multiple PQEs in RE connected power networks with promising results compared

to individual weak classifiers. The S-Transform extraction method with Adaboost ensemble

approach [33] and Hilbert Huang Transform feature extraction with adaptive NFS [34] have

been used for PQ analysis with achievement of higher accuracy and better performance than

single classifiers. Furthermore, DWT analysis with voting approach in [35] and stacking

ensemble approach in [36] have shown better effectiveness in predicting various PQEs in the

PV integrated power network. Similarly, to improve the classification accuracy and robustness

of individual weak classifiers, the authors in [37] used Random Forest classifier for discrimina-

tion of multiple PQ signals in RE connected power network. Thus, it is clear from the literature

of the ensemble approach that ensemble models can significantly improve the overall accuracy

and generalisation ability of weak classifiers. Hence, in this study, SVM based Random Sub-

space (RS) ensemble classifier is proposed to discriminate against different PQEs in the MG

network. The structure of classifiers used in the RS ensemble method is constructed with dif-

ferent subsets of features which are sampled randomly from the main data set [38]. Because of

using randomly selected subset features, the RS method can provide low bias risk with

enhancement of prediction performance for the weak classifiers. The RS method also offers

superior performance when the training data set has redundant features [39–41].

In most of the research works [2, 4, 23, 24, 42, 43], the PQ analysis in the MG network was

carried out either in the on-grid or off-grid (islanded) mode of MG operation. However, to

ensure reliable operation and improved PQ of MG network, it is necessary to discriminate

between the PQEs in both the on-grid and off-grid modes of MG operation. Also, limited

research work was observed with the analysis of PQEs in MG network using an ensemble

approach of classification in MG network under the weather intermittence condition of RE

sources. Hence, in this study, discrimination of different PQEs is considered in both modes

(on-grid and off-grid) of the PV connected MG network under variation of solar PV irradi-

ance with real time condition. From the final results of classification analysis, it is inferred that

the proposed SVM based RS ensemble classification model outperforms different types of
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kernel based SVM classifiers (Linear, Quadratic, and Cubic) in terms of classification accuracy

and performance level. The important objectives of this research study are listed below:

• For analysing the causes of different PQEs and evaluating the effectiveness of kernel based

SVM learners and the proposed SVM based RS ensemble classifier, a simulation network of

the PV connected MG model is formulated with introduction of different PQEs.

• The classification framework is proposed with a combination of DWT technique along with

different types of kernel based SVM and RS ensemble classifiers to identify and categorize

the various types of PQEs in both the mode of MG network under STC and real time varying

solar irradiance of PV conditions.

• The effectiveness of the proposed RS ensemble model has been verified through a compre-

hensive evaluation of Performance Factors (Kappa Statistics (KS), Recall, Precision, ROC,

and F-Measure) results with the kernel based SVM classifiers.

This article is structured as follows: Section 2 explains the definition of MG simulation

model with addition of various PQEs, Section 3 describes the concept of the classification

framework model, Section 4 presents the detail of data acquisition and signal processing

method, Section 5 describes the SVM classifier concept with various kinds of kernel functions

(Linear, Quadratic, and Cubic) and the proposed RS ensemble classification model, Section 6

discusses the results analysis based on the classification and performance analysis of the pro-

posed RS ensemble classification model and kernel-based SVM classifiers, Section 7 describes

the comparative analysis, and the outcomes with future scope of this study are concluded in

section 8.

2. Overview of MG model

The Matlab-Simulink software tool is used to develop a PV integrated MG simulation model.

The MG model is simulated with the introduction of different PQE’s (normal, voltage sag &

swell, harmonic distortions, and transients (due to switching of capacitor bank, PV inverter,

and LG fault) for analysis. The configurations on-grid and off-grid MG models are portrayed

in Fig 1A and 1B, respectively. The MG model includes different types of Distribution Genera-

tion (DG) sources (Solar Photovoltaic (PV) and diesel powered genset)) and loads (linear and

non-linear). Also, the MG model includes with 25 kV feeder lines with a length of 2 km (each).

Details of the power ratings of all elements used in the MG network are shown in Table 1.

2.1 Description of different PQEs

During PQ analysis, it is considered to follow the threshold limits (as per IEEE 1159 standard

[44] of different PQEs in the MG network. Normal and the three most common voltage-

related PQEs (sag, swell, and harmonic distortions) are generated by switching heavy (sag/

swell) and non-linear (harmonics) loads in the MG network’s off-grid mode. Furthermore,

three PQ transients have been generated by switching of capacitor bank (transients-1), PV

inverter (transients-2), and ground fault-LG (transients-3) for both modes (on-grid and off-

grid) of the MG network. The PQEs with corresponding switching actions are listed in

Table 2.

3. Methodology of classification

Fig 2 demonstrates the basic methodology for identification and discrimination of various

PQEs within the MG network. The main steps in the process of classification are explained

below:
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Data Collection (Step-1): During the simulation of the PV integrated MG model, signal

data from different PQEs are collected.

Feature Extraction (Step-2): During this step, with the help of the DWT technique, fea-

tures are extracted from disturbance signal of different PQEs.

Prediction (Step-3): To train the kernel based SVM learners and RS ensemble classifier

that extracted features are used to get final predictions for further evaluation.

Final decision (Step-4): Based on the final predictions, each classifier gives output class

labels (K1 to K10) in the final stage.

4. DWT method of feature extraction

The Wavelet transform analysis method is one of the most effective methods for decomposing

a fast varying signal into numerous sub-components in time and frequency domains [45]. The

WT variants are often available in the form of continuous and discrete variants. Continuous

wavelet transform (CWT) can be used to address the resolution constraint in STFT, but in the

case of real-time applications, it is less beneficial and has low rpetition. The discrete method of

Fig 1. MG Network Model (a) On-grid mode (b) Off grid mode.

https://doi.org/10.1371/journal.pone.0262570.g001

Table 1. Detail of MG components.

Utility Grid Grid Source—G 100 MVA, 25 kV

PV System PV unit—DG-1 250 kWp, 500V dc

PV Inverter–VSC 250 kVA, 260 V AC

DG-1 Transformer—T1 300 kVA, 0.26 kV/25 kV

Diesel Generator Synchronous Generator—DG-2 3250 kVA, 2.4 kV

DG-2 Transformer—T2 2.4 kVA/25 kV, 6000 kVA

Loads Linear Load 1 –L1 2400 kW

Linear Load 2 (switching)–L1A 500 kW

Heavy Load (Switching)–HL1 500 kW

Non-linear Load—NL Diode Rectifier

Capacitor C1 500 kvar, 25 kV

Feeders Feeder lines 1 & 2 (Z1& Z2) (2 km) (L1) 2.08 mH, (R1) 0.0592 O,

https://doi.org/10.1371/journal.pone.0262570.t001
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wavelet transform (DWT) can be used to nullify the drawbacks of CWT and mathematically

can be defined as [46, 47],

DWT ðm; kÞ ¼
1
ffiffiffiffiffiam

0

p
X

n
XðnÞ f

k � nb0 am
0

am
0

� �� �

ð1Þ

where am
0

is the scaling factor, nb0 am
0

is the translation factor, m and n are the representation

of integers, X(n) is the time signal, and f is the function of the mother wavelet.

Multi Resolution Analysis (MRA) is typically used for the DWT process to get wavelet

transform coefficients (detail and approximate) through decomposing of the input signal.

MRA is more appropriate for decomposing the PQE signals, because it has the characteristics

of using less memory and simple implementation. In this process, a series of filter banks are

used at each point of decomposition to decompose the signals at different resolutions. Fig 3

indicates the decomposition of the test signal up to the second stage. The input signal V(n) is

passed through a collection of high-pass (g1) and low-pass (h1) filters to obtain the detailed

(D1, D2) and approximate coefficients (A1, A2). In addition, the signal is downscaled by a fac-

tor of two at each step and the approximation of coefficient is used for further decomposition.

This decomposition process is carried on till the specified decomposition level is reached [46,

47].

Table 2. Switching conditions of different PQEs.

PQEs Equipment Switching Duration (s)

Sag Heavy load–HL1 (CB7 On) 0.4 to 0.6

Swell Part of Normal load–L1A (CB3 Off) 0.4 to 0.6

Harmonic Distortions Non-Linear load—NL (CB5 On) 0 to 1

Transients-1 Capacitor bank–C1 (CB4 On) At 0.4

Transients-2 PV inverter–VSC (CB1 Off) 0.38 to 0.4

Transients-3 Single line to Ground fault—LG (S1 On) 0.4 to 0.43

https://doi.org/10.1371/journal.pone.0262570.t002

Fig 2. Fundamental concept of proposed classification strategy.

https://doi.org/10.1371/journal.pone.0262570.g002
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From the below given Eqs (2) and (3), that detail (Di) and approximation (Ai) coefficients

can be evaluated:

DiðkÞ ¼
X

n
g1ðnÞ Aiþ1 ð2kþ nÞ ð2Þ

AiðkÞ ¼
X

n
h1ðnÞ Aiþ1 ð2kþ nÞ ð3Þ

where Di and Ai are the coefficients of detail and approximation, respectively at the ith level.

where Di and Ai denote the detail and approximation coefficients, respectively, at the level

of ith. High-pass and low-pass filters are associated with the wavelet ω (t) and scaling β (t) func-

tions and can be expressed as,

oðtÞ ¼
ffiffiffi
2
p X

n
g1ðnÞ oð2t � nÞ ð4Þ

bðtÞ ¼
ffiffiffi
2
p X

n
h1ðnÞ bð2t � nÞ ð5Þ

The mother wavelet of Daubechies-4 (db4) is commonly used in PQ analysis to detect fast

transient signals in the power system, according to the literature [48, 49]. Therefore, in this

research work, mother wavelet of db4 is considered for analysis of PQE signals.

4.1 Evaluation of energy value

The feature extraction is useful in such a way as to provide reduced dimension of the input

vector matrix with useful information for the classifiers. Using the Eq (6) [49], the energy

value (EV) can be estimated from the detail coefficients of DWT analysis.

Energy Value ðEVÞ ¼
1

K

Xk

i¼1
dDjie

2
ð6Þ

let mean mi¼
1

K

XK

i¼1
Dji, j = 1,2,3. . ..l (decomposition level), K is the number of samples for

each decomposed signal.

Fig 3. Signal decomposition (stage two).

https://doi.org/10.1371/journal.pone.0262570.g003
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5. Materials and classification methods

In this research, the software tool WEKA is utilised to discriminate between different PQEs in

the MG network using extracted features. The WEKA is an effective tool with inclusion of sev-

eral classification algorithms and the option of providing base and ensemble classification,

clustering, and visualization facilities [10]. In this study, different types of kernel based SVM

classifiers such as SVM linear kernel, SVM polynomial (quadratic and cubic), and SVM based

RS ensemble classification approach have been considered to classify various PQEs like nor-

mal, sag, swell, and distortion of harmonics with consideration of class labels such as K1, K2,

K3, and K4, respectively, in off-grid mode of the MG network. In addition, other PQEs like

three numbers of PQ transients (due to switching of capacitor bank and PV inverter, and LG

fault) have been classified in both modes (off-grid and on grid) of the MG network with con-

sideration of the following class labels: K5, (transient 1) K6 (transient 2), K7 (transient 3) in

off-grid and K8 (transient 1), K9 (transient 2), K10 (transient 3) in on grid, respectively.

The estimated energy values from the extracted features of various PQE signals have been

utilised to learn the kernel based SVM learners during the first phase of classification. While

learning the classifiers, a k-fold cross validation method is applied with the input data set to

nullify the issue of over-fitting. The prediction capability of classifiers can be assessed with the

help of the cross validation method [50]. The training data (X) is separated into equal sized

chunks with a bunch of k disjoint subsets (X1, X2, . . .., Xk). From available k-subsets, one sub-

set is utilised for testing, and the remaining subsets (k-1/k) are utilised for classifier training

[50]. In this work, cross validation with 10 folds is considered while learning the classifiers.

This section describes the kernel based SVM classifiers (linear, polynomial (quadratic and

cubic)), and the proposed RS ensemble classifier in more detail.

5.1 SVM classifier

SVM is a more flexible machine learning algorithm for the applications of pattern recognition

and classification [4]. The SVM rule algorithm was developed by Vapnik [51] and operates on

the basis of supervised learning theory. SVM seeks to separate the heperplane in an optimum

way by maximising the margin data set and hyperplanes [52]. It offers good generalisation

accuracy on unknown data and supports the intensive optimization methods that enable SVM

to learn from a large scale of data [53]. An example of the SVM concept is shown in Fig 4.

For a given training data set, fxi; yig
K
i� 1

, where xi 2 Rn is the vectors of input data, yi 2 {+1,

-1} denotes different classes, and K is the number of samples. The given training data set can

be separated linearly by the hyperplane f(x), as represented by Eq (7) [52–54]

fðxÞ ¼ w:x þ b ¼
XK

N¼1
ðwN :xN þ bÞ ð7Þ

where w and b represent the terms for weights and bias used to optimise the position of the

hyperplane separation. The constraints as given in Eq (8) should be satisfied to separate the

hyperplane.

yif ðxiÞ ¼ yiðw:xi þ bÞ � 1; ði ¼ 1; 2; 3; . . . :; KÞ ð8Þ

It is possible to estimate the distance between margin and vectors xi that lies on the incorrect

side of the margin is generally outlined by the positive slack variable £i. For separating given

data, optimal hyperplane is determined by solving the optimization problem which is

expressed in Eq (9):

To Minimise;
1

2
kwk2

þ C
XK

i¼1
£i; i ¼ 1; 2; 3; . . . :; K ð9Þ
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Prone to yi(w.xi + b)� 1 - £i, and £i� 0, let C denote the penalty for error, and by using

Lagrangian multipliers αi, the problem of optimization (Eq (9)) will be transformed into a

problem of dual quadratic optimization, as expressed in Eq (10) [54]:

To Maximise; LðaÞ ¼
XK

i� 1
ai �

1

2

XK

j¼1
aiajyiyjðxi; yiÞ ð10Þ

Subject to
XK

i� 1
aiyi ¼ 0; and ai � 0, The problem of dual optimization is possible to solve by

using linear decision function, expressed in the Eq (11):

fðxÞ ¼ Sign
XK

ij¼1
aiyiðxi; xjÞ þ b

� �
ð11Þ

The kernel functions of SVM are useful for solving nonlinear classification problems. By using

a nonlinear function (φ), the kernel functions of SVM can be used to transform inseparable

data from low-dimensional space to a higher-dimensional space where the data is separated

linearly [52]. The function of non-linear decision with kernel (K) inclusive can be defined as

follows:

fðxÞ ¼ Sign
XM

ij¼1
aiyikðxi; xjÞ þ b

� �
ð12Þ

where k(xi, xj) is the kernel function that can be written as ɸ(xi) and ɸ(xj), respectively. In this

study, SVM classifiers with different kernel functions like linear, olynomial (quadratic and

cubic), and RBF (Gaussian fine) have been used to categorise various PQEs in the MG model

of power network. Furthermore, for classification of multi class PQEs in MG network that ker-

nel based SVM classifiers have been used with adoption of the One Against One (OAO) multi-

class method [55]. The classification of various PQEs in the MG network using kernel based

SVM classifiers is shown in Fig 5. A 10 folds cross validation method is applied with a given

input data set (400 instances (40 instances per PQE) and three features) while learning kernel

based SVM classifiers (linear kernel, and polynomial kernel (Quadratic & Cubic)). In the final

decision phase, predictions of class values are obtained from each classifier.

5.1.1 SVM linear kernel. The linear kernel is a simple and easy to interpret kernel func-

tion. It is a fast data mining algorithm for solving multiclass classification problems. It can be

Fig 4. Concept of SVM classifier.

https://doi.org/10.1371/journal.pone.0262570.g004
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used for a number of features in a large data set. The linear kernel function can be expressed as

[56],

kðxi; xjÞ ¼ xi
TxjþC ð13Þ

where k(xi, xj) is the kernel function, xi and xj are feature space vectors. and ‘C’ is the

box constraint or regularization parameter. The value of regularization parameter (C) is

greatly influences over the trade off between the maximisation of classification margin and

minimisation of error [57]. In this study, for the linear kernel of SVM, the value of ‘C’ is con-

sidered as 9 on the basis of achieved higher accuracy and minimum error level. The steps of

classification process with linear kernel of SVM classifier are illustrated in Table 3.

5.1.2 SVM polynomial kernel. It is a global kernel with good generalization ability. Ii is use-

ful for learning high dimensional data with nonlinear boundaries, and its kernel parameters have a

substantial effect on the decision boundary. This kernel is capable of solving multi class problems

Table 3. Process steps of classification: SVM linear kernel.

Input: Training Data (D) = Input energy values; response class names

Input features (Xi) = {’Energy-A’, ’Energy-B’, ’Energy-C’}; Response class (Yi) = {’K1’,’K2’,‥,’KN’ }; N = 10

Output: Predictions and accuracy (%) from SVM linear kernel

Perform cross-validation (10-fold)

Step 1: Randomly divide data set X into k subsets of equal size: X = (X1, X2, X3, ‥, XK); (K = 10);

Step 2: For k 1 to 10;

Train the classifier SVM linear kernel, from D or DK

Step 3: Apply Kernel Function’, ’linear’, (Eq (13))

Set ’Polynomial Order’, {0},

Assign ’Box Constraint’, for Linear {9},

’Standardize’, true,

Multi-class approach’, One Against One (OAO);

End for

Create the result structure with predict function

Step 4: Validate predictions = class names (‘K1’, ‘K2’, . . .,’K10’);

Step 5: verify accuracy = Classification Accuracy (%);

End for

https://doi.org/10.1371/journal.pone.0262570.t003

Fig 5. Classification framework of kernel based SVM classifiers.

https://doi.org/10.1371/journal.pone.0262570.g005
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with allowable margin [58]. The definition of a polynomial kernel can be expressed as [56],

kðxi; xjÞ ¼ ðxi
Txj þ CÞd ð14Þ

where ‘C’ is the regularisation or box constraint parameter; k(xi, xj) is the kernel function; xi and xj
denotes feature space vectors; and ‘d’ states the degree of polynomial function. The Quadratic and

Cubic kernels are the sub types of polynomial kernel functions of SVM. The quadratic kernel is a

2nd order polynomial kernel function that can be stated as [59],

kðxi; xjÞ ¼ ðxi
Txj þ CÞ2 ð15Þ

The cubic kernel is a third order polynomial kernel function and it can be defined as [59, 60],

kðxi; xjÞ ¼ ðxi
Txj þ CÞ3 ð16Þ

For polynomial kernel based SVM classifiers (quadratic and cubic), two parameters like regularisa-

tion parameters ‘C’ and ‘d’ degree of polynomial function are greatly influenced by their perfor-

mance level [57]. In this work, according to the observation of higher accuracy and minimum level

of mean absolute error of classification, the value of ‘C’ is considered as 12 for both quadratic and

cubic kernel based SVM classifiers, and the value of ‘d’ is considered as 2 for quadratic and 3 for

cubic kernel based SVM classifiers, respectively. The steps of classification process with the polyno-

mial kernel of SVM classifier are illustrated in Table 4.

5.2 Random subspace (RS) ensemble classifier

The RS ensemble classifier can achieve the benefits by applying a random subset of features

over the combined set of base classifiers. Fig 6 depicts the basic configuration of RS ensemble

model. Randomly selected subset features (between D1 and DM) from the complete space data

set (D) are utilised to learn the set of N number of base classifiers in the model of the RS

ensemble approach [53]. A majority voting rule is implemented over the output predictions of

weak classifiers to obtain target class labels at final stage of classification [38]. The performance

and accuracy precision of weak classifiers are improved by the ensemble approach of RS tech-

nique to effectively exploit their outcome predictions. Furthermore, because the classifiers are

easily trained using smaller subspaces with the RS technique, the features to instance ratio can

be significantly improved [38].

Table 4. Process steps of classification: SVM polynomial kernel.

Input: Training Data (D) = Input energy values; response class Names

Input features (Xi) = {’Energy-A’, ’Energy-B’, ’Energy-C’}; Response class (Yi) = {’K1’,’K2’,‥,’KN’ }; N = 10

Output: Predictions and accuracy (%) from SVM linear kernel

Perform cross-validation (10-fold)

Step 1: Random splitting of data set X into k times with equal size of subsets: X = (X1, X2, X3, ‥, XK); (K = 10);

Step 2: For k 1 to 10;

Train the classifier SVM polynomial kernel, from D or DK

Step 3: Apply Kernel Function’, ’Quadratic’, (Eq (15)) / ‘Cubic’, (Eq (16)),

Set ’Polynomial Order’, for Quadratic {2.0} / for Cubic {3.0},

Assign ’Box Constraint’, for Quadratic {18} / for Cubic {18},

’Standardize’, for Quadratic true / for Cubic true,

Set ‘Multi-class approach’, One Against One (OAO);

End for

Create the result structure with predict function

Step 4: Validate predictions = class names (‘K1’, ‘K2’, . . .,’K10’);

Step 5: validate accuracy = Classification Accuracy (%);

End for

https://doi.org/10.1371/journal.pone.0262570.t004
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For this RS ensemble model, the p� dimension feature subset (p�<p) is randomly chosen

from a given p-dimensional data set for PQ analysis. Following that, the suitable weak classifier

is learned using the subspace feature vectors. This approach is repeated M times in order to

train M classifiers with a new subset of feature vectors each time. Finally, majority voting is

used to evaluate the predictions of N classifiers. The RS method process steps are explained in

further level in Table 5 [39, 40].

In general, the output classification performance of the RS ensemble technique is deter-

mined by the two main factors, such as size of the feature subset (subspace) and the number of

weak classifiers (ensemble size). For this research work, SVM based (cubic kernel) RS ensem-

ble classification model is proposed to discriminate different PQEs in PV connected MG net-

work with both modes of operation (on-grid and off-grid mode) of MG network. To get better

performance, the sub space size of 0.5 and 10 number of weak classifiers (SVM cubic kernel)

are assigned for the proposed RS ensemble model.

5.3 Description of performance factors

The definitions of important PF which are used to evaluate the effectiveness of classifiers are

given below:

Fig 6. Basic configuration of RS ensemble model.

https://doi.org/10.1371/journal.pone.0262570.g006
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• Kappa Statistics (KS): KS can be used to estimate the consistency between the actual and

targeted PQEs. According to the estimated KS value, the range of performance can be

decided as excellent (KS value 1), good (KS value 0.4 to 0.75), and poor (KS < 0.4), respec-

tively. The expression of KS term is defined as [36],

KS ¼
Actual PQEs � Targeted PQEs

1 � Targeted PQEs
ð22Þ

• Precision (P): It is a ratio between of correctly predicted observations (true positives) and

the sum of total predicted observations (true positives + false positives), and it can be

expressed as below [36]:

P ¼
TP

TP þ FP
ð23Þ

where TP denotes the true positive and FP denotes the false positive

• Recall (R): It is a ratio between correctly predicted observations (true positives) and sum of

all observations including true positives and false negatives and it can be defined as [36],

R ¼
TP

TP þ FN
ð24Þ

• F-measure: The weighted average of precision and recall is called as F-measure and the

expression of F-measure can be defined as [36],

F � measure ¼
ð2 � ðPrecision � RecallÞÞ

Precisionþ Recall
ð25Þ

Table 5. Process steps of classification: RS ensemble classifier.

Input: Training data set, D ¼ fD1; D2; . . . ;Dmg; ðLet D ¼ XÞ (17),

Step 1: Consider each set of training sample Kj has a p-dimensional feature vector, written as,

Kj ¼ fKj1; Kj2; . . . ;Kjpg; fj ¼ ð1; 2; . . . ;mÞg (18),

Step 2: Randomly selects feature elements (p�< p) from p-dimensional feature vector Tj,

Then, (i) Training sample of original set X becomes Xr, and denoted as,

Xr = {K1
r, K2

r, . . .,Km
r} (19),

(ii) Each training sample in Xr consists of p�-dimensional feature elements, and stated as,

Xr = {K1
r, K2

r, . . .,Kp�
r} (20),

Step 3: Select the feature element Xjk
r {T = (1,2,. . ., p�)}in random with uniform distribution,

Step 4: Build M classifiers in RS with Xr, as Cm(x), {m = (1,2,. . .,M)}; M = 10,

Step 5: Apply majority voting rule over the output predictions of classifiers, and voting rule is stated as,

hðxÞ ¼ arg max
Xn

j¼1
CmðxÞ; y (21),

y 2 ½1; � 1�

where y 2 [1, –1] states the decision of class label, Cm is the ensemble size of classifier.

End for

Create the result with final output predictions

Step 6: Validation of predictions = class labels (‘K1’, ‘K2’, . . .,’K10’);

Step 7: Evaluate accuracy = Classification Accuracy (%);

End for

https://doi.org/10.1371/journal.pone.0262570.t005
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• Receiver Operating Characteristic (ROC): The performance of a classifier can be deter-

mined on the basis of the area under the curve of ROC. If the area under the curve reaches 1

or nearer, then the performance of classifier is the best and most accurate [36].

6. Results and discussion of PQ analysis

In this section, the results of PQ analysis that includes extraction of features with the DWT

method and classification of various PQEs in the MG network are discussed in detail. The sim-

ulation was carried out for the proposed MG model with creation of various PQEs in both the

off-grid and on-grid modes of MG network under STC and variation of solar PV irradiance

with real time conditions. During simulation analysis, the simulation time of 1 sec was consid-

ered for each case of PQEs studied. The switch conditions for the creation of various PQEs

along with details of time span for the occurrence of each PQE in both modes of MG network

are illustrated in Table 2 of Section 2.1. From the disturbance signals (three phase voltage and

current) of various PQEs, features of energy values were extracted with the help of DWT

method. As an example, the single phase (phase-A) voltage and current signals during the case

of each PQE (in the grid connected and islanded MG network) are shown in Figs 7–9, respec-

tively. The results of DWT analysis and the results of the proposed RS ensemble and kernel

based SVM classifiers are discussed in detail as follows.

6.1 Results and discussion of DWT analysis

From the DWT analysis, extracted features of energy values of various PQEs in the MG net-

work were used to learn the proposed RS ensemble and kernel based SVM classifiers like

Fig 7. Three phase voltage signals in off-grid mode of MG network (a) Normal; (b) Sag; (c) Swell; (d) Distortion of

Harmonics.

https://doi.org/10.1371/journal.pone.0262570.g007
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linear, polynomial (quadratic, and cubic). The main factors such as mother wavelet (db4),

decomposition level (5th), and sampling frequency (24 Hz) were considered during the analysis

of PQE signals with the DWT method. From the analysis of all PQE signals, wavelet coeffi-

cients of detail (d1 to d5) and approximation (a5) were obtained for further analysis. As an

Fig 9. Voltage and Current signals in on-grid mode of MG network (a) Voltage Transients-1 (Switching of capacitor);

(b) Current Transients-2 (Switching of PV Inverter); (c) Current ransients-3 (LG Fault).

https://doi.org/10.1371/journal.pone.0262570.g009

Fig 8. Voltage and Current signals in off-grid mode of MG network (a) Voltage Transients-1 (switching of capacitor);

(b) Current Transients-2 (switching of PV Inverter); (c) Current Transients-3 (LG Fault).

https://doi.org/10.1371/journal.pone.0262570.g008
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example, captured 5th level decomposition of voltage signals of PQEs (normal and sag in phase

A) in the off-grid mode of MG network are shown in Figs 10 and 11, respectively. Similarly, in

the on-grid mode of MG network, that captured decomposition of voltage transients 1 signal

(switching of capacitor) in phase C is shown in Fig 12.

From the results of DWT analysis, it can be concluded that the value of wavelet transform

coefficient (d5) has a small magnitude for normal signal and its level of magnitude varies

abruptly during the period of voltage sag and transient conditions. Similarly, the decomposi-

tion analysis was also carried out for other PQEs and transient signals in all three phases of the

MG network. Finally, the extracted coefficients from the voltage and current signal of different

PQEs were utilised to evaluate the energy values, using Eq (6).

6.2 Results of classification analysis

The extracted energy values of the input data set (400 samples) with adoption of 10-fold valida-

tion method were applied to learn the kernel based SVM learners (linear kernel, polynomial

Fig 10. DWT analysis in off-grid MG: Normal voltage signal.

https://doi.org/10.1371/journal.pone.0262570.g010

Fig 11. DWT analysis in off-grid MG: Voltage sag signal.

https://doi.org/10.1371/journal.pone.0262570.g011
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kernels (quadratic and cubic)) and SVM based RS ensemble classifier. In this study, the com-

mon PQEs (normal, sag, swell, and distortion of harmonics) in off-grid mode of MG network

and PQ transients (Transient 1, transient 2, and transients 3) in both off-grid and on-grid

mode of MG network were classified by kernel based SVM learners and RS ensemble model

under STC and variation of solar irradiance of PV with real time condition. During this analy-

sis, around 400 numbers of instances (40 instances per PQE) were considered to learn the clas-

sifiers. In general, the classification accuracy (CA) of classifiers as given in Eq (26) is defined as

the ratio between correctly predicted PQEs and the total number of PQEs studied. From the

classification analysis, the effectiveness of the proposed RS ensemble classifier is verified (in

terms of CA) with the results of individual kernel based SVM classifiers.

CA ¼
Correctly predicted PQEs

Total PQEs
� 100% ð26Þ

6.2.1 Results of classification with kernel based SVM classifiers. In order to achieve

effective performance of kernel based SVM classifiers, it is very important to select the appro-

priate value of penalty or regularisation parameter “C” while classification. Changing of value

“C” can influence the performance accuracy, classification error, and margin of hyperplane in

SVM. In this study, the penalty factor “C” was tuned manually on the account of getting mini-

mum classification error and maximum accuracy of kernel classifiers. For the linear kernel

SVM classifier, the tuning range of “C” value was considered between 1 and 12 (with steps of

1). The tuning of “C” value for the linear SVM classifier with respect to the classification error

and accuracy is shown in Fig 13. From the results of tuning (Fig 13), it can be noticed that

maximum classification accuracy (87%) and minimum error (0.158) were achieved at the “C”

value of 9. Similarly, the tuning range of “C” value was considered between 1 to 14 (with steps

of 1) for the polynomial kernels (Quadratic and Cubic) of SVM classifiers. From the tuning

results of “C”, as shown in Figs 14 and 15, maximum accuracy (91% and 94%) and minimum

error (0.154 and 0.152) were achieved at the “C” value of 12 with Quadratic SVM and Cubic

SVM classifiers, respectively.

(a) SVM classifiers: Classification results under STC of solar PV. In this case, the PQEs in

both the on-grid and 0ff-grid mode of the MG network were classified with kernel based SVM

Fig 12. DWT analysis in on-grid MG: Voltage transients-1 signal.

https://doi.org/10.1371/journal.pone.0262570.g012
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classifiers under STC (PV cell temperature of 25˚C, irradiance (1000 watts/m2), and air mass

of 1.5 M). For analysis, around 400 numbers of instances of all PQEs (40 instances per PQE)

were considered for analysis. The results of the confusion matrix for all the kernel based SVM

classifiers (Linear, Quadratic, and Cubic) are given in Table 6. The correctly and incorrectly

classified instances of each PQE in the confusion matrix are represented as diagonal and off

diagonal elements, respectively. Furthermore, the details of all the classified instances for all

the PQEs in the MG network are given in Table 7.

From the prediction results of kernel based SVM classifiers (Tables 6 and 7), it is clear that

the misclassification rate was higher with the linear kernel classifier for the PQEs (Swell, PQ

transients 1 and 2 in islanded and transients 1in grid connected network) than Quadratic and

Cubic SVM classifiers. For the Quadratic type, the misclassification rate was moderate between

Linear and Cubic type classifiers. Most of the instances of PQEs (except Transients 1) were

fully classified correctly with the Cubic type of classifier. Because of reduced misclassification

Fig 14. Tuning of kernel parameter (C) with quadratic kernel of SVM.

https://doi.org/10.1371/journal.pone.0262570.g014

Fig 13. Tuning of kernel parameter (C) with linear kernel of SVM.

https://doi.org/10.1371/journal.pone.0262570.g013
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rate with the Cubic type classifier, the classification accuracy (94%) was significantly improved

as compared to the Quadratic (91.3%) and Linear (87%) type of SVM classifiers. Thus, this

study proves that the cubic kernel SVM classifier offers better performance with more suitabil-

ity for classification of various PQEs in the MG model of power network than other types

(Quadratic and Linear).

(b) SVM classifiers: Classification results under real time varying solar. In this analysis, the

real time varying solar data for the PV source was considered as used in [37], while the analysis

of all PQEs in both the on-grid and off-grid modes of the MG network. The real time solar

data for the period of 1 s (with 10 slots of 0.1 s intervals) is shown in Fig 16.

Based on the Confusion Matrix results (like STC case analysis,) the classification results of

Kernel based SVM classifiers were obtained, as given in Table 8. Likewise, the results of STC

analysis showed that the misclassification rate was higher with the Linear kernel SVM classifier

than with Quadratic and Cubic type classifiers. Also, the misclassification rate was moderate

with Quadratic and significantly reduced with the Cubic type SVM classifier under this case

condition. However, the results of classification accuracy were slightly lower for all the classifi-

ers than the results obtained with STC case analysis. In comparison to the Cubic type SVM

classifier, the misclassification rate of analysed PQEs was high with the Linear and Quadratic

types. Thus, the cubic kernel SVM classifier provides higher classification accuracy (91.1%)

than the accuracy levels of the Quadratic (88%) and Linear (83.3%) kernel SVM classifiers.

This analysis clearly shows that the Cubic kernel SVM classifier provides more promising

results (more than 91%) than other types, even when the PV source’s solar irradiance varies.

Among the results of accuracy, as summarized in Table 9, it can be concluded that the clas-

sification accuracy was lower with the SVM linear kernel compared to the SVM quadratic and

SVM cubic kernel classifiers. Since the SVM linear mostly provides better solutions for multi-

class linear problems than non-linear, the misclassification rate was high with the non-linear

nature of PQ transients, whereas the polynomial SVM kernel (quadratic and cubic) provides

better solutions for non-linear PQ transients with a reduced misclassification rate. Moreover,

the order of polynomial functions has a significant impact on the performance of polynomial

kernel classifiers. As a result, the cubic kernel SVM classifier has a higher order of polynomial

function and provides higher classification accuracy under STC and varying solar conditions

than the quadratic type.

Fig 15. Tuning of kernel parameter (C) with cubic kernel of SVM.

https://doi.org/10.1371/journal.pone.0262570.g015
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Furthermore, in order to improve the generalisation ability and overall accuracy of SVM

classifiers, it is proposed SVM-based RS ensemble classifier for analysis. The results of classifi-

cation analysis with the RS ensemble method are discussed in detail in the following section.

6.2.2 Results of classification with proposed RS ensemble classifier. In the RS ensemble

method, randomly picked subsets of features (n) from the full space of the input data set (D)

are used to train the N number of base classifiers, and the predictions of the base classifiers are

computed by using the majority voting rule. The size of the feature subset (subspace size) and

the size of the ensemble (number of base classifiers) have a significant influence over the

expected converge and performance of the RS ensemble classifier [61]. Hence, it is necessary

to select the appropriate value of subspace feature size and number of base classifiers (ensem-

ble size) in the RS ensemble model. As a rule of thumb, selecting the size of the feature subset,

Table 6. Results of confusion matrix: Kernel based SVM classifiers.

SVM Linear Kernel

Class K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 MG Mode

K1
p

0 0 0 0 0 0 0 0 0

K2 0
p

X 0 0 0 0 0 0 0

K3 0 X
p

0 0 0 0 0 0 0

K4 0 0 0
p

0 0 0 0 0 0 Off-Grid

K5 0 X X 0
p

0 0 0 0 0

K6 0 X 0 0 0
p

0 0 0 0

K7 0 0 0 0 0 0
p

0 0 0

K8 0 0 0 0 0 0 0
p

X 0

K9 0 0 0 0 0 0 0 0
p

0 On Grid

K10 0 0 0 0 0 0 0 0 0
p

SVM Quadratic Kernel

Class K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 MG Mode

K1
p

0 0 0 0 0 0 0 0 0

K2 0
p

0 0 0 0 0 0 0 0

K3 0 X
p

0 0 0 0 0 0 0

K4 0 0 0
p

0 0 0 0 0 0 Off-Grid

K5 0 X X 0
p

0 0 0 0 0

K6 0 X 0 0 0
p

0 0 0 0

K7 0 0 0 0 0 0
p

0 0 0

K8 0 0 0 0 0 0 0
p

X 0

K9 0 0 0 0 0 0 0 0
p

0 On Grid

K10 0 0 0 0 0 0 0 0 0
p

SVM Cubic Kernel

Class K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 MG Mode

K1
p

0 0 0 0 0 0 0 0 0

K2 0
p

0 0 0 0 0 0 0 0

K3 0 0
p

0 0 0 0 0 0 0

K4 0 0 0
p

0 0 0 0 0 0 Off-Grid

K5 0 X X 0
p

0 0 0 0 0

K6 0 0 0 0 0
p

0 0 0 0

K7 0 0 0 0 0 0
p

0 0 0

K8 0 0 0 0 0 0 0
p

X 0

K9 0 0 0 0 0 0 0 0
p

0 On Grid

K10 0 0 0 0 0 0 0 0 0
p

https://doi.org/10.1371/journal.pone.0262570.t006
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as n = D/2 features, can yield promising results with the RS ensemble classifier [62, 63]. There-

fore, in this work, feature subset size 0.5 was considered, and the optimum value of ensemble

size was obtained through manual tuning. The tuning results of ensemble size with the pro-

posed RS model, as shown in Fig 17, clearly indicates that maximum classification accuracy

(99.3%) and minimum error (0.144) were achieved with ensemble size of 10 (among 1 to 12

analyses). As from the analysis results of kernel based SVM classifiers, the Cubic kernel SVM

classifier was more effective and attained higher classification accuracy (94%) than other ker-

nel types. As a result, the effective Cubic kernel SVM classifier was considered as the base clas-

sifier in the proposed RS ensemble model to achieve further improvement in its classification

performance.

(a) RS ensemble classifier: Classification results under STC of solar PV. In this analysis, the

classification analysis was carried out with the proposed RS ensemble model to discriminate

between different PQEs in the MG network under STC of solar PV. The confusion matrix

results and details of classified instances for all the PQEs in the MG network are illustrated in

Table 7. Classification results of kernel based SVM classifiers (under STC of solar).

Class PQEs SVM Linear SVM Quadratic SVM Cubic

Classified Instances Classified Instances Classified Instances

Correct (
p

) Incorrect (X) Correct (
p

) Incorrect (X) Correct (
p

) Incorrect (X)

K1 Normal 40 0 40 0 40 0

K2 Sag 36 4 40 0 40 0

K3 Swell 28 12 37 3 40 0

K4 Harmonics 40 0 40 0 40 0

K5 Transient-1 24 16 24 16 24 16

K6 Transient-2 32 8 32 8 40 0

K7 Transient-3 40 0 40 0 40 0

K8 Transient-1 28 12 32 8 32 8

K9 Transient-2 40 0 40 0 40 0

K10 Transient-3 40 0 40 0 40 0

Overall CA 87% % 94%

https://doi.org/10.1371/journal.pone.0262570.t007

Fig 16. Real time varying solar data.

https://doi.org/10.1371/journal.pone.0262570.g016
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Tables 10 and 11, respectively. From the prediction results of the RS ensemble classifier (Tables

10 and 11), it can be noticed that all the instances of most of the PQEs (Normal, Sag, harmon-

ics, Transients 2 and 3 with islanded, and all the transients in grid connected MG) were fully

classified correctly (100%) and only one instance with PQE of Voltage Swell and two instances

with Transients 1 of the islanded MG network were misclassified. Because of this higher suc-

cessive classification rate, the classification accuracy (99.3%) of the RS ensemble classifier was

significantly improved as compared to the Cubic kernel SVM (94%) and other kernel types

(Quadratic (91.3%) and Linear (87%)). Thus, the proposed RS ensemble model is more suit-

able to discriminate all the PQEs in the MG network with a substantial improvement in classi-

fication accuracy compared to individual kernel based SVM classifiers.

(b) RS ensemble classifier: Classification results under real time varying solar. In this case of

analysis, the classification analysis was carried out with the SVM based RS ensemble classifier

to discriminate different PQEs in the MG network under the variation of solar PV irradiance

in real time According to the results of the confusion matrix, details of classified instances for

all the PQEs in the MG network and evaluated overall classification accuracy for the proposed

RS ensemble classifier are illustrated in Table 12. Likewise, the classification results obtained

under STC case analysis showed that the instances of most of the PQEs were fully classified

correctly (100%) and only 2 instances of Swell, 6 instances of Transients 1 of an islanded net-

work, and 4 instances of Transients 1 of a grid connected network were misclassified, respec-

tively. As compared to the results of kernel based SVM classifiers (under both case analysis of

STC and real time solar variation), the proposed ensemble classifier still provides promising

results of higher classification accuracy (97%) than kernel based SVM classifiers (Cubic (94%

with STC and 91.3% with varying solar)), (Quadratic (91.3% with STC and 88% with varying

solar)), and (Linear (87% with STC and 83.3% with varying solar)). As compared to the classi-

fication results of the RS ensemble classifier under STC case analysis, the classification

Table 8. Classification results of kernel based SVM classifiers (under varying solar at real time).

Class PQEs SVM Linear SVM Quadratic SVM Cubic

Classified Instances Classified Instances Classified Instances

Correct (
p

) Incorrect (X) Correct (
p

) Incorrect (X) Correct (
p

) Incorrect (X)

K1 Normal 40 0 40 0 40 0

K2 Sag 40 0 40 0 40 0

K3 Swell 16 24 24 16 36 4

K4 Harmonics 40 0 40 0 40 0

K5 Transient-1 24 16 24 16 24 16

K6 Transient-2 25 15 32 8 32 8

K7 Transient-3 40 0 40 0 40 0

K8 Transient-1 28 12 32 8 33 7

K9 Transient-2 40 0 40 0 40 0

K10 Transient-3 40 0 40 0 40 0

Overall CA 83.3% 88.0% 91.3%

https://doi.org/10.1371/journal.pone.0262570.t008

Table 9. Overall classification accuracy of SVM kernel classifiers under all conditions.

SVM kernel types Accuracy (%) under STC of PV Accuracy (%) under varying solar

SVM linear 87 83.3

SVM quadratic 91.3 88

SVM cubic 94 91.3

https://doi.org/10.1371/journal.pone.0262570.t009
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accuracy was slightly reduced under real time varying irradiance of solar PV. However, the

proposed RS ensemble classifier still provides promising results with higher classification accu-

racy than individual kernel based SVM classifiers, even under uncertain conditions solar PV.

From the summary of classification accuracy, as illustrated in Table 13, a significant

improvement in accuracy was achieved with the RS ensemble method under STC and uncer-

tain conditions of solar power. Thus, the RS ensemble classifier gains the advantages by utilis-

ing randomly selected subset features with the adoption of an ensemble strategy for the

assigned set of SVM classifiers, which can reflect the classification of PQEs with higher classifi-

cation accuracy and lower bias risk.

6.3 Performance analysis

In performance analysis, the Performance factors (PF) such as KS, Precision, Recall, F-Mea-

sure, and ROC of classifiers (proposed RS ensemble and kernel based SVM classifiers) were

evaluated to verify the effectiveness of classifiers in further levels under STC and varying solar

irradiance of PV with real time conditions.

Fig 17. Tuning results of ensemble size with RS ensemble classifier.

https://doi.org/10.1371/journal.pone.0262570.g017

Table 10. Results of confusion matrix: RS ensemble classifier.

RS Ensemble

Class K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 MG Mode

K1
p

0 0 0 0 0 0 0 0 0

K2 0
p

0 0 0 0 0 0 0 0

K3 0 0
p

X 0 0 0 0 0 0

K4 0 0 0
p

0 0 0 0 0 0 Off-Grid

K5 0 0 X 0
p

0 0 0 0 0

K6 0 0 0 0 0
p

0 0 0 0

K7 0 0 0 0 0 0
p

0 0 0

K8 0 0 0 0 0 0 0
p

0 0

K9 0 0 0 0 0 0 0 0
p

0 On Grid

K10 0 0 0 0 0 0 0 0 0
p

https://doi.org/10.1371/journal.pone.0262570.t010
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6.3.1 Results of PF under STC of PV. From the results of PF as shown in Fig 18A, it is

clear that values of KS (0.989), Precision (0.991), and Recall (0.990) were significantly

improved with the proposed RS ensemble classifier than the values of PF (KS, Precision, and

Recall) for the kernel based SVM classifiers (Linear (0.856, 0.908, and 0.870), Quadratic (0.911,

0.938, and 0.920), and Cubic (0.933, 0.950, and 0.940)). Similarly, the results as shown in Fig

18B clearly indicate that the RS ensemble classifier offers excellent performance in terms of

evaluating other PF such as F-Measure (0.975) and ROC (1.0) than the results of kernel based

SVM classifiers (linear, quadratic, and Cubic). Thus, from the performance analysis, it can be

concluded that the proffered RS ensemble classifier is more superior and outperforms individ-

ual kernel based SVM classifiers (linear, quadratic, and Cubic) under this condition.

6.3.2 Results of PF under varying solar irradiance. Under the uncertain condition of

solar PV, the results of PF obtained for all the classifiers are given in Table 14. As from the

results, it can be noticed that the KS value (0.967) was high and substantially improved with

the RS ensemble classifier than with kernel based SVM classifiers. Furthermore, a significant

improvement in Precision (0.973), Recall (0.970), and F-Measure (0.969) results were observed

Table 11. Classification results of RS ensemble classifier (under STC of solar).

Class PQEs RS Ensemble

Classified Instances

Correct (
p

) Incorrect (X)

K1 Normal 40 0

K2 Sag 40 0

K3 Swell 39 1

K4 Harmonics 40 0

K5 Transient-1 38 2

K6 Transient-2 40 0

K7 Transient-3 40 0

K8 Transient-1 40 0

K9 Transient-2 40 0

K10 Transient-3 40 0

Overall CA 99.3%

https://doi.org/10.1371/journal.pone.0262570.t011

Table 12. Classification results of RS ensemble classifiers (under varying solar at real time).

Class PQEs RS Ensemble

Classified Instances

Correct (
p

) Incorrect (X)

K1 Normal 40 0

K2 Sag 40 0

K3 Swell 38 2

K4 Harmonics 40 0

K5 Transient-1 34 6

K6 Transient-2 40 0

K7 Transient-3 40 0

K8 Transient-1 36 4

K9 Transient-2 40 0

K10 Transient-3 40 0

Overall CA#x2003;97%

https://doi.org/10.1371/journal.pone.0262570.t012
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with the proffered RS ensemble classifier rather than individual kernel based SVM classifiers.

Likewise, the range of ROC values (from 0.961 to 0.976) with kernel based SVM classifiers was

improved significantly (0.997) with the proffered RS ensemble classifier. As compared to the

results of STC case analysis, the PF results were slightly reduced for all the classifiers under

varying solar of PV. However, the proffered RS ensemble classifier still provides more

Table 13. Overall classification accuracy of SVM kernels and RS ensemble classifiers under all conditions.

SVM kernel types Accuracy (%) under STC of PV Accuracy (%) under varying solar

SVM linear 87 83.3

SVM quadratic 91.3 88

SVM cubic 94 91.3

RS ensemble 99.3 97

https://doi.org/10.1371/journal.pone.0262570.t013

Fig 18. PF Results: (a) KS, Precision, and Recall; (b) F-Measure and Recall.

https://doi.org/10.1371/journal.pone.0262570.g018
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promising results in PF than other kernel based SVM classifiers, even under uncertain condi-

tions of solar PV.

The proposed RS ensemble classifier can benefit (higher accuracy with superior perfor-

mance) from the use of random subspaces and the application of the ensemble strategy over

the predictions of assigned Cubic kernel SVM models. Thus, the results of this study prove

that the proffered RS ensemble model is more effective and robust for discriminating between

different PQEs in both modes of MG network under STC and uncertain conditions of solar

PV.

7. Comparative analysis with exiting literature works and non-

linear classifiers

This section describes a comparative analysis of PQEs classification between the proposed RS

ensemble method and other literature works. From the results of comparison, as illustrated in

the Table 15, it is evident that the classification accuracy of different classifiers varies from the

ranges of 95.30% to 100%. According to the Table 13, the research works in [14, 33] were con-

sidered to study different PQEs in simple power networks without integration of RE sources,

whereas the research works in [32, 35, 64] were discriminated different PQEs in RE integrated

MG networks but failed to analyse under uncertain RE source conditions. However, in this

study, different PQEs and transients due to switching and LG fault events were considered to

be categorised with the proposed RS ensemble method in the PV integrated MG network

under real-time varying solar irradiance of the PV system. As compared to other works, the

proposed RS ensemble method is more robust in discriminating PQEs with an accuracy of

97% even under uncertain conditions of the RE source. Furthermore, comparison of accuracy

between the proposed RS ensemble method and other non-linear classifiers is illustrated in

Table 14. Results of PF under varying solar irradiance of PV.

Performance under real time variation of Solar

Performance Factors SVM Linear SVM Quadratic SVM Cubic RS Ensemble

KS 0.811 0.867 0.900 0.967

Precision 0.900 0.922 0.932 0.973

Recall 0.830 0.880 0.910 0.970

F-Measure 0.833 0.883 0.909 0.969

ROC Area 0.961 0.972 0.976 0.997

https://doi.org/10.1371/journal.pone.0262570.t014

Table 15. Comparison of proposed method with other works.

S.

NO

References Classification

techniques

Description Accuracy

(%)

1 [32] Ensemble Bagging Considered to analyse different PQEs in RE integrated MG network, but fails to study the effect of

ensemble classifier under uncertain conditions of RE sources with real time,

95.3

2 [14] ANN + DT Analysed PQEs in simple power network without integration of renewable energy sources 99.9

3 [33] Adaboost Considered to analyse various PQEs in power distribution system without consideration of any RE

sources

99.37

4 [64] Ensemble Bagging Considered to analyse multiple PQEs in PV integrated MG system, but fails to study with presence of PV

under uncertain conditions

98

5 [35] Ensemble voting Analysed various PQEs in both modes of PV integrated MG network, but fails to analyse uncertain

condition of PV power due to varying solar irradiance in real time condition

100

6 Proposed

method

SVM based RS

ensemble

Analysed various PQEs, transients due to switching events and LG fault in PV integrated MG network

under real time varying solar irradiance of PV system

97

https://doi.org/10.1371/journal.pone.0262570.t015
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Table 14. From the results of the comparison (Table 16), it is inferred that the proposed

method offers promising results for the classification of different PQEs in the MG network

compared with other non-linear algorithms under STC and varying solar irradiance of PV in

real-time conditions.

8. Conclusions

In this study, SVM based RS ensemble classification model is proposed to detect and discrimi-

nate the most common PQEs like sag, swell, distortion of harmonics in off-grid, and different

PQ transients in both the on-grid and off-grid modes of the PV integrated MG network under

the following conditions: 1) STC of solar PV; and 2) varying solar irradiance of PV with real

time conditions. The effectiveness of the proffered RS ensemble model is verified with the

results of kernel based individual SVM classifiers (linear, polynomial (Quadratic and Cubic)).

The Matlab-Simulink software tool is used to develop and simulate the PV integrated MG net-

work for analysis. In the pre-stage of classification, the features of energy values from the dis-

turbance signals of various PQEs are extracted by the DWT technique. Further, the input

features are used to train the RS ensemble classifier and individual kernel based SVM classifi-

ers (Linear, Quadratic, and Cubic) to obtain targeted class labels at the final stage of classifica-

tion. From the classification results, it is inferred that the proffered RS ensemble classifier

offers higher accuracy of classification under STC (99.3%) and varying solar condition (97%)

of PV than individual kernel based SVM classifiers (Linear (87% with STC and 83.3% with

solar variation), Quadratic (91.3% with STC and 88% with solar variation), and Cubic (94%

with STC and 91.3% with solar variation)). Furthermore, the effectiveness of the RS ensemble

classifier is verified at a further level with performance analysis. The PF results clearly show

that the proffered RS ensemble model provides more promising results in PF than individual

kernel based SVM classifiers. Thus, from this study, it can be concluded that the proffered

SVM based RS ensemble model is more robust and offers excellent performance for classifica-

tion of different PQEs in PV connected MG network under STC and uncertain conditions of

solar PV. Furthermore, classification of complex PQEs using hybrid signal processing method

with advanced intelligent classifiers in the MG power network is the future scope of this work.
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Table 16. Comparison of proposed method with non-linear classifiers.

S.NO Classification techniques Accuracy (%) under STC of PV Accuracy (%) under varying solar
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