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In brief

The assessment of rheumatoid arthritis

activity with ultrasound images suffers

from lower intra-observer and inter-

observer agreement as well as

considerable time and expense to train

experienced radiologists. Taking

advantage of rheumatoid arthritis

knowledge and clinical experience, we

propose that the RATING system

provides robust and interpretable

predictions to assist in radiologists’

decision- making. The generalizability

and effectiveness of our system have

been validated in both internal

prospective and external test datasets,

respectively.
ll

mailto:qiaohui@mail.tsinghua.edu.�cn
mailto:wangqian_pumch@126.�com
mailto:feng-xu@tsinghua.edu.�cn
mailto:daiqh@tsinghua.edu.�cn
mailto:yangmeng_pumch@126.�com
https://doi.org/10.1016/j.patter.2022.100592
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100592&domain=pdf


OPEN ACCESS

ll
Article

RATING: Medical knowledge-guided rheumatoid
arthritis assessment from multimodal
ultrasound images via deep learning
Zhanping Zhou,1,2,6 Chenyang Zhao,3,6 Hui Qiao,2,4,* Ming Wang,3 Yuchen Guo,2 Qian Wang,3,* Rui Zhang,3 Huaiyu Wu,5

Fajin Dong,5 Zhenhong Qi,3 Jianchu Li,3 Xinping Tian,3 Xiaofeng Zeng,3 Yuxin Jiang,3 Feng Xu,1,2,7,* Qionghai Dai,2,4,*
and Meng Yang3,*
1School of Software, Tsinghua University, Beijing 100084, China
2Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China
3Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese

Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
4Department of Automation, Tsinghua University, Beijing 100084, China
5Department of Ultrasound, Second Clinical College of Jinan University, First Affiliated Hospital of Southern University of Science and
Technology, Shenzhen People’s Hospital, Shenzhen 518020, China
6These authors contributed equally
7Lead contact

*Correspondence: qiaohui@mail.tsinghua.edu.cn (H.Q.), wangqian_pumch@126.com (Q.W.), feng-xu@tsinghua.edu.cn (F.X.), daiqh@
tsinghua.edu.cn (Q.D.), yangmeng_pumch@126.com (M.Y.)

https://doi.org/10.1016/j.patter.2022.100592
THE BIGGER PICTURE Rheumatoid arthritis (RA) has detrimental outcomes, including increased disability
and mortality. To enhance the clinical assessment of RA, we propose a rheumatoid arthritis knowledge
guided (RATING) system for scoring RA activity frommultimodal ultrasound images. It combines the knowl-
edge of clinical diagnosis with deep learning, serving as an example of designing deep learning systems for
handling real clinical problems. We further integrated the system into the clinical decision-making process
via human-machine collaboration and demonstrated significant improvements in assessment perfor-
mance.We expect that our researchwill illuminate the road to human-machine collaboration and help trans-
form clinical diagnostics and precision medicine in a wider range of biomedical research.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Multimodal ultrasound has demonstrated its power in the clinical assessment of rheumatoid arthritis (RA).
However, for radiologists, it requires strong experience. In this paper, we propose a rheumatoid arthritis
knowledge guided (RATING) system that automatically scores the RA activity and generates interpretable
features to assist radiologists’ decision-making based on deep learning. RATING leverages the complemen-
tary advantages of multimodal ultrasound images and solves the limited training data problem with self-su-
pervised pretraining. RATING outperforms all of the existing methods, achieving an accuracy of 86.1% on a
prospective test dataset and 85.0% on an external test dataset. A reader study demonstrates that the
RATING system improves the average accuracy of 10 radiologists from 41.4% to 64.0%. As an assistive
tool, not only can RATING indicate the possible lesions and enhance the diagnostic performance with multi-
modal ultrasound but it can also enlighten the road to human-machine collaboration in healthcare.
INTRODUCTION

Rheumatoid arthritis (RA), a systemic and chronic inflammation

that mainly affects small joints, has detrimental outcomes on
This is an open access article under the CC BY-N
both individuals and society, including increased disability

and mortality.1 According to a treatment-to-target strategy,

quantitative assessment of RA activity has been deemed as

the key for alleviating the disease burden.2 Due to its
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radiation-free, non-invasive, and cost-effective characteristics,

ultrasound (US) examination has been commonly used for the

RA assessment in clinical practice,3 which usually comprises

two principal modes: grayscale US (GSUS) and Doppler US

(either color [CDUS] or power Doppler [PDUS]). GSUS images

are examined to investigate the morphological changes of sy-

novial hypertrophy (SH), while Doppler US images are used

to detect the synovial hypervascularity.4 However, there was

a long period with no standardized consensus among radiolo-

gists on how to evaluate the GSUS and Doppler US measure-

ments until the European League Against Rheumatisms-

Outcomes Measures in Rheumatology Synovitis Scoring

(EOSS) system.5 The EOSS system emphasizes the importance

of analyzing both the two-mode images and encourages the

use of the 0–3 combined score for evaluating the synovitis in

RA. Despite the establishment of the EOSS system, the quan-

titative assessment of disease activity is still hampered by the

lower intra-observer and inter-observer agreement in US diag-

nostics.6,7 In addition, it often requires considerable time and

expense to train experienced radiologists for RA assessment,

and integrating both US modes based on the EOSS system

further aggravates this problem.1

As an emerging alternative solution, deep learning (DL)8 has

demonstrated great potential in various radiology tasks, including

breast cancer prediction,9,10 thyroid cancer diagnosis,11 lung can-

cer screening,12 cardiac function assessment,13,14 and musculo-

skeletal image analysis.15–17 For RA assessment, several DL

models have been applied to X-ray18 and MRI image interpreta-

tion.19 Recently, Andersen et al.20 and Christensen et al.21 devel-

oped deep neural networks to predict the synovitis combined

score using Doppler US images. Meanwhile,Wu et al.22 proposed

a DL technique to determine the combined score with GSUS

images.

Although the feasibility of DL methods has been demonstrated,

the clinical applicability of DL-assisted USRA assessment has yet

to materialize owing to three major limitations. First, previous

studies did not consider the multimodal data integration problem,

while the EOSS system handled this by human intelligence and

expertise. This leads to the potential weakness in diagnostic

accuracy and clinical acceptance. Second, the difficulties in the

accumulation and annotation of clinical cases remain a barrier

to constructing a large-scale training dataset. Therefore, it is

necessary todesign a data-efficient DLmethod for clinical deploy-

ment. Third, previous studies have not validated to what extent

their systems may actually improve clinical diagnostics. Different

from the current model-versus-human comparison, it is more

promising that humans could collaborate with DL models in real

clinical studies.23

To overcome the hurdle of RA assessment in clinical practice,

we propose a rheumatoid arthritis knowledge guided (RATING)

DL system for scoring the RA activity. First, in the RATING

system, we explore the MULTI-Task mUltimoDal Ensemble

scheme called MULTITUDE, which fully exploits knowledge in

clinical diagnosis. It leverages the complementary advantages

of dual-mode US images to follow the evaluation paradigm of

the EOSS system and combines the diverse perspectives of

multitask models in light of clinical expert consultation. As a

consequence, MULTITUDE is able to offer a robust and inter-

pretable score determination. Second, we develop a self-super-
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vised pretraining method to enhance the RATING reliability even

under the limited training data condition. The pretraining

procedure has been designed to promote the morphological

feature understanding of human joints; thus, the RATING system

can achieve significant accuracy improvement and generalize

well to various imaging settings. Third, we devise DL-assisted

RA assessment software and conduct clinical trials with it.

This software provides the synovitis score predictions and

explainable features to facilitate the clinical decision-making

process of radiologists. Experiments have demonstrated that

our system can not only greatly improve the scoring accuracy

but also illuminate the road to human-machine collaboration in

healthcare.

We have constructed and used three datasets in this study.

The training dataset contains 752 pairs of US images from 104

patients at Peking Union Medical College Hospital (PUMCH).

The prospective test dataset contains 274 pairs of US images

from 28 patients at PUMCH. The external test dataset contains

293 pairs of US images from 42 patients at Shenzhen People’s

Hospital (SZPH).

RESULTS

Build of the RATING system on the training dataset
The overall pipeline of building the RATING system is illustrated

in Figure 1. To build the model, we retrospectively collected a

training dataset, which consisted of 752 pairs of GSUS and

CDUS images from 104 patients. For each pair of US images,

three experienced radiologists from PUMCH reviewed the im-

ages, annotated the region of interest (ROI) for each US image,

and decided the synovial hypertrophy score, the vascularity

score, and the combined score. The workflow followed the

EOSS guidelines (Table S1) and is shown in Figure S1. Detailed

patient demographics and EOSS scoring characteristics are

summarized in Table S2.

The RATING system consists of five scoring models that share

the same architecture. The training dataset was partitioned into

five complementary subsets of an equivalent number of sam-

ples, and every four of the five subsets were used to train one

of the five scoring models in which the remaining subset was

used to validate it. Each of the five scoring models separately

predicts a synovial hypertrophy score and a vascularity score,

and the combined score is predicted by combining all of the

predictions using the MULTITUDE scheme.

To further enhance the robustness, every scoring model pre-

dicts the synovial hypertrophy and vascularity scores from mul-

tiple binary classification outputs using error-correcting output

codes (ECOC)24 rather than a single multiclass classification.

By encoding the synovial hypertrophy and vascularity scores

in an error-correcting code format in which each bit corre-

sponds to a separate binary classification, the scoring model

may be able to recover from the misclassifications. In this

study, we trained two networks for each of the three binary

classification tasks, whether the score was greater than 0, 1,

and 2, so that each time, ECOC integrates six binary classifica-

tion outputs.

To leverage the complementary advantages of GSUS images

and Doppler US images, we proposed the GS-Doppler feature

fusion network. It extracts feature vectors from the GSUS and
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Figure 1. Build of the RATING system for RA scoring

Paired GSUS and Doppler US images were collected for the training dataset, the prospective test dataset, and the external test dataset. Then, ROIs were

annotated and scored according to the EOSS system. During model development, the models of RATING system were trained based on the ROIs of US images

and the corresponding labels. Duringmodel inference, for each pair of GSUS andDoppler US image, the RATING systempredicts the synovial hypertrophy score,

the vascularity score, and the combined score, and the heatmaps of US images are generated. Performance evaluations were performed on the prospective test

dataset and the external test dataset. When used as an assistance tool, the score predictions and heatmaps of the US images are presented to the radiologist.
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Doppler US image, concatenates them into a fusion feature

vector, and feeds it into a classification network. We used the

GS-Doppler feature fusion network to predict the synovial hyper-

trophy score.

We evaluated the performance of the scoring models on the

training dataset by calculating the area under the curve (AUC)

of the receiver operating characteristic (ROC) curve for the bi-

nary classification tasks. On three synovial hypertrophy score

binary classification tasks, the ROC curves on the training data-

set are shown in Figure S3 and AUCs were 0.896 (95% confi-

dence interval [CI] = 0.883–0.909), 0.945 (95% CI = 0.935–

0.956), and 0.948 (95% CI = 0.932–0.964), respectively. Posi-

tive predictive value (PPV), negative predictive value (NPV),

sensitivity, and specificity are shown in Table S3. On three

vascularity score binary classification tasks, the ROC curves

are shown in Figure S4, and AUCs were 0.980 (95% CI =

0.976–0.984), 0.992 (95% CI = 0.988–0.996), and 0.991 (95%

CI = 0.986–0.995), respectively. PPV, NPV, sensitivity, and

specificity are shown in Table S4.

Performance of the RATING system on the prospective
test dataset
To evaluate the performance of the RATING system in the clinical

trial, 28 patients with RA were prospectively recruited from April

20, 2021 to October 2021 and received US examination at

PUMCH. After radiologists reviewed and scored the US images,

274 pairs of GSUS and CDUS images were included in the pro-

spective test dataset. There was no patient overlap between the

prospective test dataset and training dataset.
We evaluated the performance of the RATING system in two

ways. First, we calculated the AUC of the ROC curves for binary

classification tasks, including three synovial hypertrophy score

binary classification tasks and three vascularity score binary

classification tasks. Second, we calculated the four-class accu-

racy and linearly weighted k25 for the synovial hypertrophy score,

the vascularity score, and the combined score classification.

On three synovial hypertrophy score binary classification

tasks, the ROC curves on the prospective test dataset are shown

in Figure S5 and AUCswere 0.930 (95%CI = 0.919–0.941), 0.933

(95% CI = 0.930–0.936), and 0.979 (95% CI = 0.973–0.985),

respectively. PPV, NPV, sensitivity, and specificity are shown in

Table S5. On three vascularity score binary classification tasks,

the ROC curves are shown in Figure S6 and AUCs were 0.986

(95% CI = 0.985–0.987), 0.990 (95% CI = 0.986–0.995), and

0.995 (95% CI = 0.991–0.998), respectively. PPV, NPV, sensi-

tivity, and specificity are shown in Table S6.

The RATING system achieved an accuracy score of 86.1%

(95% CI = 82.5%–90.1%) for the combined score prediction

and a linearly weighted k score of 0.853 (95% CI = 0.806–

0.900). The confusion matrix is shown in Table S10. For joints

of combined scores 0 and 4, the accuracy scores are higher

than 90%. It seems to be most difficult for the RATING system

to predict the joints of combined score 1, which are frequently

predicted to be 0 and 2. As shown in Table S7, the accuracy

score of the synovial hypertrophy score and the vascularity score

were 79.6% (95% CI = 74.8%–84.3%) and 94.5% (95% CI =

91.6%–97.1%), and the linearly weighted k scores were 0.757

(95% CI = 0.699–0.885) and 0.919 (95% CI = 0.876–0.966).
Patterns 3, 100592, October 14, 2022 3



A

B

Figure 2. The performance of the RATING

system in the classification of the combined

score

(A) The RATING system achieved accuracy = 86.1%

(95% CI = 82.5%–90.1%) on the prospective test

dataset, higher than the ablation methods and the

existing methods.

(B) The RATING system achieved accuracy = 85.0%

(95% CI = 80.5%–89.1%) on the external test da-

taset, higher than ablation methods and existing

methods. Error bars indicate 95% confidence in-

tervals.

ll
OPEN ACCESS Article
Confusion matrices of the synovial hypertrophy score classifica-

tion and the vascularity score classification are shown in

Tables S8 and S9, respectively.

Performance of the RATING system on the external test
dataset
To further demonstrate the generalizability of the RATING sys-

tem, an external test dataset was collected from SZPH from

March 2021 to December 2021. Different from the training data-

set and the prospective test dataset, the Doppler US images in

the external test dataset are PDUS images rather than CDUS im-

ages. After radiologists reviewed and scored the US images, 315

pairs of GSUS and PDUS images from 42 patients were included

in the dataset. There was no patient overlap between the pro-

spective test dataset and training dataset.

On three synovial hypertrophy score binary classification

tasks, the ROC curves on the external test dataset are shown

in Figure S7 and AUCs were 0.940 (95% CI = 0.920–0.960),

0.985 (95% CI = 0.983–0.988), and 0.979 (95% CI = 0.974–

0.984), respectively. PPV, NPV, sensitivity, and specificity

are shown in Table S11. On three vascularity score binary

classification tasks, the ROC curves are shown in Figure S8

and AUCs were 0.998 (95% CI = 0.995–1.000), 0.996 (95%

CI = 0.994–0.998), and 0.988 (95% CI = 0.974–1.000), respec-

tively. PPV, NPV, sensitivity, and specificity are shown in

Table S12.

The RATING system achieved an accuracy score of 85.0%

(95% CI = 80.5%–89.1%) for combined score prediction and a

linearly weighted k score of 0.857 (95% CI = 0.817–0.897).

The confusion matrix is shown in Table S16. For joints of com-

bined scores 0 and 4, the accuracy scores were higher than

90%. Similar to the result on the prospective test dataset, it

seems to be more difficult for the RATING system to predict

joints of combined scores 1 and 2. As shown in Table S13,

the accuracy score of the synovial hypertrophy score and
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the vascularity score were 82.9% (95%

CI = 78.5%–87.0%) and 96.2% (95%

CI = 93.9%–98.3%), and the linearly

weighted k scores were 0.832 (95%

CI = 0.789–0.919) and 0.957 (95% CI =

0.932–0.953). Confusion matrices of the

synovial hypertrophy score classification

and the vascularity score classification

are shown in Tables S14 and S15,

respectively. The experiments demon-
strate that the RATING system generalizes well to different

US operators and to PDUS images.

Comparative studies of ablation methods and existing
methods
Toassess the effectiveness of ourmethod,weconducted ablation

studies on the prospective test dataset and external test dataset.

For the GS-Doppler feature fusion network, we evaluated three

ablation methods: (1) synovial hypertrophy score predicted using

onlyGSUS images, (2) synovial hypertrophy score predicted using

only Doppler US images, and (3) vascularity score predicted using

bothGSUSandDoppler US images.Moreover, we conducted the

ablation study for the MULTITUDE scheme, the ECOC method,

MULTITUDE and ECOC together, and our self-supervised pre-

training strategy. On both the prospective test dataset (Figure 2A)

and the external test dataset (Figure 2B), our methods achieved

significantly higher accuracy score and linearly weighted k score

than the six ablationmethods (p< 0.001). The experimental results

demonstrate the effectiveness of the MULTITUDE scheme, the

self-supervised pretraining strategy, and the GS-Doppler feature

fusion network. Detailed results are shown in Tables S7 and S13.

In addition, we compared the performance of the RATING sys-

temwith the two existingmethods proposed by Andersen et al.20

and Christensen et al.,21 respectively. For each method, we im-

plemented the model according to the original paper, trained it

on our training dataset, and tested it on our prospective test da-

taset and external test dataset, respectively. To make the exper-

imental results more convincing, we replicated each experiment

five times. The method of Andersen et al. directly predicted the

combined score using features extracted from Doppler US im-

ages, obtaining an accuracy score of 67.4% (95% CI =

65.9%–71.2%) on the prospective test dataset and an accuracy

score of 74.7% (95%CI = 73.4%–76.0%) on the external test da-

taset. Christensen et al. proposed a cascade method that

sequentially predicted three binary classification tasks using
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Figure 3. Superiority of the GS-Doppler feature fusion network and MULTITUDE

In each GSUS image, the boundary of the synovial hypertrophy area is annotated in orange. The numbers in green are ground truth scores. The green rectangles

in the solid line stand for correct predictions, while red rectangles in the dashed line stand for incorrect predictions.

(legend continued on next page)
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features extracted from Doppler US images. On the two test da-

tasets, the method of Christensen et al. obtained accuracy

scores of 69.0% (95% CI = 66.7%–71.2%) and 74.4% (95%

CI = 73.1%–75.7%), respectively. Both the accuracy scores

and k scores of the two existingmethodswere significantly lower

than our RATING system (p < 0.001).

The superiority of the GS-Doppler feature fusion network

comes from the complementary advantages of the two US mo-

dalities.On theonehand,DopplerUS imagesprovide information

about synovial hypervascularity, which indicates the existence

and position of the synovial hypertrophy (Figure 3A). On the other

hand, GSUS images do not contain Doppler signals and thus are

more suitable for models to focus on morphological characteris-

tics of the synovial hypertrophy (Figure 3B). The superiority of the

MULTITUDE scheme comes from a joint analysis of synovial hy-

pertrophy and vascularity score predictions from multiple

models. Different from custom model ensemble strategies such

asmajority voting ensemble that brings together multiple models

separately for each classification tasks, MULTITUDE considers

the relationship between the tasks (Figure 3C).

Explainability of the RATING system
Explainability of the RATING system is important to understand-

ing how it makes prediction easier and better assists radiolo-

gists. For each GSUS image or Doppler US image, the

RATING system generates a heatmap that highlights the

important areas for deciding the synovial hypertrophy score.

The heatmaps of GSUS imagesmay highlight the potential syno-

vial hypertrophy area, and the heatmaps of Doppler US images

may highlight the potential synovial hypertrophy area and the po-

tential synovial hypervascularity area. Each heatmap is colorized

in yellow and overlaid on the original US image to obtain the heat-

map overlay image. The generated heatmap overlay images on

the prospective test dataset indicate that the RATING system

has learned the features of synovial hypertrophy and blood

flow (Figure 4).

Assistance of the RATING system to radiologists
To better assist radiologists for scoring RA, we developed a

graphical user interface (Figure 5), which displays the original

US images, heatmap overlay images, and the prediction of the

RATING system.

To evaluate the usefulness of the RATING system in assisting

clinical decision-making, we conducted a reader study and aDL-

assisted reader study on the prospective test dataset. We re-

cruited 10 radiologists from PUMCH whose US experience

ranged from 4 to 15 years. Detailed experience conditions are

shown in Table S17. We first conducted the reader study that

each radiologist independently scored the pairs of GSUS and

Doppler US images in the prospective test dataset. We evalu-

ated the performance of the RATING system and radiologists

in two ways. First, we calculated the four-class accuracy and lin-
(A) A sample of combined score grade 2 was underestimated as grade 1 using on

Doppler US image, the RATING system made the correct prediction.

(B) A sample of combined score grade 1 was underestimated as grade 0 using o

hypertrophy in the GSUS image, the RATING system made the correct predictio

(C) A sample of combined score grade 0 was incorrectly predicted as grade 1 b

combination and led to the correct prediction.
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early weighted k for combined score classification. Second, we

calculated the Youden index26 in three combined score binary

classification settings (i.e., 0 versus 1, 2, and 3; 0 and 1 versus

2 and 3; and 0, 1, and 2 versus 3). Besides the 10 human readers,

an average reader who achieved the average performance of the

10 real readers was also comparedwith the RATING system. The

RATING system achieved significantly higher combined score

accuracy than the 10 radiologists and the average reader

(p < 0.001; Figure 6A). In all three combined score binary classi-

fication settings, the RATING system achieved a significantly

higher Youden index than the 10 radiologists and the average

reader (p < 0.001, Figures 6B–6D).

After 1 week, we conducted the DL-assisted reader study, in

which the same group of radiologists scored the same set of im-

ages with the assistance of the RATING system. The accuracy of

the average reader was significantly improved from 41.4% (95%

CI = 35.8%–47.2%) to 64.0% (95% CI = 58.7%–69.5%), and all

10 radiologists achieved significantly higher combined score ac-

curacy than independent assessment with p < 0.001 (Figure 6A).

Detailed accuracy results of the synovial hypertrophy, vascu-

larity, and combined score are shown in Table S18. As illustrated

in Figures 6B–6D, the Youden index of the average reader was

significantly improved from 0.226 to 0.520 on the classification

of combined score in 0 versus 1, 2, and 3 (p < 0.001); from

0.520 to 0.668 on the classification of combined score in 0 versus

1, 2, and 3 (p < 0.001); and from 0.492 to 0.660 on the classifica-

tion of combined score in 0 versus 1, 2, and 3 (p < 0.001).

Detailed Youden index metrics of all 10 radiologists and the

average reader are shown in Table S19.

DISCUSSION

With this work, we developed the RATING system to automati-

cally assess US images for RA scoring. In practice, the US

quantitative assessment of disease activity is hampered by low

intra-observer and inter-observer agreement during US exami-

nation. Moreover, it takes considerable time and expense to train

experienced radiologists in US diagnostics. The RATING system

is designed to assist radiologists in clinical practice, which not

only provides predictions of all three scores rather than only

the combined score, but also generates heatmaps to indicate

the areas that the DLmodels focus on.We developed a graphical

user interface for radiologists, and conducted a DL-assisted

reader study to evaluate the effectiveness of its assistance to

the radiologists in clinical trial settings. Experiments demon-

strate that the RATING system has great potential in improving

the intra-observer and inter-observer agreement for radiologists

of various US examination experience.

Previous studies have not evaluated the performance of DL

models in the prospective setting; thus, they are not able to fully

prove the effectiveness of DL models in clinical practice. There-

fore, we collected the prospective test dataset to evaluate the
ly the GSUS image. With the aid of synovial hypervascularity information in the

nly the Doppler US image. With the overall morphological changes of synovial

n.

y custom majority voting ensemble. MULTITUDE excluded the invalid score
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Figure 4. Examples of heatmap visualization

In each GSUS image, the boundary of the synovial hypertrophy area is annotated in orange, and the boundary of the joint effusion area is annotated in red. In each

heatmap overlay image, the heatmap is colorized in yellow and overlaid on the original US image.

(A) A sample whose synovial hypertrophy score is 1, vascularity score is 0, and combined score is 1. The joint effusion areas are highlighted in the heatmaps of

both GSUS and Doppler US images.

(B) A sample whose synovial hypertrophy score is 1, vascularity score is 2, and combined score is 2. The synovial hypertrophy area near the bone surface is

highlighted in the GSUS image and the Doppler US image, and the blood flow areas are highlighted in the Doppler US image.

(C) A sample whose synovial hypertrophy score is 2, vascularity score is 3, and combined score is 3. The synovial hypertrophy area is highlighted in the GSUS

image, and the blood flow areas are highlighted in the Doppler US image. The heatmap shows what the RATING system pays attention to, which helps human

radiologists understand the predictions of RATING.
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model performance and conduct the reader study. The RATING

systemachieved high accuracy and linearlyweighted k and signif-

icantly outperformed the ablation methods, the existing methods,

and the 10 radiologists, demonstrating its clinical effectiveness.

To demonstrate the generalizability to different US operators

and PDUS images, the RATING system was further evaluated

on paired GSUS and PDUS images collected from SZPH. The

RATING system achieved a comparable accuracy score of

85.0% (95% CI = 80.5%–89.1%) compared to the accuracy

score of 86.1% (95% CI = 82.5%–90.1%) on the prospective
test dataset, and achieved a comparable linearly weighted k

score of 0.853 (95% CI = 0.806–0.900) compared to the linearly

weighted k score of 0.857 (95% CI = 0.817–0.897) on the pro-

spective test dataset. The results demonstrate that the

RATING system generalizes well to different US operators and

to both CDUS and PDUS images.

Although the GS-Doppler feature fusion network achieved

the best performance in predicting the synovial hypertrophy

score, it did not show superiority in predicting the vascularity

score. This is because GSUS images contain no information
Patterns 3, 100592, October 14, 2022 7



Figure 5. The graphical user interface of the RATING system to assist radiologists for scoring RA
The paired GSUS and Doppler US images are shown in the first row, and the ROI of each image is illustrated by an orange rectangle. When the radiologist clicks

the button to check the predictions of the RATING system, the heatmap overlay images are presented in the second row, and the predictions appear at the

bottom.
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about synovial hypervascularity, and radiologists only examine

the Doppler US images to assess the synovial hypervascularity

condition and decide the vascularity score in clinical practice.

Furthermore, the pointless use of GSUS images also increases

the overfitting risk of the DL models. Experiments also demon-

strate that using the GS-Doppler feature fusion network obtains

lower accuracy and linearly weighted k in classifying the vascu-

larity score.

It should be noted that the methods used in the RATING

system can easily be extended to other medical examination

tasks. For multimodal US evaluations such as assessment of

breast cancer and thyroid cancer, a feature extraction

network can be built for each imaging mode, and their

features can be fused in a way similar to that of the GS-

Doppler feature fusion network. The MULTITUDE scheme is

also appropriate for other medical diagnosis in which the

radiological decision consists of multiple related components,

such as the TNM staging system for malignant tumor classifi-

cation, which includes primary tumor (T), regional lymph node

(N), and distant metastasis (M).27

To better understand when and why the RATING

system may make incorrect predictions, we analyzed the

incorrect cases in the prospective test dataset and external

test dataset. Based on the confusion matrices, we analyzed

the four most common types of incorrect predictions and illus-

trate one typical example for each type (Figure 7). Incorrect

predictions may occur when the situation is on the borderline
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between adjacent grades. When this happens, human experts

should carefully analyze the US images according to the

EOSS guidelines.

One limitation of our study regards the test data. Because we

collected data from only two hospitals in China, the generaliz-

ability of the RATING system to other population has not been

demonstrated.Moreover, all of theUS images are acquired using

Mindray US machines; therefore, the generalizability of the

RATING system to US machines from other manufacturers has

not been demonstrated. Future evaluation of the RATING system

should include data from other population and other USmachine

manufacturers.

Another potential limitation of our study is that the RATING

system consists of 60 convolutional neural networks,

which may consume considerable inference time and result

in applicability issues. Since these networks are independent

of one another, one feasible solution is to infer the input US

images in parallel using multiprocessing technique. Lastly,

we have not compared the RATING system with the method

of Wu et al.,22 which requires additional segmentation

annotations.

In conclusion, we propose the RATING system to evaluate the

RA activity fromGSUS andDoppler US images.We demonstrate

that the RATING system outperforms all existing methods and

can be implemented well in clinical trial settings. Moreover, we

demonstrate that RATING generalizes well to different US oper-

ators and both CDUS and PDUS images. The RATING system is
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Figure 6. Performance comparison of the RATING system, radiologists alone, and with the assistance of the RATING system

(A) With the assistance of the RATING system, radiologists (R1–R10) and the average reader achieved higher accuracy in the classification of combined score.

(B–D) The Youden index of radiologists’ combined score binary classificationwithout andwith the assistance of the RATING system: 0 versus 1, 2, and 3 (B); 0 and

1 versus 2 and 3 (C); and 0, 1, and 2 versus 3 (D). Error bars indicate 95% confidence intervals.
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interpretable and has showed great potential in assisting radiol-

ogists in clinical RA assessment. The future looks promising for

incorporating the RATING system into US machines, displaying

heatmaps and model predictions on the screen in real time. In

addition to the clinical assistance, the RATING system may

also be used to train junior radiologists.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Feng Xu, feng-xu@tsinghua.edu.cn.

Materials availability

This study did not generate new unique reagents.

Data and code availability

The original data reported in this study cannot be deposited in a public repos-

itory because biogenetic information involving humans collected during the

project, including imaging data of patients, should be kept confidential until

the end of the projects that are supported by the National Natural Science

Foundation of China. All of the original code has been deposited at Zenodo un-

der the https://doi.org/10.5281/zenodo.7005383 and is publicly available as of

the date of publication. Any additional information required to reanalyze the

data reported in this paper is available from the lead contact upon request.
Methods

Ethical approval

The study was registered at clinicaltrials.gov (NCT04297475) and approved by

the institutional reviewboardsof PUMCH (approval no. JS-1923). Theprospec-

tive studywas anobservational one anddid not involve interventionalmethods.

The recruited patients of the retrospective and prospective parts were well

informed of the study and provided signed informed consent. Patients or the

public were not involved in the design, recruitment, and conduct of the study.

Patients and data collection

To build the training dataset, we retrospectively collected GSUS and Doppler

US images from patients who were diagnosed with RA according to the 2010

American College of Rheumatology/European League Against Rheumatism

(ACR/EULAR) classification criteria between March 2019 and April 10, 2021

at the PUMCH. To evaluate the performance of the RATING system, we pro-

spectively recruited patients with RA between April 20, 2021 and October

2021 at PUMCH. To further evaluate the generalizability of the RATING system

to different US operators and to PDUS images, we recruited patients between

March 2021 and December 2021 at SZPH. In the retrospective, prospective,

and external workflows, the US images of the patients who had comorbid in-

flammatory joint diseases were excluded. Details of data collection workflow

are illustrated in Figure S1.

A total of four US operators at PUMCH and SZPH performed US scan-

ning. Two US operators from PUMCH both have 5 years of experience in

musculoskeletal US (MSK-US), with approximately 1,000 MSK-US scan-

ning cases per year. The other two US operators from SZPH have 4 and
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Figure 7. Typical examples of incorrect predictions

In each GSUS image, the boundary of the synovial hypertrophy area is annotated in orange, and the joint effusion area is annotated in red. In each heatmap

overlay image, the heatmap is colorized in yellow and overlaid on the original US image. The numbers in green are ground truth scores. The green rectangle in the

solid line stands for correct predictions, while the red rectangle in the dashed line stands for incorrect predictions.

(A) The sample of grade 0 was incorrectly predicted as grade 1. The model correctly identified the mild synovial hypertrophy in both GSUS and Doppler US

images, but overestimated it and predicted the combined score as 1.

(B) The model underestimated the mild synovial hypertrophy and incorrectly predicted the sample of grade 1 as grade 0.

(C) The sample of grade 1 was incorrectly predicted as grade 2. Although there is obvious synovial hypertrophy and effusion, they do not exceed the joint line

across the left and right bones illustrated by the green dashed line.

(legend continued on next page)
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5 years of experience in MSK-US, with approximately 700 MSK-US scan-

ning cases per year. All four US operators received training in the standard

scanning protocol for small joints. In both sites, the recruited patients

received US scanning of metacarpophalangeal (MCP) joints and proximal

interphalangeal (PIP) joints using the same commercial US system (Resona

7, Mindray Bio-Medical Electronics) and probe (L23-15 MHz, central fre-

quency of 20 MHz, Mindray Bio-Medical Electronics). For each patient,

GSUS and Doppler US images were performed consecutively at a depth

of 1.5–2 cm. The CDUS settings included pulse repetition frequency

(PRF) of 1,000 Hz, wall filter of 80 Hz, maximum gain of 50, and scale of

3 cm/s. The PDUS settings included PRF of 700 Hz, wall filter of 37 Hz,

scale of 3 cm/s, and maximum gain of 50. Both Doppler US settings use

a rectangle sampling box with no angulation. During the examination, pa-

tients placed their hands on the white surface of examining tables with a

bubble-free gel pad put on the dorsal side of the hands. The operator posi-

tioned the probe longitudinally on the dorsal surface of the patient’s fin-

gers. The static GSUS image showing the bone surfaces of the long bones

at both ends and synovial area clearly was saved, and subsequently the

corresponding Doppler US image on the same section was also saved.

The GSUS and Doppler US images were exported from US machines in

either JPEG or TIFF format.

After image collection, three experienced radiologists at PUMCH selected

and scored the GSUS and Doppler images. The three radiologists have 10,

7, and 6 years of experience in US and 5, 5, and 4 years of experience in

MSK-US, reading more than 1,000 sets of MSK-US images per year. Before

the study, all of them participated in a 6-month training program about the

EOSS system. The exclusion criterion for the images included (1) images

with significant artifacts (GSUS: blurred images, anisotropic artifacts; Doppler

US: aliasing, motion artifacts) and (2) images not clearly showing bone sur-

faces and synovium. Then, the radiologists scored the selected GSUS and

Doppler US images according to the EOSS system.5 After scoring all of the im-

ages, the three radiologists discussed the images, with inconsistent scores, to

reach consensus. When disagreement still existed, another professional radi-

ologist at PUMCH with 15 years of experience in US and 10 years of experi-

ence in MSK-US re-evaluated the images and made the final decision. All of

the radiologists and US operators participating were blinded to the patients’

clinical information.

Image preprocessing

To eliminate irrelevant information, for each GSUS image and Doppler US im-

age, the ROI was annotated as a rectangular area by radiologists using a

custom annotation software. Then, the ROIs of the US images were cropped

and resized to 224 3 224 pixel size. To build a model that generalizes to

both CDUS and PDUS images, each Doppler US image was segmented to

obtain a binary mask of the Doppler signals. The binary mask was the same

size as the original Doppler US image and its pixel values were either 0 or 1,

where 1 indicated the existence of Doppler signals. Afterward, a transformed

Doppler US image was generated for each Doppler US image by transforming

the pixel color to red where the corresponding pixel in the binary mask was 1.

Overall pipeline of the RATING system

The RATING system (Figure S2) is composed of five scoring models that sepa-

rately predict the synovial hypertrophy score and the vascularity score. The

combined score is predicted by comprehensively considering five scoring

models’ predictions using our proposed MULTITUDE scheme.

Each of the five scoring models is composed of a synovial hypertrophy

scoring module that predicts the synovial hypertrophy score, as well as a

vascularity scoring module that predicts the vascularity score. Instead of

directly predicting the scores using multiclassification networks, we adopted

a technique called ECOC that uses a series of binary classification models.24

Specifically, synovial hypertrophy scoring modules and vascularity scoring

modules trained models for three binary classification tasks (i.e., whether

the score was greater than 0, 1, and 2. Theoretically, at least three binary clas-

sification models are needed in a four-class classification task. To improve ac-

curacy and robustness, for each binary classification task, we trained two
(D) The sample of grade 2was incorrectly predicted as grade 3. The synovial hyper

surface of the left synovial hypertrophy area is only slightly convex rather than obvi

dashed line illustrates the synovial hypertrophy surface line, which is approxima
models with the same training settings except for randomization seeds, result-

ing in a total of six classification networks.

For thebinary classificationnetworksof the synovial hypertrophyscoringmod-

ules, we propose the GS-Doppler feature fusion network, which leverages the

complementary advantages of the GSUS image and the Doppler US image.

For the binary classification networks of the vascularity scoring modules, only

the Doppler US image is used to predict the vascularity score, because the

Doppler US image is sufficient to decide the vascularity score in clinical practice.

MULTITUDE

Model ensemble is a type of machine learning technique that combines a

number of weak learners to achieve better performance than each individual

learner. Custommodel ensemblemethods such asmajority voting, stacking,28

and AdaBoost29 solve only one prediction task at a time. Recently, the idea of

ensemble has been introduced to multitask learning,30 but each task is pre-

dicted separately. Our proposed MULTITUDE scheme develops the problem

formulation of custom model ensemble methods from independent tasks to

multiple corelated tasks, and naturally combines the medical knowledge into

the method design. MULTITUDE has a general formulation and can be used

in tasks other than US RA assessment.

In general, we define a classification task in which a total of tmeasurements

S1;S2;.;St need to be classified. For any measurement Siði = 1; 2;.;tÞ, we

denote all of its ci possible values as v
i
1;v

i
2;.;vici . For the above task,mmodels

M1;M2;.;Mn are built to represent m independent experts. For any model

Mjðj = 1;2; .; mÞ, it independently predicts the t measurements as

p1
j ;p

2
j ;.;pt

j where pi
j ˛ fvikg

ci
k = 1. We define qi

c as the number of models that

predicts Siði = 1; 2;.; tÞ as c˛ fvijg
ci

j = 1
. It should satisfy Equation 1:Xci

j = 1
qi
vi
j
= m (Equation 1)

We use the term value combination to refer a possible condition of the t

measurements, which is represented as a tuple ðv1;v2;.;vtÞ. Theoretically,
there are

Qt
i = 1ci possible value combinations of the t measurements. How-

ever, some value combinations contradict domain knowledge. MULTITUDE

figures out all of the valid combinations and calculates a weight for each

valid combination. The weight of a valid combination ðv1; v2;.; vtÞ quan-

tifies the level of agreement that the models reach on it, which is defined

as
Qt

i = 1q
i
vi . A larger weight of a valid combination indicates that more

models agree on it. Finally, the predictions of the t measurements are ob-

tained as the valid combination with the largest weight. If more than one

valid combination gains the largest weight, the first one in the alphabetical

order is selected.

Different from the custommajority voting ensemble strategy that separately

makes predictions for eachmeasurement, MULTITUDE takes advantage of re-

lationships between different measurements. As a result, invalid value combi-

nations are excluded byMULTITUDE, leading to amore reasonable prediction.

If all of the value combinations are valid, MULTITUDE can yield the same pre-

diction as the majority voting ensemble strategy.

As for RA assessment, the combined score is decided by the synovial hyper-

trophy score and the vascularity score, both of which range from 0 to 3, result-

ing in 16 theoretically possible combinations. According to the EOSS system,

three combinations whose synovial hypertrophy score is 0 and vascularity

score is >0 are invalid. We used m = 5 models in this study.

GS-Doppler feature fusion network

The GS-Doppler feature fusion network (Figure S2C) comprehensively ana-

lyzes the GSUS image and Doppler US image of a sample. It is composed

of a GSUS feature extraction network F, a Doppler US feature extraction

network G, and a fusion classification network H. For a sample of a GSUS

ROI xG and a transformed Doppler US ROI xD, F extracts a 512-dimension

feature vector hG from xG, and G extracts a 512-dimension feature vector hD
from xD. hG and hD contains potentially useful information in the GSUS image

and the transformed Doppler US image for predicting the synovial hypertrophy

score. Subsequently, hG and hD are concatenated into a 1,024-dimension

feature vector hfusion and it is fed into H to predict the binary classification
trophy score is determined by expert radiologists as 2 rather than 3 because the

ously convex, which is just on the borderline between grades 2 and 3. The green

tely horizontal.
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result. In this study, we used the ResNet-18 network31 for F and G, and built a

two-layer multilayer perceptron (MLP) as H.

The GS-Doppler feature fusion network is trained in a three-stagemanner. In

the first stage, a self-supervised pretraining method is adopted to train a

ResNet-18 network that learns both a feature mapping of joint parts in US im-

ages and their correct spatial arrangement.32 To be specific, the ROI of each

GSUS image is resized to 225 3 225 and split into a 3 3 3 grid. Then, a

64 3 64 tile is randomly cropped from each 75 3 75 grid cell. These 9 tiles

are reordered via a randomly chosen permutation from 1,000 predefined per-

mutations and then fed to the ResNet-18 network to obtain 9 feature vectors.

Finally, these feature vectors are concatenated and fed into a MLP to predict

probabilities that the chosen permutation belongs to 1,000 predefined permu-

tations. In the second stage, the pretrained ResNet-18 networks in the first

stage is maintained as initial weights and further trained to extract features

from theGSUS and transformedDoppler US images for predicting the synovial

hypertrophy score. These networks are kept as F andG. In the third stage, with

the parameters in F and G frozen, H is trained for the synovial hypertrophy

score binary classification task.

Training details

We implemented the networks using the PyTorch DL framework. Cross-en-

tropy loss was used to optimize classification networks. All of the networks

were optimized using an adaptive moment estimation (ADAM) optimizer33 in

a batch size of 64 with an initial learning rate of 0.0003, which then decayed

every 15 epochs, with a decay factor of 0.3. To address the class imbalance

issue, training images were randomly resampled at the beginning of every

epoch so that there was the same amount of training samples in different clas-

ses. Data augmentation was also performed so that the training images were

augmented by applying random cropping and color jittering. To aid the training

of feature extraction networks and the vascularity score classification net-

works, we adopted the transfer learning strategy. Specifically, we initialized

network parameters using the model pretrained on ImageNet34 and then

trained on the target tasks.

Heatmap generation

To ensure trust by human experts and assist radiologists in the clinical setting,

heatmaps were calculated from the GS-Doppler feature fusion networks that

predict whether the synovial hypertrophy score was >0. The heatmaps are

supposed to indicate the potential synovial hypertrophy area.

We adopted the recently proposed integrated gradient (IG) technique, which

assigns an importance score of the prediction to each input feature.35 For a

model Mð ,Þ and an input x, we defined the baseline input x0 as a zero-filled

tensor that has the same shape as x and the integrated gradient as the path

integral of the gradients along the straight-line path from x0 to x. Specifically,

for an input x of n features fxigni = 1, the integrated gradient along xi is defined

using Equation 2:

IGðx; iÞ = �xi � x0i
� Z 1

0

vMðx0 + tðx � x0ÞÞ
vxi

dt (Equation 2)

In practice, the integration is approximated via a summation using

Equation 3:

IGapproxðx; iÞ = �xi � x0i
�Xm

k = 1

1

m

vM
 
x0 +

k

m
ðx � x0Þ

!

vxi

(Equation 3)

where we usedm = 50 in all of the experiments. Thus, the integrated gradients

of the n features were obtained, and they formed a new image IGðxÞ =
fIGapproxðx; iÞgni = 1 that was of the same size as the input image x.

To make the calculation of heatmaps more robust, Gaussian noise d �
Nð0; 1Þ is randomly added to the original image x eight times, and eight heat-

maps are generated using IG. The final heatmap for model M and input x is

generated by averaging the eight heatmaps. To visualize the heatmaps, a yel-

lowmask is overlaid on the original image x. The alpha channel pixel values are

decided by the corresponding heatmap pixel values. To remove less important

features, pixel values smaller than 0.2 are set to zero.

In the RATING system, each of the five scoring models contains two GS-

Doppler feature fusion networks that predict whether the synovial hypertrophy

score was >0. Therefore, a total of 10 heatmaps of the GSUS image and 10
12 Patterns 3, 100592, October 14, 2022
heatmaps of the Doppler US image are generated for each pair of US images.

Because the 10 networks differ in either training data or randomization seed,

they view the same US image in different perspectives and concentrate on

different areas. To combine the knowledge of all of the networks, the heatmaps

are averaged to generate a GSUS heatmap and a Doppler US heatmap, as

shown in Figure S9.

Reader study

A reader study was conducted to compare the performance of the RATING

system with the performance of the 10 radiologists, whose US examination

experience ranges from 4 to 15 years (Table S17). A total of 274 samples

from 28 patients in the prospective test dataset were presented to the radiol-

ogists and the RATING system in random order. For each sample, the ROIs of

GSUS and Doppler US were provided. Each radiologist reviewed the same set

of samples independently and decided the synovial hypertrophy score, the

vascularity score, and the combined score according to the EOSS system.

DL-assisted reader study

To evaluate the assistance of the RATING system to the radiologists in guiding

clinical decisions, we conducted a DL-assisted reader study. Two weeks after

the reader study, the same 274 samples in the prospective test dataset were

presented to the same 10 radiologists again in a different order. For each sam-

ple, together with the ROIs of the GSUS and Doppler US image, the heatmaps

and predictions of the RATING system were also provided to the readers. The

heatmaps indicated the potential synovial hypertrophy area and the synovial

hypervascularity area, and the scores predicted by the RATING system served

as a reference that may assist the readers when they lacked confidence in their

own judgment. The radiologists were blinded to the first-time interpretation

and to one another.

Statistical analysis

For synovial hypertrophy score binary classification tasks and vascularity

score binary classification tasks, in which 10 models are trained in each

task, the 95% CI of AUC, PPV, NPV, sensitivity, and specificity are computed

as ± 1:96s=
ffiffiffiffiffiffi
10

p
, where s is the standard error across the 10 models. For the

two ablation methods without MULTITUDE and the two existing methods, the

95%CI are computed as ± 1:96s=
ffiffiffi
5

p
, where s is the standard error across the

five scoring models. For the remaining experiments, in which only a single ac-

curacy and a single k value is available, we bootstrapped the estimation for

1,000 iterations and reported the 2.5th and 97.5th percentiles as the 95% CI.

The agreement between DL models and experienced radiologists is graded

as follows: poor (k% 0:20), moderate (0:20< k% 0:40), fair (0:40< k% 0:60),

good (0:60< k% 0:80), or very good (0:80< k% 1:00). To compare differences

between accuracy scores and between linearly weighted k, we bootstrapped

the estimation for 1,000 iterations and compared using the z test. All of the sta-

tistical tests are two sided, and p < 0.001 indicates statistically significant dif-

ferences. The analyses are performed using the Python scikit-learn library and

the statsmodel library.
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