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Abstract

Introduction: The alteration of the gut microbiome in the gut-kidney axis has been associated with a pro-
inflammatory state and chronic kidney disease (CKD). A small-scaled Italian study has shown an association
between the gut microbiome and Immunoglobulin A Nephropathy (IgAN). However, there is no data on gut
microbiota in IgAN in the Asian population. This study compares the gut microbial abundance and diversity
between healthy volunteers and Malaysian IgAN cohort.

Methods: A comparative cross-sectional study was conducted involving biopsy-proven IgAN patients in clinical
remission with matched controls in a Malaysian tertiary centre. Demographic data, routine blood and urine results
were recorded. Stool samples were collected and their DNA was extracted by 16S rRNA gene sequencing to profile
their gut microbiota.

Results: Thirty-six IgAN patients (13 male; 23 female) with the mean age of 45.5 ± 13.4 years and median estimated
glomerular filtration rate (eGFR) of 79.0 (62.1–92.2) mls/min/1.73m2 with median remission of 7 years were analysed
and compared with 12 healthy controls (4 male; 8 female) with the mean age of 46.5 ± 13.5 years and eGFR of 86.5
(74.2–93.7) mls/min/1.73m2. Other demographic and laboratory parameters such as gender, ethnicity, body mass
index (BMI), haemoglobin, serum urea and serum albumin were comparable between the two groups. There were
no significant differences seen in the Operational Taxonomic Unit (OTU) and alpha diversity (Shannon index)
between IgAN and healthy controls. Alpha diversity increased with increasing CKD stage (p = 0.025). Firmicutes/
Bacteroidetes (F/B) ratio was low in both IgAN and healthy cohort. Fusobacteria phylum was significantly increased
(p = 0.005) whereas Euryarchaoeota phylum was reduced (p = 0.016) in the IgAN group as compared to the control
cohort.

Conclusion: Although we found no differences in OTU and alpha diversity between IgAN in remission and control
cohort, there were some differences between the two groups at phylum level.

Keywords: Gut microbiota, IgA nephropathy, Alpha diversity, Chronic kidney disease, Microbiome, Dysbiosis,
Firmicutes/Bacteroidetes ratio
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Introduction
Immunoglobulin A Nephropathy (IgAN) also known as
synpharingitic nephritis is the most prevalent form of
primary glomerulonephritis (GN) worldwide [1]. This
autoimmune disease tends to affect the youth and ac-
counts for 23% of GN in Malaysia [2]. In certain
European countries, the reported prevalence was > 30%
[1]. The depicted local prevalence is underestimated as a
histopathological examination is not done comprehen-
sively for all suspected cases and the existence of sub-
clinical or indolent IgAN [3].
IgAN is a disease of abnormal Immunoglobulin A (IgA);

it forms immune complexes that deposit into the mesan-
gium and capillary walls causing glomerular injury and
glomerulonephritis that manifest as nephritic syndrome.
Abnormal IgA is due to defective glycosylation process
caused by galactose deficiency [4]. Accumulation of ab-
normal IgA will bind to antiglycan Immunoglobulin G
and form immune complexes. The exact pathogenesis is
still ambiguous, but numerous studies postulate the multi-
hit theory and the role of genes as possible causes [5, 6].
IgA is mainly found in the mucosal layers of the gut,

genitourinary, respiratory tract, saliva, breast milk and
tears [7]. Contemporary studies demonstrate that the
gut is not only responsible for most of IgA production
but also utilises IgA for maintaining gut mucosal colon-
isation [8]. There are more than a 1000 different species
identified in the human gut and this community is
termed as gut microbiome [9]. These vast arrays of
microbiomes are in a perpetual symbiotic relationship
between one another and the host, providing trophic
and protective functions [10] including the development
of the metabolic system, maturation of the intestinal im-
mune system and the catering of essential nutrients [11,
12]. However, gut microbiota is heavily influenced by
diet, environmental factors and socioeconomics, along
with host genotype and genetic predisposition [13, 14].
Dysbiosis of the gut microbiome is increasingly recog-

nised to be associated with various medical conditions
including chronic kidney disease (CKD) [15–18]. Vaziri
et al. demonstrate that CKD was associated with lower
diversity and richness of gut microbiota and attributed
these to the elevated urea in CKD [18].
Firmicutes and Bacteroidetes are the major phyla

representing the gut microbiome [19, 20]. Novel re-
searches have emphasized on the Firmicutes to Bacteroi-
detes ratio – F/B ratio, as a marker of gut dysbiosis. Data
on F/B ratio in IgAN is scarce. Various studies of other
autoimmune and metabolic diseases have shown incon-
clusive F/B ratio. Studies found reduced F/B ratio in type
1 diabetes mellitus and systemic lupus erythematous
[21]. In contrast, the F/B ratio was increased in psoriasis,
a different form of autoimmune disease [22]. Other stud-
ies involving obesity [23–25] and multiple sclerosis

patients showed inconsistent F/B ratio [26, 27]. These
calls for more research to delineate the F/B ratio in
IgAN. Additionally, the role of treating dysbiosis is also
taking a forefront. In a mouse model study, reduced
Lactobacillus was found in mice with lupus nephritis,
and increasing Lactobacillus with caecal microbiota
transplantation was associated with an improvement in
both renal and overall survival [28].
The first data on gut microbiota in IgA was published

in 2014 as De Angelis et al. demonstrated a lower dens-
ity of microbes especially the Clostridium, Enterococcus,
Lactobacillus, Bifidobacterium genera [29]. The F/B ra-
tio, as well as Firmicutes and Proteobacteria phylum,
were increased in the IgAN group compared to healthy
controls. Another study on Henoch Schönlein Purpura
found a low diversity and richness in the disease group
and serum IgA levels exhibited a significant negative
correlation with the genus Bifidobacterium [30].
Thus, we aim to study the association of IgAN and gut

microbiota in Asians, bearing in mind that the frequency
and severity of IgAN in Asian population is different
from that of Caucasians [31]. Furthermore, Asians are
genetically different with notable variations in geograph-
ical regions, climate, dietary habits and lifestyle
compared to Europeans. Our primary objective was to
compare gut microbiome profile of IgAN patients in
remission with control group. Understanding the gut
microbiota of Asian IgAN may someday facilitate tar-
geted correction of dysbiosis and possibly improve renal
and overall survival.

Materials and methods
Study design and participants
This was a comparative cross-sectional study involving
biopsy-proven IgA nephropathy patients attending the
nephrology clinic follow up at Universiti Kebangsaan
Malaysia Medical Centre (UKMMC) from August 2019
to January 2020. We included patients with biopsy
proven IgAN aged more than 18 years and in disease re-
mission. We excluded patients with diabetes (type 1 and
2), liver diseases, autoimmune diseases, malignancies,
gastrointestinal diseases, ischaemic heart diseases, preg-
nancy and patients with serum urea more than 20
mmol/L or end-stage renal diseases. We also excluded
patients who have travelled abroad or were receiving an-
tibiotics, immunosuppressant or probiotics in the past 3
months prior to our study. The control cohort consists
of mostly healthy individuals, patients with stable hyper-
tension disease on single antihypertensive and corrected
obstructive uropathy. They were recruited for compari-
son and matched by age, gender, ethnicity and Body
Mass Index (BMI).
Before enrolment all subjects provided written in-

formed consent. All subjects that fulfilled the study
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criteria and consented were asked to keep a dietary diary
to ensure no marked change in their usual dietary prac-
tices. Biochemical and clinical tests including faecal
sample collection were performed in accordance with
relevant guidelines and regulations, including Good
Clinical Practice guidelines. Demographic data and dis-
ease history were recorded. Routine blood tests includ-
ing full blood count, renal profile and liver function test,
urinalysis and urine protein-creatinine index (UPCI)
were done. Estimated Glomerular Filtration Rate (eGFR)
was calculated based on the CKD-EPI 2009 equation
[32]. Subjects were briefed on effective stool collection
with minimal contamination during a consultation and
via a pamphlet.
The study was approved by UKMMC research and

ethics committee (FF-2019-352) and registered with Na-
tional Medical Research Registry (NMRR-19-3331-51,
504). This study was jointly funded by a grant from the
Malaysian National Kidney Foundation and Universiti
Kebangsaan Malaysia.

Stool sampling and DNA extraction
Stool samples were taken at home and brought to the
hospital within 6 h in cold storage.
Samples were stored at -80 °C in the laboratory. DNA

extraction was performed using GeneAll Exgene™ Stool
DNA kit (Cambio Ltd., Cambridge, England) as per
manufacturer protocol. Concentration and quality of
DNA extracts were monitored using Nanodrop Spectro-
photometer (Nanodrop Technologies, Wilmington,
Delaware).

Gene sequencing - 16S rRNA analysis
Following DNA extraction, 16S rRNA gene fragments
were amplified from the extracted DNA. The gene-
specific sequences used in the protocol targets the 16 s
rDNA V3 and V4 region as published in the literature
[33]. Illumina adapter overhang nucleotide sequences
were added to the gene-specific sequences. The full-
length primer sequences, using standard International
Union of Pure and Applied Chemistry (IUPAC) nucleo-
tide nomenclature, to follow the protocol targeting this
region were:
16S Amplicon PCR Forward Primer = 5′
TCGTCGGCAGCGTCAGATGTGTATAAGAGA

CAGCCTACGGGNGGCWGCAG
16S Amplicon PCR Reverse Primer = 5′ GTCTCG

TGGGCTCGGAGATGTGTATAAGAGACAGGACTAC
HVGGGTATCTAATCC
Forward overhang: 5′
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-

[locus-specific sequence]
Reverse overhang: 5′

GTCTCGTGGGCTCGGAGATGTGTATAAGAG
ACAG- [locus-specific sequence]
Reads from the sequencing were sorted by bcl2fastq2

software using unique barcodes. The barcode, linker,
and primer sequences were then removed from the ori-
ginal sequencing reads. The merged reads containing
two or more ambiguous nucleotides, those with a low-
quality score (average score < 20), or reads shorter than
300 Base pair, were filtered out. Potential chimeric se-
quences were detected using the ChimeraSlayer
r20110519.
The pre-processed reads from each sample were used

to calculate the number of OTUs which was determined
by clustering the sequences from each sample using a
97% sequence identity cut-off using Quantitative Insights
Into Microbial Ecology (QIIME) software (v.1.8.0).
Taxonomic abundance was counted with RDP Classi-

fier v2.11 using a confidence threshold of 0.8 derived
from the pre-processed reads for each sample and NCBI
Blast v2.2.28 following clustering by CD-HIT v4.6 using
a 99% sequence identity with 80% read coverage cut-off
[34, 35]. The microbial composition was normalized by
dividing the value calculated from the taxonomy abun-
dance count with the number of pre-processed reads for
each sample. To measure the alpha diversity of each
sample, the OTUs were analysed using the Shannon

index, H 0 ¼ ‐
PS

i¼1ðpi ln ðpiÞÞ.

Statistical analysis
All data presented in this study were analysed using
SPSS software version 21 (IBM Inc., Chicago, IL, USA).
The sample size was calculated based on the only avail-
able study describing gut microbiota and IgAN at the
time, De Angelis et al. [29]. We required 8 experimental
subjects and 8 control subjects to be able to reject the
null hypothesis that the population means of the experi-
mental and control groups are equal with probability
(power) 0.8. The Type I error probability associated with
this test of this null hypothesis is 0.05. We recruited
more considering the possibility of dropouts and sam-
pling error.
The rationale behind 3:1 ratio was due to a myriad of

variables that may influence the gut microbiome. Statis-
tical significance can be achieved by conventional 1:1 ra-
tio but increasing the number participants in the disease
group will reduce the weight of these unaccounted vari-
ables as well as reduce selection bias.
All data were tested for normality. Next, normally dis-

tributed data were analysed with mean and standard de-
viation while skewed distributed data were analysed with
median and interquartile range (25–75%). Independent
t-test and Mann Whitney test were used to compare the
variables. In order to adjust for false discovery rate, we
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used the Bonferroni multiple comparison correction.
Our adjusted p value / q value of 0.05 was considered
statistically significant.

Results
Subject profiles and characteristics
We recruited a total of 36 IgAN patients with 12 con-
trols. Both groups were comparable in their demograph-
ics parameters including age, gender, ethnic distribution,
as well as BMI and eGFR. Biochemical parameters were
also comparable except for UPCI that was higher in the
IgAN group and summarised in Table 1. The IgAN sub-
jects were in clinical remission for at least 1 year with a
median duration of remission being 7 years (IQR 4–13).
Majority of our patients had only 1 relapse and all
treated as per KDIGO guideline with antiproteinuric
agents, namely Angiotensin-Converting Enzyme inhibi-
tor (ACE-i) or Angiotensin II Receptor Blocker (ARB)
[36]. All 36 patients (100%) in our IgAN cohort were
treated with either ACE-i or ARB and 23 patients
(63.9%) were on fish oil therapy. 7 out of 12 (58%) con-
trol patients were on ACE-i/ARB for their hypertension.
All these patients have good hypertension control on
ACE-i/ARB.

Characterisation of intestinal microbiome
The number of reads in all 48 subjects by 16S rRNA V3
and V4 amplicon sequencing was 3,797,148. This final
read number was obtained post trimming and quality
control. The median for the number of reads for disease
cohort was 87,125 (54272–99,417) as shown in Table 2.
There were no significant differences in OTUs or

alpha diversity measured in the Shannon index between
IgAN and controls. Further analysis indicated no rela-
tionship between the number of OTUs and Shannon
index with ethnicity, gender or BMI. However, the IgAN
cohort had significant association of alpha diversity with
eGFR < 60 mls/min/1.73m2, p = 0.025. The alpha diver-
sity increased with the reduction of eGFR. These find-
ings were not found in the control cohort.
A total of 24 phyla, 48 classes and 685 genera were

identified. Six major phyla dominated the composition
of the gut microbiota – Bacteroidetes, Firmicutes, Proteo-
bacteria and to a lesser extent Verrucomicrobia, Actino-
bacteria and Fusobacteria. These phyla are shown in
each individual subject in Fig. 1. Figure 2 demonstrates
the composition of these phyla between the two cohorts.
IgAN cohort had an increased abundance in Proteo-

bacteria, Fusobacteria and Actinobacteria but reduced

Table 1 Demographic and laboratory data in IgAN patients and healthy controls

IgAN cohort (n = 36) Healthy cohort (n = 12) P value

Mean + SD/ Median (IQR) Mean + SD/ Median (IQR)

Age (years) 45.5 + 13.4 46.5 + 13.5 0.814

Gender [n, (%)]

Male 13 (36%) 4 (33%) 0.865

Female 23 (64%) 8 (67%)

Race [n, (%)]

Malay 17 (47.2%) 6 (50%) 0.871

Chinese 19 (52.8%) 6 (50%)

BMI (kg/m2) 24.56 + 2.79 23.62 + 3.03 0.326

Haemoglobin (g/dL) 13.43 + 1.56 13.18 + 1.54 0.707

Urea (mmol/L) 4.7 (4.2–5.7) 4.0 (3.4–5.0) 0.072

Creatinine (μmol/L) 83.5 (62.3–116.5) 69.5 (59.3–84.3) 0.14

eGFR (mls/min/1.73m2) 79.0 (62.1–92.2) 86.5 (74.3–93.8) 0.248

Albumin (g/L) 41.39 + 3.36 42.33 + 1.97 0.245

UPCI (g/mmol creatinine) 0.050 (0.023–0.128) 0.01 (0.01–0.01) < 0.001

BMI Body Mass Index, eGFR estimated Glomerular Filtration Rate based on CKD EPI 2009
UPCI Urine Protein-Creatinine Index

Table 2 Gut microbiome analysis between the two groups

IgAN cohort (n = 36) Control cohort (n = 12) P-value

Mean + SD/ Median (IQR) Mean + SD/ Median (IQR)

Number of reads 87,125 (54273–99,417) 84,188 (74645–93,178) 0.849

Number of OTUs 10,080.64 + 3018.92 11,015.33 + 2163.45 0.328

Shannon index 4.986 + 0.508 5.046 + 0.595 0.739
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Firmicutes, Bacteriodetes and Verrucomicrobia when
compared with controls as shown in Fig. 2. The Firmi-
cutes / Bacteroidetes ratio (F/B ratio) was low in both
our cohorts (0.87 in IgAN and 0.89 in healthy).
At the phylum level, the proportion of Fusobacteria

was higher in the IgAN cohort (p = 0.005) whereas Eur-
yarchaoeota was lower in the IgAN cohort (p = 0.016)
and this is shown in Fig. 3a.
At the class level, Methanobacteria was significantly

reduced in the IgAN cohort (p = 0.031) whereas Fuso-
bacteriia (p = 0.005) and Epsilonproteobacteria (p =

0.018) were increased in the IgAN cohort and shown in
Fig. 3b.
Analysing at the genus level, although Streptococcus

was increased in IgAN group compared to the controls,
it was not significant (p = 0.432). Clostridium, Bacillus
and Lactobacillus, the mainstay microorganisms in the
gut, were reduced in the IgAN group but these too did
not reach statistical significance.
On subanalysis of the IgAN cohort, we found that

patients with eFGR less than 60 mls/min/1.73m2

had an increase in the phyla Lentisphaerae (p =

Fig. 1 Bar plot of the composition of major phyla in each individual sample

Fig. 2 Phyla abundance between cohorts
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0.001) and Synergistetes (p = 0.002) and displayed in
Fig. 4.

Discussion
Malaysia has a multiracial population and the prevalence
of IgAN is 23% with a slight preponderance towards fe-
male (1.44:1) [2]. This is lower compared to our neigh-
bouring country, Singapore, where IgAN was reported
as high as 43% [37]. However, Malaysian data maybe
under-representative of the true incidence due to differ-
ent screening methods and renal biopsy policies
practised.
IgAN poses a substantial risk of progression to ESRD,

up to 40% in two decades especially in Asians [31, 38].
Blood pressure reduction and treatment with renin-
angiotensin-aldosterone system blockers or immunosup-
pressant [39] have been advocated to slow the CKD pro-
gression although the use of the latter remains
controversial with conflicting evidence [40]. In our

centre, immunosuppressive therapies are used for pa-
tients with heavy proteinuria as Asian studies have
shown promising results with steroids [41]. All of our
IgAN patients were on either ACE-I or ARB while 64%
were on fish oil. 7 out of 12 from the control cohort
were on ACE-i/ARB for their hypertension, which was
well controlled. The actions of common medications on
the gut microbiota cannot be discounted. ACE-i has
shown in animal models to improve gut dysbiosis by re-
ducing intestinal permeability, decreasing fibrosis and
improving villi length [42]. However, at present, the
available data records no obvious changes at phyla level.
Fish oil, rich in polyunsaturated fatty acids, is still

widely used as it poses low risk and has a potentially
beneficial cardiovascular effects [43]. Fish oil has been
studied elaborately to determine its effect on gut micro-
biota. Some studies have shown no differences in the
phyla level [44, 45] while others have shown an increase
in Firmicutes and decrease in Bacteroidetes [46–48].

Fig. 3 Differences in gut microbiota between IgAN and control cohort. a At phylum level (b) At class level
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However, none have shown any changes in the Fusobac-
teria phylum. Both our cohorts did not show significant
changes in the Firmicutes and Bacteroidetes phyla.
We decided not to include patients with newly diag-

nosed who are in active disease or relapsed disease due
to several factors. Firstly, our aim is to prove that pa-
tients with the disease and in remission are distinguish-
able from the control group. This theory is needed to
confirm that there is fundamental alteration in gut
microbiota that plays a role in the pathogenesis of the
disease. Secondly, patients with active disease have more
variables that results in dysbiosis, − some are clinically
ill with ongoing acute kidney injury, while others have
hypoalbuminemia which may cause oedema including in
the gut. On top of that, in our local practice, patients
with active disease are considered for immunosuppres-
sants. All these factors are proven to alter gut
microbiota.
Our IgAN cohort was noted to have significantly

higher UPCI compared to controls. This is largely due to
the fact that these patients have progressed to CKD and
have persistent stable proteinuria due to glomerulo-
sclerosis. The eGFR in control group were slightly low
as there were patients with CKD stage 3 due to cor-
rected obstructive uropathy. These patients were includ-
ing to offset the differences of eGFR in between both
groups, as CKD severity has already been reported to in-
fluence gut microbiota [18].
We discovered no significant difference in OTU rich-

ness, gut microbial diversity in IgAN compared to con-
trols. We perceive this could be because all our IgAN
patients were in disease remission and not on any im-
munosuppressive drugs, thus resembling the healthy
population. In addition, the assessment of alpha diversity
using the Shannon index may have some limitation as

shown in other studies [25, 49]. Bacteroidetes, Firmi-
cutes, Proteobacteria, Verrucomicrobia, Actinobacteria
and Fusobacteria constituted > 98% of total abundance
and it is similar to other studies worldwide [9, 29, 50,
51]. Bacteroidetes and Firmicutes monopolise the overall
microbiota. Bacteroidetes is represented mainly by Bac-
teroides and Prevotella whereas the Firmicutes consists
of mainly the genus Clostridium.
The calculated F/B ratio was low in general and

reduced further in IgAN cohort. This was due to a de-
crease in abundance of Clostridia. Studies in the
European continent have reported a high F/B ratio > 1
[29, 50, 51] whereas the Asian and African continents
reported otherwise, < 1 [52, 53]. These differences in gut
microbiota profile are likely due to the variation in the
diet in which more animal-based protein and fat ob-
served in the Europe diet whereas Asian and African diet
is traditionally more plant-based [54]. Significantly
greater alpha diversity, increase in OTU and specifically,
Bacteroidetes phylum were seen with vegans compared
to omnivores [55]. These changes in the composition of
the microbiome are often due to differences in the
amount of directly consumed bacteria, variation in tran-
sit time through the intestinal tract, changes in gut pH
and regulation of host immunity [56].
The crucial outcome of our study was the significant

increase of Fusobacteria in the IgAN cohort. Fusobac-
teria has the ability to invade colonic epithelial cells
[57]. As such, studies have been conducted to prove its
association with inflammatory bowel disease and colon
cancer [58]. Fusobacteria touted to play a role as an
“alpha-bug” which has a virulent capacity to spur remod-
elling of the entire community, cultivating a pro-
inflammatory and pro-carcinogenic response [59]. Could
this be the intermediary for abnormal mucosal immunity

Fig. 4 eGFR influencing abundance at the phylum level
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and gut inflammation that initiates the multi-hit patho-
genesis of IgAN?
The Euryarchaoeota was significantly lower in the

IgAN cohort. This microorganism falls under the do-
main of Archaea, an obligate anaerobe which is separate
from bacteria. They are known to produce methane as a
metabolic by-product in hypoxic conditions [60]. There
are links between this organism and obesity, constipa-
tion and oral cavity infections [61] but we have yet to
put this incidental finding in its place.
A unique finding to our study was the increase in alpha

diversity with the worsening of CKD. This finding is in
contradiction to the general understanding that gut micro-
bial diversity reduces with increasing severity of CKD. Our
understanding of this phenomenon is that gut microbiota is
predominantly affected by serum urea and toxins such as
p-cresol rather than creatinine level [62]. We did not en-
counter this as there were no significant differences in the
urea level between the two groups and the urea level was
relatively low in our IgAN cohort. We also report an in-
crease in Lentisphaerae (p = 0.001) and Synergistetes (p =
0.002) in patients with eGFR less than 60 mls/min/1.73m2.
As the relative abundance of these phyla is minute, very
few studies have shown their role in our gut ecology.
As IgAN patients often worsen after suffering an upper

respiratory tract infection, Streptococcal antigens have
been implicated with the deposition of IgA in renal tissue
[63]. Our findings with regards to Streptococcus compared
between the two cohorts showed no difference. This may
echo with the consensus that the role of tonsillectomy for
the purpose of reduction in Streptococcus exposure may
be limited [36]. Having said that, the role of Streptococcus
as a gut coloniser may differ in tonsil infection. Moreover,
our Streptococcus could have been indifferent in both co-
horts as our patients were mostly in remission.
Notable discrepancies in our study as compared to

that of De Angelis’ et al. [29] would be that our F/B ratio
was reduced in the IgAN group whereas the Italians re-
ported an increase. Our Firmicutes abundance was re-
duced in IgAN cohort while Fusobacteria and
Actinobacteria increased in IgAN cohort contrasting the
results of the Italian study. Previous studies have also
documented a reduction in Firmicutes in disease cohorts
[62, 64, 65]. Our reduction in Firmicutes is mainly due
to reduction in the genus Clostridium. Clostridium is re-
sponsible for the metabolism of carbohydrate to various
short-chain fatty acids (SCFA). SCFAs are needed to
maintain the intestinal barrier and its reduction will trig-
ger inflammation [66]. We believe that as our IgAN co-
hort was in prolonged remission, we were unable to
achieve statistical significance in the reduction of phyla
Firmicutes and genus Clostridium.
Recently, a new study out of Hunan, China – looking

into faecal microbiota characteristics of active IgAN and

healthy control, has demonstrated similar findings to
ours [67]. They have recorded a reduction in all alpha
diversity indexes except Shannon index. Using the
Shannon index as the only measurement for alpha diver-
sity has its limitations [68]. In fact, there are still on-
going arguments to justify the best method to evaluate
richness diversity, evenness, differentiation and abundance-
weighted diversity [69]. Hu et al. also noted a significant in-
crease in the phyla Fusobacteria in their active disease co-
hort [67]. However, their F/B ratio was higher in the
diseased group, concurring with De Angelis et al.
Some notable weaknesses from our study would be

our design – cross-sectional study and its sample size.
Although the sample size was calculated with type 1
error of 0.05 and power of 80%, a larger-scale study will
be needed to confirm these results as gut microbiome
has high dimensionality and variability. Another major
limitation was the lack of other indexes to evaluate
Alpha diversity and Beta diversity. This is mainly due to
technical issues we were facing during the time of
COVID-19 pandemic. Even then we believe this study is
still relevant as it is the only study on IgAN patients
who were in remission. Remission state reduces many
other confounding variables that may alter the gut
microbiome such as patients being unwell during acute
illness, hypoalbuminemia, acute kidney injury, as well as
a sudden change in medication and diet. Moreover, we
contribute to the database of gut microbiota profile for
the ASEAN region.

Conclusion
The richness and abundance of OTU and alpha diversity
are unaltered between IgAN patients in remission and
controls. Nonetheless, there were significant differences
in taxonomic profiling even at the phylum level. Thus,
these results might be relevant to understand the basis
of microbiota perturbation in the development of IgAN
in the Malaysian population. The phyla Fusobacteria
may be a precursor to intestinal inflammation and auto-
immunity in our population. Proving the role of gut dys-
biosis as one of the pathogenesis to the development of
this disease can facilitate a new population targeted
screening, stratification and treatment approach.
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