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Abstract

The observation could be used to reduce the model uncertainties with data assimilation. If
the observation cannot cover the whole model area due to spatial availability or instrument
ability, how to do data assimilation at locations not covered by observation? Two commonly
used strategies were firstly described: One is covariance localization (CL); the other is ob-
servation localization (OL). Compared with CL, OL is easy to parallelize and more efficient
for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations,
in which the geostatistical semivariogram was used to fit the spatial correlated characteris-
tics of synthetic L-Band microwave brightness temperature measurement. The fitted
semivariogram model and the local ensemble transform Kalman filter algorithm are com-
bined together to weight and assimilate the observations within a local region surrounding
the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs
with one nearest observation assimilated, 5_Obs with no more than five nearest local
observations assimilated, and 9_Obs with no more than nine nearest local observations
assimilated. The scenarios with no more than 16, 25, and 36 local observations were also
compared. From the results we can conclude that more local observations involved in as-
similation will improve estimations with an upper bound of 9 observations in this case. This
study demonstrates the potentials of geostatistical correlation representation in OL to improve
data assimilation of catchment scale soil moisture using synthetic L-band microwave bright-
ness temperature, which cannot cover the study area fully in space due to vegetation effects.

Introduction

Soil moisture plays an important role in the catchment scale water cycle and land-atmosphere
interactions [1,2,3]. The satellite missions of soil moisture provide us the opportunity to
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measure the large scale land surface soil moisture from space [4,5]. The land surface / hydrologic
models also become the important tools for the soil moisture profile estimation at the global,
regional and catchment scale [1,6,7,8,9]. In order to improve the performance of the model
simulation, the studies of land data assimilation have made rapid progress to integrate the nu-
merical model estimations of land surface states and the observations from remote sensing

and ground based instrument to improve the characterizations of the water and energy cycle
[10,11,12,13,14]. In the land data assimilation, it is very common that all model grid cells can-
not be measured at the same time due to the spatial availability of the measurements (e.g., the
limited coverage of microwave sensors because of dense vegetation, limited coverage of thermal
sensors because of cloud or the limited measurement scale of ground based sensors) [15,16,17].
Thus, the question of how to carry out the data assimilation for the model grid cells lack of ob-
servations has been proposed, and studies have paid more attention to the spatial horizontal
transfer of observations in the data assimilation, in which the model states could be updated
using the local correlated observations [18,19,20].

Two main strategies can be undertaken to utilize the local correlated observations through
the horizontal spatial correlation characteristics of land surface variables in data assimilation
[21,22,23]: (1) use the correlated information contained in the model forecast covariance, in
which the spatial horizontal correlations among different model locations can be described
with the covariance; and (2) use the observational correlation information where the spatial
horizontal correlations are defined through the correlated observations. The first method is
often applied with the ensemble Kalman filter (EnKF), which has been studied in numerous
land data assimilation applications because of its conceptual formulation and relative easy im-
plementation [18,20,24], but the inverse operation, storage of matrices and parallel computing
for the large scale application in the first method with 3D-EnKF are difficult [25]. So the second
approach with local ensemble transform Kalman filter (LETKF) becomes more and more pop-
ular because of its efficient parallel implementation in technique [26,27].

Both EnKF and LETKEF use the ensemble representation of the background error covari-
ance. Due to the computational limits, small ensemble members (compared with the degree
of freedom of the system) are usually used in calculations. This could result in large sampling
errors in the approximation of background error covariance [28,29] and produce spurious
large magnitude correlations among the long-range separated model grid cells [18,30]. The
spurious large magnitude correlations will assign a large weight to the far away observations,
and is contrary to the reality.

In order to reduce the impacts of spurious long-range correlation on the assimilation per-
formance, the covariance localization (CL) techniques are first proposed in the estimation of
the background error covariance of EnKF. With CL, one can allow observations having great
influences on the adjacent model grid cells and small influences on the far model grid cells. The
so-called Schur product [18,29,31] is used in the CL to multiply the ensemble approximation
of the background error covariance matrix with a distance-dependent correlation function to
suppress the distant correlations. This localization limits the impacts of distant observations.
On the other hand, observation localization (OL) has also been proposed for LETKF in atmo-
spheric data assimilation recently and is often used to filter out the small correlations associated
with the distant observations [29,31]. In OL, the observation error covariance matrix is divided
by a distance-dependent correlation function to increase the observation error variance of distant
observations and to reduce their weights in data assimilation [27,29,30,31]. For each model grid
cell, local correlated observations need to be selected and used in OL to do the analysis.

Both CL and OL have been proved to perform similarly in the data assimilation [29,31].
However, CL needs to calculate the whole background covariance matrix for all model grid
cells and will result in large memory requirement for large number of model grid cells, and
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need careful parallelization implementation [25]. This is not trivial in practice. With OL, the
large amount model grid cells can be partitioned into small blocks to avoid the memory limits,
and the assimilation for each model grid cell of these blocks can be separated and parallelized
efficiently. Thus, we wanted to evaluate OL in land data assimilation by assimilating the syn-
thetic L-band microwave brightness temperature data into the Community Land Model
(CLM) [32] to improve the soil moisture profile characterization. We did this by taking into
account the spatial correlations and vegetation influence [15] of microwave brightness temper-
ature data to compensate the shortcomings of remote sensing in spatial coverage.

The OL scheme can limit the effect of faraway observations and filters out the small correla-
tions associated with these observations, and it has been extensively applied in the LETKF
[19,27,31] and other EnKF variants [29] to assimilate the local surrounded observations by tak-
ing the spatial correlation into account. In LETKF, we can perform the data assimilation grid
cell by grid cell in parallel, and only the limited number of local surrounded observations will
be assimilated for each grid cell. The selection criteria of the local observations to be assimilated
depends on the spatial correlation characteristics of the observation data. Thus, a distance-de-
pendent correlation function should to be defined to describe the spatial correlation character-
istics represented by the observation data.

The local correlated observations need to be chosen for each model grid cell based on the
distance-dependent correlation function and spatial correlation characteristics before the data
assimilation in OL. This step, however, is very subjective. Moreover, the subjective distance-
dependent function and constant correlation range were used in the localization [31,33,34]. A
commonly used function is called Gaspari and Cohn model in the atmospheric assimilation
field [18].

There are no general rules to define the distance-dependent spatial correlation function for
both CL and OL. In this study we try to use the geostatistical methods [23] to practically get the
more reasonable representation of this subjective distance-dependent correlation function.
This function determines which observations could be used in the assimilation for each model
grid cell based on the correlation characteristics of the observation data. In particular, we use
the geostatistical semivariogram model to describe the correlation among observations [35,36].
Geostatistical semivariogram models have been successfully used in the analysis of soil mois-
ture spatial pattern [23,37,38].

The objective of this study is whether we can use the small coverage observations to update
the whole study area, even only 1 local microwave brightness temperature is assimilated for
each model grid cell. And whether the geostatistical semivariogram analysis can be used to
characterize the observational spatial correlation. Here, we evaluated this assumption in a ob-
serving system simulation experiment, where we additionally used the distributed land surface
CLM [32] to simulate the soil moisture evolution at the catchment scale. In CLM, the synthetic
L-band microwave brightness temperature observation derived from a microwave radiative
transfer model were assimilated by LETKF and OL, and the impacts of the forest on the micro-
wave brightness temperature observation was also considered by reducing the spatial coverage
of the synthetic observation. Six scenarios were carried out to evaluate the impacts of assimilat-
ing different number of local correlated observations in OL on the assimilation results, while
considering the horizontal spatial correlations of the microwave brightness temperature and
the spatial availability of observations.

The paper is organized as follows. In section 2, we describe the LETKF. In section 3, we
briefly outline the geostatistics theory required to analyze the necessary horizontal spatial
correlation of observation. Section 4 introduces the preparation of the synthetic assimilation
experiment. Section 5 evaluates the proposed method in a synthetic microwave brightness
temperature assimilation experiment. Section 6 presents the summary and discussion.
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Materials and Methods
1. Local Ensemble Transform Kalman Filter

LETKEF [27] uses the OL approach to do the local analysis in the framework of the square root
variant of the classical EnKF [39], in which the observations from a local region surrounding
the model grid cell to be analyzed are first selected. Then the OL is done by increasing the ob-
servational error covariance of the observations that are far away from the model grid cell, and
observational error covariance of chosen observation is divided by a distance-dependent corre-
lation function. The OL suppresses the impacts of the long-range observations on the analysis
[29,40]. In the OL analysis scheme, the model grid cell is assimilated separately. For each
model grid cell, the corresponding local observations will be chosen based on the observational
spatial correlation characteristics. It should be noted that some of the observations used for a
particular model grid cell will also be used in the analysis of other neighboring grid cells.
This imposes a smoothing effect from one grid cell to its neighbors. In practice, a distance-
dependent correlation function (by fitting of the two-point correlation matrix to a distance-
dependent correlation function using geostatistics) and its correlation range need to be defined,
and the correlation range defines the threshold above which the data assimilation analysis
ignores the correlation. The LETKF code used is adapted from Google website (Available:
http://code.google.com/p/miyoshi. Accessed 2014 Dec 11). The details of LETKF computation
can be found in Hunt et al. (2007).

There are two analysis steps in LETKF. One is the global analysis, in which two global ma-
trixes are constructed using the model forecast ensemble members:

X' = [xf - 7bﬂ ﬂxllzl 7xb] (1)
yi =H(x)) (2)
Yb:[yi]_yhﬂ"‘ﬂyzli]_)_/b] (3)

where x!, ... x} are the model forecast ensemble members, N is the ensemble size, x” is the en-
semble mean of x!, ... x% , and H is the observation operator (it is CMEM model in this study).
The expression X is composed of one weighted soil moisture (explained in section IV) and
10 layers of soil moisture in soil moisture assimilation. So the dimension of X is 11.

The other is called local analysis in which the selected local observations for each model grid
cell are used to calculate the local analysis error covariance and the perturbations in the ensem-
ble space:

P =[(N-1I+Y"R'YY (4)
W= [(N = 1P (5)

W = PYTR(y' — ") (6)
X* = X"'W* + x° (7)

where R is observation error covariance, y° is the observation vector, and X* is the analysis
model ensemble members.
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2. Correlation Functions and Geostatistics

The horizontal spatial correlation of the soil moisture among adjacent grid cells has been re-
ported in the soil moisture spatial variability studies, and the distance of isotropic horizontal
spatial correlation ranges from tens of meters to tens of kilometers [21,22,23]. However, the
horizontal spatial correlation of soil moisture changes over time as the environment condition
changes. Precipitation and land surface features, such as the soil texture and land cover, deter-
mine the scales of the horizontal spatial correlation structure. For example, soil moisture tends
to be highly horizontally correlated after a prolonged wet period. During the dry down period,
the horizontal correlations tend to decrease. However, after a long period of dry down, the en-
tire basin becomes dry, and there will be strong horizontal spatial correlation [23,41]. Because
of the strong relationship between soil moisture and microwave brightness temperature, there
should be similar spatial correlation pattern in the brightness temperature data [42].

Geostatistics provides both the theory and tools, with which we are able to describe the hori-
zontal spatial correlation patterns contained in the observation data. Several geostatistical
semivariogram models could be used to fit the patterns of horizontal spatial correlations of the
microwave brightness temperature. The distance-dependent correlation function of OL for soil
moisture could be inferred from the semivariogram y(h) analysis related to the two point co-
variances. We assumed that the semivariogram is isotropic in our experiment for simplicity.
The semivariogram models we choose were the Gaussian model, the exponential model, the
spherical model, and the Matern model [36,43]:

y(h) = ¢, + c(h/ax (1.5 — 0.5 % (h/a)?)) (8)spherical
p(h) = ¢, + c(1 — exp( — 3h/a)) (9)exponential
y(h) = ¢, + (1 — exp( — (3h%/a’))) (10)Gaussian

1 '2h\ " (2v1%h
y(h)=c¢ +c 2T\ a K, p (11)Matern

where ¢ is the nugget, ¢ is equal to the sill minus nugget, / is the distance among grid cells, a is
the (effective) correlation rang, K, is a modified Bessel function of second order v, I is the
gamma function, and v (kappa) is called “smoothness parameter” (v > 0). The normalized
semivariogram y(h)N" is defined as y(h)°" = y(h)/(co + ¢). The correlogram is then derived by
1—p(R)N".

The final correlogram value will be normalized to the range of [0 ~ 1] by the maximum
correlogram value, which means that the correlogram value at the observation location is equal
to one. It will decrease towards to zero as the distance from the model grid cell increases gradu-
ally, and will become null when the spatial distance is greater than the specified correlation
range. The scheme of OL in LETKF is as follows: for each model grid cell, the spatial correla-
tion of the microwave brightness temperature data will be modeled using the best fitted
semivariogram model at each assimilationg step. The microwave brightness temperature data
whose correlograms are greater than a predefined threshold (we used 0.1 in this paper) will be
chosen and used in the subsequent assimilation of each model grid cell.

3. Study Area, Models, and Experiment Setup

There are no specific permissions required for these locations/activities and the field studies
did not involve endangered or protected species.
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3.1. Study Area

The study is the Rur Catchment (51°10'13"N-50°22'38"N; 5°55'50"E-7°5'42"E), which is near
the Belgian-Dutch-German border, with an area of 2354 km®. The annual precipitation is
850-1300 mm/year, and the annual potential evapotranspiration of the southern area is
450-550 mm/year, whereas the corresponding values for the northern area are 650-850 mm/year
and 580-600 mm/year, respectively. Forest and grassland dominate the south, whereas fertile ag-
ricultural land predominates in the north [44]. The Terrestrial Environmental Observatories
(TERENO) initiative [45] has selected Rur for the long-term land surface measurement. Addi-
tionally, the Rur Catchment is a validation site for the Soil Moisture and Ocean Salinity (SMOS)
mission of European Space Agency (ESA) [5] and Soil Moisture Active-Passive (SMAP) mission
of National Aeronautics and Space Administration (NASA) [4] with an extensive wireless sensor
network [46] and microwave sensors for soil moisture observation [47]. Fig. 1 shows the eleva-
tion map and the plant functional type from MODIS for the Rur catchment.

3.2. Land Surface Modeling

The land surface model CLM (Version 4.5) [32] was chosen as the model operator to simulate
the catchment scale soil moisture, soil temperature, and surface fluxes dynamics. The different
land surface processes of land biogeophysics, hydrologic cycle, biogeochemistry, human di-
mensions, and ecosystem dynamics, and land surface heterogeneity are considered in CLM
[32]. The geographic longitude-latitude projection was used to prepare the input data for CLM
in the spatial resolution of 0.008333 degree (approximately 750 m). The Rur Catchment con-
tains 4340 active model grid cells. The MODIS 500 m product MCD12Q1 of plant functional
type [48] was resampled to 0.008333 degree using the nearest neighbor method and was

used to define the plant functional type of CLM. The Harmonized World Soil Database v1.2
(HWSD) was used to prepare the soil texture and organic matter density of CLM [49]. The two
layers of soil data in HWSD were linearly interpolated to 10 layers for CLM. The forcing data
of Global Land Data Assimilation System (GLDAS) atmospheric [50] were interpolated into
the model resolution using the MicroMet model [51]. The MODIS leaf area index product
(MCD15A3) was used as the monthly leaf area index of CLM. The details of input preparation
can be found in [19].

3.3. Community Microwave Emission Model

The sensitivity of the passive microwave brightness temperature to the soil moisture is very sig-
nificant in L-band frequency and H polarization [42]. The new flexible Community Microwave
Emission Modeling (CMEM) Platform was used as the forward model to map the L-band
brightness temperature from the soil moisture of CLM [52,53]. CMEM is one of the core com-
ponents in the soil moisture retrieval algorithm of the SMOS mission [5]. Moreover, CMEM is
the result of an extensive review of the current knowledge for the microwave emission and
could simulate the brightness temperature of various land cover types.

Figure 1. The elevation (left) and MODIS plant functional type (right) of Rur Catchment.
doi:10.1371/journal.pone.0116435.g001
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The top of atmosphere brightness temperature TB,,,, , for polarization p can be written as

TB = TB + exp(_TaMn,p) TBtm}.p (12)

toa,p au,p

TBtm),p = TBsoil‘peXp(i‘Esml‘p) + TBveg,p(l + exp(irveg,p)) + TBad‘pyr‘pexp(72Tveg‘p) (13)

where TB,,, , (K) is the up-welling atmospheric emission, and 7, , is the atmospheric optical
depth. The expression TBy,,, , (K) is the top of vegetation brightness temperature when the vegeta-
tion is represented as a single scattering layer above rough surface; TByy, j (K), TByeg, p» and TB,q, p
(K) are the soil, vegetation layer, and downward atmospheric contributions, respectively; 7, p is the
soil reflectivity of the rough surface; 7., , is the vegetation optical depth along the viewing path.

CMEM uses four modules to compute the contributions from soil, vegetation, snow and at-
mosphere. The soil module of CMEM contains four components to compute the soil dielectric
constant, the effective temperature, the smooth soil emissivity, and the rough soil emissivity.
The soil emissivity model describes the relationship between the soil emissivity and the soil di-
electric constant, in which the Fresnel equation or Wilheit model [54] can be used. The Wilheit
model is a more physically based model and accounts for both the coherent and the incoherent
components of signal. The Wilheit model describes the soil as a stratified medium where the
soil dielectric constant and the soil temperature vertical profiles are used to compute the air-
soil interface emission. The soil moisture of different layers are weighted in the Wilheit model
to obtain the weighted soil moisture. This weighted soil moisture can be regarded as the mea-
sured soil moisture from the view of microwave sensor.

The input data of CMEM include soil moisture, soil temperature, leaf area index, vegetation
type, soil texture and air temperature. The first seven layers of soil moisture and soil tempera-
ture of CLM were used in CMEM, which also used the same soil texture, air temperature, leaf
area index and vegetation type as CLM. The default parameterizations of CMEM were used in
this experiment except for the Wilheit model [54]. This model was used for the smooth surface
emissivity, because it considers the signal contributions of different soil layers to the microwave
brightness temperature.

3.4. Ensemble Generation
The uncertain model input parameters and atmospheric forcing data are usually used to de-
scribe the uncertainties contained in the land surface model. The main sources of model uncer-
tainties in the land surface model include the inaccurate vegetation/soil ancillary parameters,
inaccurate model physics, errors in the forcing data and initial conditions. In this data assimila-
tion application, only the random perturbations of uncertain forcing data and soil parameters
were provided for CLM to generate 20 random ensemble replicates of model simulations. The
spatial-temporal correlated noises using the fast Fourier transform [55] were applied in precip-
itation, shortwave radiation, longwave radiation and air temperature, in which the physically
consistent perturbations (such as a positive perturbation of the shortwave radiation, a negative
perturbation of the longwave radiation, and a positive perturbation of air temperature) were
generated to conserve the atmospheric balance between radiation, clouds and air temperature
[56]. Table 1 summarizes the perturbation parameters used in many studies [57,58]. The tem-
poral correlation was imposed by a first-order auto-regressive model [56,59].

The soil sand fraction, soil clay fraction, and soil organic matter density were used in CLM
to derive the hydrologic and thermal parameters. Thus, we perturbed the sand fraction, clay
fraction and organic matter density with uniform distributed noise in the range of [-10%,10%].
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Table 1. Summary of perturbation parameters for atmospheric forcing data.

Variables Noise Standard Deviation Time Correlation Scale Spatial Correlation Scale Forcing Cross Correlation
Precipitation Multiplicative 0.5 24 h 10 km [1.0,-0.8, 0.5, 0.0,
Shortwave radiation Multiplicative 0.3 24 h 10 km -0.8, 1.0, -0.5, 0.4,
Longwave radiation Additive 20 W/m? 24 h 10 km 0.5,-0.5,1.0,0.4,
Air temperature Additive 1K 24 h 10 km 0.0, 0.4, 0.4, 1.0]
doi:10.1371/journal.pone.0116435.t001

3.5. Experiment Setup

In order to evaluate the assimilation results at the catchment scale, an observing system simula-
tion experiment was proposed. A reference run of CLM (single CLM) from 1 April. 2010 to 30
June 2010 was used as the truth for comparison with true sand fraction, true clay fraction, and
true organic matter density. One-year spin up was used for the reference run and open loop
run before the data assimilation period. The 20 ensemble members of CLM were driven from

1 April 2010 to 30 June 2010 with different perturbed forcing data and soil parameters, and
were used as the open loop run for comparison. The true sand fraction was multiplied by 0.5,
the true clay fraction was multiplied by 1.5, and the true organic matter density was multiplied
by 2.0 to impose the model bias on CLM. The same perturbed soil inputs were used in both the
open loop run and data assimilation.

The synthetic L-band (1.4 GHz) brightness temperature data were prepared through the
CMEM model using the soil moisture and the soil temperature data from the reference run.
The spatially correlated noises were then imposed on the synthetic brightness temperature
data using the geostatistical stochastic simulation approach [36], in which the spatially cor-
related Gaussian random field with mean 0.0 K and an exponential semivariogram model
with nugget 0.0 K, variance 4.0 K, and range 10 km were simulated for each data. The
brightness temperature data at 06:00Z every three days were collected as the synthetic obser-
vation data. There were 31 brightness temperature observations in the whole assimilation
time series.

The experiment flow can be summarized in Fig. 2.

4. Brightness Temperature Data Assimilation

4.1. Quality Control and Spatial Correlation
In dense or high-vegetation regions, soil moisture cannot be accurately retrieved from the pas-
sive microwave brightness temperature [15]. Therefore, the synthetic brightness temperature

| Synthetic L-band ‘

‘ Ensembles (Forcing, Soil) ‘ Observation (TB)

| Geostatistical Analysis ‘

!

| Correlation Model ‘

|

Soil Moisture and Soil
Temperature Ensembles

| Choose Local Observation

Figure 2. The data assimilation flow chart.

doi:10.1371/journal.pone.0116435.9002
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observation located at the forest regions, where the soil moisture information is difficult to re-
trieve, were dropped in this study [60]. Then the actual amount of observations that could be
assimilated was decreased. Thus, the catchment grid cells could not be covered simultaneously
(i.e. only the non-forest area contains the observation data). The Rur catchment was discretized
into 4340 grid cells with 2645 grid cells with valid observations. Fig. 1 clearly shows forest
distribution which will be used to mask the synthetic microwave brightness temperature obser-
vation. To improve the estimation of whole catchment, the observation data should be propa-
gated to the uncovered regions from the covered regions by use of the horizontal spatial
correlation among the observations with OL.

In order to represent the spatial correlation characteristics contained in the L-band bright-
ness temperature data, we used the R (R website. Available: http://www.r-project.org. Accessed
2014 Dec 11) geostatistic package of geoR [61] to explore and describe the horizontal spatial
correlation patterns of the brightness temperature observation data by fitting the semivariogram
model automatically at each assimilation step. The maximum distance considered when fitting
the semivariogram of observation data was set at 10 km. Pairs of locations with separation
distances larger than this value were ignored.

4.2. Local Analysis of Brightness Temperature

In this assimilation experiment, we wanted to validate the combination of the horizontal
spatial correlation and the OL analysis scheme of the LETKEF, in which the separate analyses
were performed for each model grid cell and the observations located in the local region
surrounding the CLM grid cell were to be analyzed were selected to be assimilated. For the
model grid cells covered by the synthetic observation, only one nearest local observation
was assimilated. As for the comparison between the proposed local analysis scheme and the
traditional method, we carried out six kinds of data assimilation scenarios, as follows: (1)
Only 1 closest observation was used for each non-covered grid cell (1_Obs); (2) No more
than 5 observations were used for each non-covered grid cell (5_Obs), the next closest 4 ob-
servations were also assimilated in addition to the closest observation; (3) No more than

9 observations were used for each non-covered grid cell (9_Obs), 8 additional observations
were assimilated in the data assimilation procedure; (4) No more than 16 observations were
used for each non-covered grid cell (16_Obs), with 15 additional observations assimilated
in the data assimilation procedure; (5) No more than 25 observations were used for each
non-covered grid cell (25_Obs), with 24 additional observations assimilated in the data as-
similation procedure; (6) No more than 36 observations were used for each non-covered
grid cell (36_Obs), with 35 additional observations assimilated in the data assimilation
procedure.

During the assimilation step, the soil moisture and soil temperature were entered into
CMEM to map the brightness temperature, which would be used in LETKF and compared
with the synthetic observation data. Thus, the weighted soil moisture in the model state vector
of LETKEF for each grid cell after the H operator operation will be replaced by the brightness
temperature instead. The dimension of the observation for each grid cell of different scenarios
are as follows: no more than 1 for 1_Obs, no more than 5 for 5_Obs, no more than 9 for
9_Obs, no more than 16 for 16_ODbs, no more than 25 for 25_Obs and no more than 36 for
36_Obs. Firstly we calculated the correlogram values of all observations for each model grid
cell. Then, 1, 5,9, 16, 25, or 36 local brightness temperature observations were chosen and the
chosen observations with correlogram values greater than 0.1 were assimilated for each model
grid cell. After the selection of local correlated observations, the observation error variances
were divided by the correlogram value to do the OL.
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Results

The assimilation results were evaluated using the root mean square error (RMSE) values which
were calculated according to:

N

Z (Estimated — Truth)’

RMSE = \| = (14)
N

where “Estimated” is the ensemble mean of soil moisture without assimilation or the ensemble
mean of soil moisture after assimilation, and N is the number of model time steps, which is
2184 for this study. The smaller the RMSE value is, the better the assimilation results will be.

The RMSE value of each grid cell in the whole assimilation time series was calculated firstly.
Then the mean RMSE values for all covered and all uncovered grid cells were calculated sepa-
rately using the RMSE values calculated before. Finally, the mean RMSE value for all 4340 grid
cells (covered and uncovered) was calculated. We calculated the 95% confidence interval of the
mean RMSE value using a Bayesian methodology, in which a non-informative prior was de-
rived for the mean and variance and the Bayes rule was used to compute the posterior probabil-
ity density function of mean and variance [62]. This function is implemented in the scientific
python packages SciPy (scipy.stats.bayes_mvs — SciPy website. Available: http://www.scipy.
org/. Accessed 2014 Dec 11).

Fig. 3 shows the mean RMSE values soil moisture at the covered area by observation (in-
cluding 95% confidence intervals) for open loop run and the other six assimilation scenarios of
1_Obs, 5_0bs, 9_Obs, 16_Obs, 25_0bs and 36_Obs for depths of 5 cm, 10 cm, 20 cm, 30 cm

o
o
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o
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Figure 3. Mean RMSE values of covered area soil moisture for open loop run (CLM) and 6 assimilation strategies of 1_Obs,5_Obs,9_Obs, 16_Obs,
25_0Obs and 36_0Obs for depths of 5 cm, 10 cm, 20 cm, 30 cm, and 50 cm.

doi:10.1371/journal.pone.0116435.9003

PLOS ONE | DOI:10.1371/journal.pone.0116435 January 30, 2015 10/20


http://www.scipy.org/
http://www.scipy.org/

@‘PLOS | ONE

Soil Moisture Estimation with Observation Localization

RMSE - Non-Covered (m”™3/m~™3)

0.08

0.07

0.06

0.05

0.04

0.03

0.02

and 50 cm, respectively. It is clear that the soil moisture profiles of the covered grid area was
improved for all scenarios compared with the open loop run (CLM). Because only one local ob-
servation was assimilated for each grid cell at the covered area, the results of different scenarios
were same. The RMSE values were reduced by 35.9%, 37.9%, 41.1%, 42.9%, and 47.1% for
depths of 5 cm, 10 cm, 20 cm, 30 cm and 50 cm, respectively.

Fig. 4 shows the RMSE values of soil moisture where the observations did not cover. The re-
sults differ from those of Fig. 3. If five or nine local observations were assimilated, the results
of uncovered grid cells were improved obviously. The reductions of RMSE value for scenario
1_Obs are 31.8%, 33.0%, 36.7%, 41.4% and 46.2% for depths of 5 cm, 10 cm, 20 cm, 30 cm
and 50 cm, respectively. The reductions of RMSE value for scenario 5_Obs are 35.0%, 36.2%,
39.3%, 42.9% and 47.6% for depths of 5 cm, 10 cm, 20 cm, 30 cm and 50 cm, respectively. The
reductions of RMSE value for scenario 9_Obs are 35.2%, 36.3%, 39.3%, 42.7% and 46.7% for
depths of 5 cm, 10 cm, 20 cm, 30 cm and 50 cm, respectively. The results of scenario 5_Obs
were quite similar to the results of scenario 9_Obs. The results of scenario 9_Obs in upper lay-
ers are better than that of scenario 5_Obs. If more than 9 local observations were assimilated,
the results become worse than less local observations.

Fig. 5 plots the soil moisture mean RMSE values for open loop run (CLM) and the other six
assimilation scenarios of 1_Obs, 5_Obs, 9_Obs, 16_Obs, 25_0Obs and 36_Obs for depths of
5 cm, 10 cm, 20 cm, 30 cm and 50 cm at basin scale. From these results, we can see that the
overall impacts of different numbers of local brightness temperature observations used in OL
on the soil moisture estimation for the whole catchment. Like the separate results in Fig. 4,
both scenario 5_Obs and scenario 9_Obs improved the soil moisture estimation similarly.
These results are better than that of the scenario 1_Obs. The RMSE values of scenario 9_Obs

CLM 1.0bs 5 0bs 9 Obs 16 Obs 25 Obs 36 Obs

Figure 4. Mean RMSE values of uncovered area soil moisture for open loop run (CLM) and 6 assimilation strategies of 1_Obs, 5_Obs, 9_Obs,
16_0Obs, 25_Obs and 36_Obs for depths of 5 cm, 10 cm, 20 cm, 30 cm, and 50 cm.

doi:10.1371/journal.pone.0116435.9004

PLOS ONE | DOI:10.1371/journal.pone.0116435 January 30, 2015 11/20



@‘PLOS | ONE

Soil Moisture Estimation with Observation Localization

0.08

o
o
<

=
o
o

=
o
=

Moisture RMSE (m”™3/m”™3)
o o
o o
(‘}J (@)}

0.02

CLM

1 0bs 5 0bs 9 Obs 16 Obs 25 Obs 36 Obs

Figure 5. Mean RMSE values of whole catchment soil moisture for open loop run (CLM) and 6 assimilation strategies of 1_Obs,5_Obs, 9_Obs,
16_0Obs, 25_Obs and 36_Obs for depths of 5 cm, 10 cm, 20 cm, 30 cm, and 50 cm.

doi:10.1371/journal.pone.0116435.9005

were reduced by 35.6%, 37.2%, 40.2%, 42.8%, 39% and 46.9% for depths of 5 cm, 10 cm, 20 cm,
30 cm and 50 cm, respectively.

We can see from Fig. 5 that the OL analysis was further improved when more local observa-
tions were involved in assimilation for the uncovered model grid cells, but with an upper
bound of 9 local observations. These results demonstrated the positive impacts of the horizon-
tal correlated observations on the uncovered grid cells. Moreover, the soil moisture profile at
the grid cells without observations could be improved using the OL analysis scheme. The stan-
dard deviation of the RMSE values for the 5 cm depth of difference scenarios are plotted in
Fig. 3, Fig. 4 and Fig. 5. The error bar of 16_Obs, 25_Obs and 36_Obs became larger than
1_Obs, 5_Obs and 9_Obs. This results are consistent with the average RMSE values.

Fig. 6 shows the soil moisture RMSE values for reference run, open loop run, and the scenario
of 9_Obs at the basin scale. The reductions of RMSE values are very clear at the non-forest area
and forest area when one local observation is used in the assimilation of each model grid cell. If
9 local observations were used, the RMSE values decrease further from the last column of Fig. 6.

Fig. 7 plots the averaged soil moisture of three months for reference run, open loop run, and
the scenario of 9_Obs at the basin scale. These figures show the improvements of the soil mois-
ture spatially. It is obvious that the soil moisture results for depths of 10 cm, 30 cm and 50 cm
of scenario 9_Obs are closer to the reference run (Truth) than the open loop run (CLM). In
order to compare the soil moisture pattern quantitatively, the Hausdorff distance (HD) be-
tween the open loop run and the reference run, and between the scenario 9_Obs and the refer-
ence run were calculated, respectively. The HD measures the spatial similarity of points in two
finite sets [63]. Lower HD values mean high similarity. The HD values of soil moisture for
open loop run at 10 cm, 30 cm and 50 cm are 0.66, 0.60, and 0.55, respectively. The HD values
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Figure 6. The basin scale soil moisture RMSE values for reference run (Truth), open loop run (CLM), and the assimilation strategy of 9_Obs at
depths of 10 cm, 30 cm, and 50 cm.

doi:10.1371/journal.pone.0116435.9006

of soil moisture for scenario 9_Obs at 10 cm, 30 cm and 50 cm are 0.47, 0.31, and 0.28, respec-
tively. Based on these HD values, we can see that the soil moisture spatial pattern of 9_Obs
bocame closer to the reference than the open loop run.

Discussion

Due to the spatial availability of the measurements, it is very common that all model grid
cells cannot be measured at the same observation time. Thus, the question of how to do data

PLOS ONE | DOI:10.1371/journal.pone.0116435 January 30, 2015 13/20



o ®
@ ) PLOS | ONE Soil Moisture Estimation with Observation Localization

L L L L

51.2°N - 51.2°N{ o = ' ' 51.2°N -
CLM-10cm 9_Obs-10cm
51°N 51°N 51°N -
50.8°N 50.8°N 50.8°N -
50.6°N 50.6°N 50.6°N -
50.4°N - 50.4°N I 50.4°N-
6°E 6.2°E  6.4°E  6.6°E 6°E 6.2°E  6.4°E  6.6°E 6°E 6.2°E  64°E  6.6°E
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
51.2°N{ o ' ‘ ' I 512N e o ' ' 512N o = ' ' -
Truth—30cm CLM-30cm 9 Obs-30cm
51°N 51°N 51°N
50.8°N - 50.8°N - 50.8°N -
50.6°N 50.6°N 50.6°N
50.4°N L 50.4°N L 50.4°N
6°E 6.2°E  6.4°E  6.6°E 6°E 6.2°E  6.4°E  6.6°E 6°E 6.2°E  6.4°E  6.6°E
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
e j i i A p— i 3 i " i ; 2 )
Truth=50cm CLM-50cm 9 Obs-50cm
51°N b 51°N 51°N
50.8°N - b 50.8°N 50.8°N -
50.6°N - b 50.6°N- 50.6°N
50.4°N - I 50.4°N- L 50.4°N-
6°E 6.2°E  64°E  6.6°E 6°E 6.2°E  6.4°E  6.6°E 6°E 6.2°E  6.4°E  6.6°E
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05

Figure 7. The basin scale average soil moisture for reference run (Truth), open loop run (CLM), and the assimilation strategy of 9_Obs at depths of
10 cm, 30 cm, and 50 cm.

doi:10.1371/journal.pone.0116435.9007

assimilation for the model grid cells without observations has been proposed, and studies have
paid more attention to the spatial horizontal transfer of observations in data assimilation. The
studies proved that the model states where the observations were not available could be up-
dated using the local correlated observations. In this study: (1) the geostatistical semivariogram
model was used to fit the microwave brightness temperature data and analyze the spatial corre-
lation characteristics of observation. This is different from the commonly used subjective cor-
relation function and constant spatial correlation range; (2) the derived spatial correlation
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model and correlation range at each assimilation step were combined with LETKF and OL to
update the model grid cells without observations.

The local correlated observations needed to be chosen for each model grid cell before the
data assimilation in OL and LETKF. However, this step is very subjective in the previous stud-
ies. Moreover, the subjective distance-dependent function is also needed in the OL. We tried to
use the geostatistical analysis to obtain a more reasonable representation of this subjective dis-
tance-dependent function. This function determines which observations can be used in the
analysis for each model grid cell based on the spatial correlation of observation data. The objec-
tive of spatial correlation analysis is to choose the relevant observations for each grid cell, not
to model the spatial error correlation. Generally, we assigned a uniform observation error for
simplicity because of the limited information on observation error.

For the model grid cells covered by the observation we only used one local observation in
the assimilation, because we found that more local observations could deteriorate the assimila-
tion results for the covered grid cell. However, for the grid cells not covered by the observation,
the above results show that more local observations involved in the assimilation could be use-
ful, but with the upper bound of 9 local observations. In data assimilation it is not necessary to
have observations for each grid cell. However, we need to know how to use the neighboring ob-
servations to update the uncovered grid cells and how many observations could be trusted and
assimilated for each model grid cell. If we have a lower number of observations (compared
with the number of model grid cells), the observations located at different local surrounded
grid cells could then be used for the assimilation of each model grid cell because of the spatial
horizontal correlation contained in the background error covariance.

The results of spatial correlation analysis also depend on the geostatistical semivariogram
fitting methods used in the study. In this study, the methods provided by the R package geoR
were used to fit the geostatistical semivariogram. Moreover, the spatial correlation imposed on
the atmospheric forcing data could also influence the localization results. The semivariogram
models used in our experiments were assumed to be isotropic for simplicity. It is an ideal situa-
tion in the horizontal spatial correlation statistics. An anisotropic model, however, may be
more reasonable because of the intrinsic spatial heterogeneity contained in the soil moisture
distribution. Moreover, the horizontal spatial correlation structures of the soil moisture and re-
mote sensing observations are different in different observation scales. Thus, the horizontal
spatial correlation pattern can be thoroughly exploited.

Usually the constant localization lengths were used in the LETKF. Many works have studied
the sensitivity of analysis error to the localization scale in LETKF and have shown that there is
an optimal localization length in LETKF [31,33,34], and showed that the optimal localization
length is dependent on the ensemble size and observing network [33]. If the shorter or larger
localization length were to be used in LETKEF, the results would become worse. Larger localiza-
tion length also means that more observations would be used in the assimilation, so more ob-
servations would increase the analysis errors. In our study, we used the different localization
length which was estimated at each assimilation step. The increased number of observations is
similar to the way of increasing the localization length. In the background error covariance
localization (CL), which was used in ETKF, there was also an optimal localization length [31].
Beyond this length scale, the analysis error will be increased. The increased analysis error is
due to the spurious covariance when more observations were involved. With larger localization
length, the system could be dominated by the spurious observation increments that prevent it
from converging to the truth [31,34].

Generally, the land data assimilation is assumed to be used to remove the white noise of
land surface model, but the model bias sometimes cannot be removed because of the biased
input. In this study, we assumed that the soil sand fraction, soil clay fraction, and organic
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matter density were biased, and the biased soil moisture mainly due to the soil parameters. The
assumption was we also could not get the high quality of sand, clay, and organic data for each
model grid cell in reality. It was difficult to make the model simulation with white noise only
because of the biased soil parameters. Moreover, we could not obtain enough measurement
data to calibrate the distributed land surface model at the catchment scale. For example, when
the land surface model is used in irrigated farmland, the simulated soil moisture will be biased
without the irrigation as input data. However, the benefit of land data assimilation is to remove
this bias with observation.

Only two layers of soil properties could be obtained from the global soil database. There is
no general rule to interpolate these two layers’ soil data into 10 layers. In this study, the linear
interpolation was used to prepare 10 layers of CLM soil properties. This would make the soil
moisture of difference layers highly correlated. The soil moisture of the deep layers can be easi-
ly updated based on the correlation between the deep layer and surface layer. Therefore, the
synthetic experiment could overestimate the performance of assimilation.The applicability of
the proposed local analysis scheme is only validated at the microscale catchment where the
soil moisture horizontal spatial correlation can be relevant and the local analysis can be clearly
beneficial. The possible extension of this methodology to the mesoscale assimilation of the
satellite microwave observation remains to be verified. The results indicate a preliminary
framework for combining the LETKF with the geostatistical horizontal spatial correlation
representation. The spatial resolution of the L-band microwave brightness temperature data
used in this study is higher than the common available microwave sensors, such as SMOS mis-
sion [5] and SMAP mission [4]. Many ongoing studies are trying to downscale the coarse mi-
crowave brightness temperature data [64] or soil moisture product for the catchment scale
application [65,66,67,68]. To assimilate the coarse microwave brightness temperature data at
catchment scale, a prior downscaling is needed. If the spatial patter of soil moisture is con-
trolled by the precipitation mainly, and the land surface model (or hydrological model) can
simulate the spatial pattern of soil moisture well, then the prior downscaling of coarse soil
moisture is not necessary, in which the data assimilation can be used to downscale and assimi-
late the coarse soil moisture product successfully [69]. For many cases, however, the spatial
pattern of soil moisture is influenced by the irrigation, and moreover the large-scale irrigation
data are not available for the modeling generally. Then the model cannot catch the spatial pat-
tern of soil moisture, and the coarse soil moisture also cannot catch the spatial pattern of fine
scale soil moisture. For this case, we need to use more prior knowledge (such as the Normalized
Difference Vegetation Index—NDVI, Temperature Vegetation Dryness Index—TVDI) to
downscale the coarse soil moisture [67] or brightness temperature [64] before assimilation. In
this study, we assumed that the high-resolution downscaled microwave brightness temperature
data were available for data assimilation application.

Conclusions

The synthetic brightness temperature assimilation was carried out at catchment scale with the
land surface model CLM, and considered the spatial availability of the L-band microwave re-
mote sensing under forest area. The perturbed atmospheric forcing and soil parameter were
used to describe the model uncertainties. The horizontal spatial correlation characterizations
of microwave brightness temperature data were fitted using the geostatistical semivariogram
and incorporated into LETKF analysis to solve the problem of spatial availability of observa-
tions by means of OL. The selection of local correlated brightness temperature observations in
OL considered the observations located in a local region surrounding the model grid cell to be

PLOS ONE | DOI:10.1371/journal.pone.0116435 January 30, 2015 16/20



@‘PLOS | ONE

Soil Moisture Estimation with Observation Localization

assimilated, and depended on the observational spatial correlated characteristics, which was
modeled using the geostatistical semivariogram fitting methods.

Six separate assimilation scenarios were carried out to evaluate the performance of the com-
bination of the OL and the geostatistical spatial correlation representation in soil moisture
estimation. The first scenario was 1_Obs, in which the model grid cells were updated with no
more than 1 nearest observation; the second was the scenario 5_Obs, in which the model grid
cells were updated with no more than 5 local observations; the third was the scenario 9_Obs, in
which the model grid cells were updated with no more than 9 local observations; similarly no
more than 16, 25, or 36 local observations were evaluated in different assimilation scenarios of
16_Obs, 25_0bs, and 36_Obs. We incorporated the local observation selection and OL to up-
date all the model grid cells with available correlated observations surrounding the analysis
grid cells in all cases. From the results we can conclude that more local brightness temperature
data assimilated will improve the estimation of model grid cells without observation data, but
with an upper bound of 9 local observations in this case. The use of local analysis in the micro-
wave brightness temperature data assimilation has proven to correct the model errors in the
soil moisture profile at the catchment scale.

This study demonstrates the potentials of OL and geostatistical spatial correlation represen-
tation to improve the soil moisture analysis using the L-band microwave brightness tempera-
ture data, which cannot cover the study area fully in space due to the effects of forest. The
geostatistical distance-dependent functions have been adopted to analyze the horizontal spatial
correlation characteristics of the L-band microwave brightness temperature data. The finding
of 9 local observations is case dependent. The optimal number of local observations needs to
be investigated for the specific application, because the spatial correlation characteristics will
change along the changing environmental conditions. Moreover the model subsurface physics
of water vertical movement also influences the results of deep layers assimilation [59].

This scheme will also be helpful in minimizing the errors in the spatial registration that will
result in spatial mismatch of remote sensing images. Because of the spatial mismatch of remote
sensing data, it will be useful to find many local surrounded observations instead of the exact
nearest observation to be used in data assimilation. Another approach to handle the spatial
availability of observations is to do the spatial interpolation before data assimilation, such as
the kriging method [36]. However, there are also spatial registration errors in the remote sens-
ing products [70]. The results of these errors will make it difficult to find the exact nearest ob-
servation for each model grid cell. Thus, the OL approach provides us the opportunity to
bypass the spatial registration errors.
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