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Stroke, a disease with a sudden onset and high morbidity and mortality rates, is
difficult to treat in the clinic. Traditional Chinese medicine has become increasingly
widely used in clinical practice. Modern pharmacological studies have found that Radix
Astragali has a variety of medicinal properties, i.e., immunoregulatory, antioxidative, anti-
cancer, anti-diabetes, myocardial protective, hepatoprotective, and antiviral functions.
This article reviews the protective effect and mechanism of astragaloside IV, which
is extracted from Radix Astragali, on stroke, discusses the cerebroprotective effect
of astragaloside IV against ischemia-reperfusion-related complications, offers insight
into research prospects, and expands the idea of integrating traditional Chinese and
Western medicine treatment strategies and drugs to provide a theoretical reference for
the clinical treatment of cerebral ischemia-reperfusion injury and the improvement of
stroke prognosis.
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INTRODUCTION

Stroke has a high incidence and is the main cause of death worldwide. Restoration of cerebral blood
supply as soon as possible, i.e., reperfusion, is currently the best method for protecting the brain
against ischemic injury. Recombinant tissue plasminogen activator (rtPA), which is the only FDA-
approved treatment for ischemic stroke, has a significant time-dependent therapeutic effect. rtPA is
most effective when administered within 90 min before symptoms appear (Lansberg et al., 2009),
and the prognosis of elderly patients and patients with severe stroke treated with rtPA is still poor
(Saposnik et al., 2013). Due to the injury caused by reperfusion and the narrow 4.5 h therapeutic
window of rtPA, few patients are suitable for rtPA treatment. In clinical practice, only approximately
3% of patients can be treated with rtPA (Armstead et al., 2010). If rtPA is administered after beyond
the therapeutic window thrombolysis, the risk of hemorrhagic transformation and fatal edema due
to cerebral ischemia-reperfusion injury is elevated (Shafi and Levine, 2010).

Astragaloside IV, a monomer extracted from Radix Astragali (Figure 1; Li et al., 2019), protects
brain tissue by inhibiting the expression of peripheral benzodiazepine receptors in the ischemic
penumbra and reducing apoptosis. It can also regulate M1/M2 microglia/macrophage polarization
and improve the inflammatory response in the ischemic penumbra area, thus protecting brain
tissue. Astragaloside IV can ameliorate memory impairment and neuroinflammation in mice
with bilateral common carotid artery occlusion by decreasing the expression of Toll-like receptor
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FIGURE 1 | Chemical structure of Astragaloside IV.

(TLR)4 and its downstream receptor proteins, including
MyD88, TRIF, and TRAF6, and inhibiting the phosphorylation
of NF-κB. In addition, astragaloside IV exerts a protective
effect on neural stem cells by inhibiting the JNK/C-Jun
pathway through miR-138. Other researchers have shown that
astragaloside IV can protect the brain against ischemia-
reperfusion injury by reducing the permeability of the
blood-brain barrier (BBB) under pathological conditions
by upregulating Bal-2 expression and downregulating Bax,
caspase-3, BIP, CHOP, P-PERK, and P-eif2α expression,
thereby reducing endothelial cell apoptosis and inhibiting
endoplasmic reticulum stress. Recently, some scholars
have confirmed the ability of astragaloside IV to cross the
BBB through computational studies, and model analysis
has verified the ability of astragaloside IV to cross the
BBB (Stȩpnik and Kukula-Koch, 2020). This lays the
foundation for the clinical application of astragaloside
IV in the future.

MECHANISM UNDERLYING THE
AMELIORATION OF
ISCHEMIA-REPERFUSION INJURY BY
ASTRAGALOSIDE IV

There are many mechanisms of ischemia-reperfusion
injury: ischemia-induced neuronal apoptosis, oxidative
stress (Chan, 1996), BBB damage (del Zoppo and Mabuchi,
2003), leukocyte adhesion to vessel walls (del Zoppo et al.,
1991), parenchymal infiltration (Zhang et al., 1994a,b),
hemorrhagic transformation, and inflammatory responses
triggered by ischemia and exacerbated by reperfusion (Jean
et al., 1998; Lindsberg and Grau, 2003; Liu et al., 2011).
Several studies have shown that astragaloside IV can alleviate

brain injury caused by ischemia-reperfusion through multiple
pathways (Table 1).

Ischemia-Induced Neuronal Apoptosis
Glutamate-releasing enzyme-mediated excitotoxicity is the main
cause of ischemic brain injury (Tymianski, 2011). Elevation
of glutamate concentrations in the ischemic area of the brain
activates neuronal N-methyl-D-aspartate receptor (NMDAR),
mediates extracellular calcium influx, and increases intracellular
calcium concentrations, and intracellular calcium triggers the
apoptosis cascade, leading to cell dysfunction (Lai et al., 2014).
Glutamate stimulation induces dissociation of mitochondrial
hexokinase II (HK-II) from mitochondria, resulting in impaired
mitochondrial function, as evidenced by opening of the
mitochondrial permeability transition pore (mPTP) (Nederlof
et al., 2014), collapse of the mitochondrial membrane potential,
and decreased neuronal mitochondrial oxygen consumption,
accompanied by apoptosis, oxidative DNA damage, PAR
formation (Alano et al., 2004), and nuclear translocation of
apoptosis-inducing factor (AIF), which is indicative of dependent
cell death (Yu et al., 2006). Moreover, calcium overload is
an important link between apoptosis and neuronal necrosis.
Extracellular calcium can be absorbed and transported to
mitochondria during ischemia-reperfusion injury, increasing
mitochondrial permeability and promoting oxidative reactions
and apoptosis (Yin et al., 2020). CaSR, a G-protein-coupled
receptor, plays an important role in maintaining calcium
homeostasis and regulating calcium influx (Lu et al., 2010;
Figure 2).

Astragaloside IV can preserve mitochondrial HK-II, reduce
the release of proapoptotic proteins and AIF, and subsequently
protect neurons from apoptosis and cell death by promoting
the binding of Akt to HK-II, thus activating Akt to protect
mitochondrial HK-II, improving the activity of glycolysis, and
protecting hexokinase (Li et al., 2019). It has been found that
during cerebral ischemia-reperfusion, the protein expression of
CaSR and calcium influx increase. Astragaloside IV can inhibit
the protein expression of CaSR after ischemia-reperfusion injury
to reduce calcium reflux (Du et al., 2021). Radix Astragali exerts
a protective effect not only on neurons but also against ischemic
apoptosis of neural stem cells. Previous studies have found that
ischemia and hypoxia promote neural stem cell proliferation
through a feedback mechanism. Stem cell viability increases after
2 h of ischemia and hypoxia. However, with the prolongation
of ischemia and hypoxia, stem cell viability decreases in a time-
dependent manner (Li et al., 2007). It has been found that
the expression of miR-138 is increased in neural stem cells
exposed to hypoxia. miR-138, which plays a critical role in
promoting the growth and survival of self-renewing tumor-
initiating cells, was previously identified as a molecular marker
of glioma stem cells (GSCs) (Chan et al., 2012). It has also
been reported that the JNK/C-Jun pathway mediates the effect
of miR-138 on hypoxia-induced myocardial apoptosis (He et al.,
2013). In a recent study, a 50% decline in stem cell viability
was observed after an 8-h ischemic preconditioning regimen.
Studies have shown that pretreatment of rat neural stem cells
with 2.5 or 5 mg/ml Astragalus polysaccharides for 2 h before
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TABLE 1 | Protective effect and mechanism of astragaloside IV against cerebral ischemia-reperfusion injury.

No. Study
object/model

Test indicator Mechanism Effect References

1 OGD (+) Number of surviving
cells
HK-II expression
p-Akt expression
(-) Glutamate concentration
TUNEL staining
DAPI staining
PAR expression

(+) Akt phosphorylation
(+) Akt binding to HK-II

(+) Hexokinase activity
Mitochondrial HK-II
(-) Release of proapoptotic
proteins and
apoptosis-inducing factor (AIF)

Li et al., 2019

2 MCAO
SD rats
OGD
PC12 cells

(+) Cell viability
(-) Apoptosis rate of PC12
cells
Caspase-3 expression
Calcium concentration
CaSR expression

(-) CaSR expression (-)reduce calcium reflux Du et al., 2021

3 Hypoxia-
treated neural
stem cells in
SD rats

(+) Cell viability
Bcl-2 expression
miR-138 expression
(-) Apoptosis rate
Caspase-3 expression
Caspase-9 expression
Bax expression
p-JNK expression
p-c-Jun expression
p-p38MAPK expression

(+) miR-138 expression
(-) JNK/p38 MAPK pathway

(+) Cell survival
Anti-apoptotic factor
expression
(-) Apoptosis rate
Pro-apoptotic factor expression

Zheng and
Zhao, 2018

4 C57BL/6 mice (+) Cell survival rate
Nrf2 mRNA and protein
expression
HO-1 mRNA and protein
expression

(+) Nrf2/HO-1 pathway (+) Expression of Nrf2 in nuclei
Nrf2 nuclear translocation rate
HO-1 expression
(-) Expression of Nrf2 in
cytoplasm

Huang et al.,
2014

5 OGD (+) Cell viability
ATP levels
JC-1 expression
p-PKA expression
p-CREB expression
(-) LDH levels
ROS levels
Caspase-3 expression

(+) PKA/CREB pathway (+) Nerve cell viability
(-) Release of LDH
Fragmentation of neuronal
fibers and cell bodies
Expression of caspase-3

Xue et al., 2019

6 MCAO
Bend.3 cells
C57BL/6 mice

(+) ZO-1 expression
Nrf2 expression
HO-1 expression
NQO1 expression
TEER
Occludin expression
CLDN5 expression
(-) BBB permeability
ROS levels
VCAM-1 expression
IL-1β expression
TNF-α expression

(+) Nrf2/HO-1 pathway (+) Expression of tight junction
protein
(-) VCAM-1 expression
Adhesion of monocytes to
vascular endothelial cells

Qu et al., 2009;
Li et al., 2018

7 MCAO (+) Neurological score
(-) Infarct size
MPO levels
TNF-α expression
IL-1β expression
Number of
CD11b/CD18-positive
neutrophils
ICAM-1 expression
NF-κB expression

/ (-) TNF-α and IL-1b production
Levels of NF-κB
Proportion of
CD11b/CD18-positive
neutrophils
Expression of intercellular
adhesion molecule-1 (ICAM-1)

Li et al., 2012

(Continued)
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TABLE 1 | (Continued)

No. Study
object/model

Test indicator Mechanism Effect References

8 BV-2 microglial
cells

(+) Cell viability
IL-10 expression
Arg-1 expression
(-) NO expression
IL-1β expression
IL-6 expression
TNF-α expression
IL-4 expression
TLR4 expression
MyD88 expression
NF-êB expression
iNOS expression

(-) TLR4/MyD88/NF-B
pathway

(+) Expression of
anti-inflammatory factor (IL-10)
(-) LPS-induced M2 to M1
transition in microglia
NO production
Expression of proinflammatory
factors (IL-6, TNF-α)

Yu et al., 2019

9 MCAO
SD rats

(+) PPARγ mRNA
expression
PPARγ protein expression
Number of
CD206+/Iba1+(M2) cells
Number of BrdU+/NeuN+
cells
Number of BrdU+/GFAP+
cells
Number of BrdU+/vWF+
cells
(-) Number of
CD16/32+/Iba1+ (M1) cells

(+) PPARγ pathway (+)M1 microglia/macrophages
convert to M2
microglia/macrophages

Li et al., 2021

FIGURE 2 | Astragaloside IV can preserve mitochondrial HK-II and subsequently protect neurons from apoptosis and cell death by promoting the binding of Akt to
HK-II, which activates Akt and protects mitochondrial HK-II, improving glycolysis, and protecting hexokinase (Springer).
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treatment can increase cell survival, decrease the apoptosis rate,
decrease the expression of proapoptotic factors, and increase the
expression of antiapoptotic factors. In this study, the mechanism
under the effect of Astragalus polysaccharides was also discussed.
miR-138 expression was significantly elevated in the Astragalus
polysaccharide-treated group compared with the control group,
and the expression of phosphorylated JNK and c-Jun was
decreased. In contrast, the protective effect of Astragalus
polysaccharides on ischemic neural stem cells was abolished
after miR-138 inhibitor treatment, suggesting that the protective
effect of Astragalus polysaccharides on ischemic neural stem
cells is achieved through upregulation of miR-138 expression
in NSCs exposed to hypoxia and inhibition of the JNK/C-
Jun pathway (Zheng and Zhao, 2018). This finding provides
an experimental basis for the treatment of perinatal hypoxic-
ischemic encephalopathy (HIE) with Astragalus polysaccharides.

Oxidative Stress
After cerebral ischemia-reperfusion, the large number of free
radicals produced by the brain have a severely damaging effect on
nerve cells, and inhibition of the oxidative stress response is an
important means for preventing ischemic injury. AREs are cis-
regulatory elements in the promoter regions of many important
antioxidant genes. Nrf2, as a transcription factor, regulates the
basic and induced expression of a large number of antioxidant
genes by binding to AREs and is one of the key regulators of
endogenous antioxidant defense (Kensler et al., 2007). Studies
have shown that activation of the Nrf2/ARE pathway increases
the nuclear localization of Nrf2; induces the expression of
Nrf2/ARE-dependent genes such as HO-1, NQO-1, and SRXN-1;
and attenuates cerebral ischemic injury (Zhang et al., 2017).

A comparison of the reactive oxygen species (ROS) levels
in an OGD model before and after the administration of
astragaloside IV inhibitors explicitly showed that astragaloside
IV can inhibit the accumulation of ROS and that this effect
is particularly evident at an astragaloside IV concentration of
50 µM. Real-time PCR showed that when the concentration of
astragaloside IV is increased, the expression of the Nrf2/ARE-
dependent genes HO-1, NQO-1, and SRXN-1 increases in a
dose-dependent manner in an OGD model. After lentiviral
shRNA-mediated inhibition of Nrf2 in cortical neurons, the
scavenging effect of astragaloside IV on ROS is significantly
inhibited, showing that the Nrf2/ARE pathway is required for
the antioxidative and neuroprotective effects of astragaloside
IV against OGD (Gu et al., 2015). Furthermore, astragaloside
IV combined with ginsenoside Rg1 or ginsenoside Rb1 and
notoginseng R1, which are ineffective when used alone, can
activate the Nrf2/HO-1 signaling pathway to a greater extent after
cerebral ischemia-reperfusion to downregulate Nrf2 expression
in the cytoplasm, upregulate Nrf2 expression in the nucleus,
increase the nuclear translocation rate, and increase HO-1
mRNA and protein expression; thus, the antagonistic effect
of astragaloside IV against ischemia-reperfusion and oxidative
stress injury is enhanced when the drug is combined with
these agents (Huang et al., 2014). This provides meaningful
guidance for combining drugs in the clinic to reduce their
adverse effects and increase their safety. Can astragaloside

FIGURE 3 | Antioxidative stress mechanism of astragaloside IV.

alleviate neuronal oxidative stress after ischemia-reperfusion
through other mechanisms? A previous study revealed that
astragaloside IV acts as a key regulator of NO and angiogenesis
through the JAK2/STAT3 and ERK1/2 pathways (Wang et al.,
2013). In a recent study, astragaloside IV was shown to
activate the JAK2/STAT3 signaling pathways, while the JAK2
inhibitor AG490 was found to reverse JAK2/STAT3 activation
and the neuroprotective effects of astragaloside IV during OGD/R
(Xu et al., 2020).

Abnormal energy metabolism after cerebral ischemia causes
mitochondrial damage, resulting in decreased respiration,
excessive ROS production, adenosine triphosphate (ATP)
depletion (Fiskum et al., 1999; Perez-Pinzon, 2004), and
inhibition of the PKA-CREB signaling pathway. The PKA-
CREB signal transduction pathway can promote the survival,
regeneration and differentiation of neural cells, and its
downstream protein UCP-2 can reduce the mitochondrial
membrane potential, resulting in mild mitochondrial decoupling
and thus reducing ROS production. However, the exact
mechanism by which UCP-2 regulates ROS production remains
unclear (Ježek et al., 2018). Recently, the “decoupled survival”
hypothesis, which is associated with UCP-2, was further
confirmed in models of traumatic brain injury and ischemic
stroke (Normoyle et al., 2015).

A previous study found that astragaloside IV might activate
the PKA/CREB pathway, increase the mitochondrial membrane
potential, and reduce the release of ROS in an OGD
model. In contrast, it increases the release of ATP and
improves mitochondrial function. Furthermore, astragaloside IV
significantly reverses the release of LDH during OGD and the
fragmentation of neuronal fibers and cell bodies, reduces the
expression of caspase-3, and improves neuronal viability (Xue
et al., 2019; Figure 3).

Astragaloside IV increases SOD activity and SOD mRNA
expression in astrocytes. Supplementation with astragaloside IV
after OGD/R exposure promotes the expression of oxidation
and apoptosis markers, and further research has demonstrated
that astragaloside IV inhibits the CXCR4 receptor and decreases
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FIGURE 4 | Astragaloside IV reverses microglial polarization, reduces the inflammatory response, ameliorates neuronal injury, and promotes the regeneration of
neurons and the repair of brain tissue.

the activation of the p-JNK/JNK pathway, thus suppressing the
expression of Bax/Bcl-2 and ultimately promoting Nrf2/Keap1
signaling (Yang et al., 2021).

Damage to the Blood-Brain Barrier
The BBB consists of a continuous layer of brain capillary
endothelial cells, pericytes, basement membranes, and astrocytes.
Tight junctions between endothelial cells form metabolic and
physical barriers, which limit the movement of macromolecules
between the blood and the brain to maintain homeostasis in
the brain (Kago et al., 2006). Following ischemic stroke, tight
junction complexes in vascular endothelial cells are altered,
causing increased paracellular solute leakage. Regulation of
transporters and changes in intracellular transport mechanisms
lead to disturbances in the transcellular transport of certain
substances (Abdullahi et al., 2018). Therefore, protecting the BBB
facilitates neuronal recovery after ischemia-reperfusion injury.
Hemorrhagic stroke, such as aneurysmal hemorrhage, can lead to
increased intracranial pressure, reduced cerebral blood flow, total
cerebral ischemia, cerebral edema, blood component spillage,
and decomposition product accumulation; in addition, it can
damage the BBB, expose neural tissues to neurotoxic blood
and immune cells and result in the development of delayed
vasospasm, which leads to poor prognosis of stroke patients. This
pathophysiological process may be mediated by TLR4, netrin-
1, lipocalin-2, tropomyosin-associated kinase receptor B and the
tyrosine kinase ErbB4 (Li et al., 2020).

Lanthanum staining was performed in an ischemia model
and a sham operation model to compare the localization of
lanthanum. Lanthanum was found in the sham operation group,
while it was found in the perivascular tissues in the ischemia
group. These results confirm that ischemia leads to dysfunction
of the BBB. In the astragaloside IV-treated group, lanthanum

was mainly confined to the cerebral capillaries, suggesting that
astragaloside IV may maintain the integrity of the BBB in rats
subjected to ischemia-reperfusion. A decrease in Evans blue
leakage and an increase in the expression of the tight junction
protein ZO-1 have also been reported, strongly supporting this
idea (Qu et al., 2009). Other studies have found that astragaloside
IV has an effect on BBB endothelial cells and inhibits the
deterioration of inflammation to reduce the adhesion of JAWS
II cells to bEnd.3 cells, decrease the expression of cellular
VCAM-1, and increase the expression of cellular tight junction
proteins (e.g., zo-1, occludin, and CLDN5). However, Nrf2 siRNA
abolishes these effects of astragaloside IV and its protective
effect on tight junctions, indicating that the protective effect of
astragaloside IV against LPS-induced BBB endothelial cell injury
is dependent on the Nrf2 signaling pathway (Li et al., 2018).

Moreover, experiments have demonstrated that astragaloside
IV reduces the expression of TLR4 in rats with experimental
arachnoid hemorrhage, thus reducing the activation of Nrf2
and decreasing the occurrence of delayed cerebral spasm (Ma
et al., 2018). This finding suggests that astragaloside-IV also
has a protective effect against delayed cerebral spasm after
hemorrhagic stroke.

Leukocyte Adhesion to the Vascular Wall
and Cerebral Parenchymal Infiltration
Inflammatory injury plays an important role in cerebral
ischemia-reperfusion injury, and cerebral blood flow is
interrupted after arterial occlusion. The acute inflammatory
response is caused by neutrophil adhesion to ischemic
endothelial cells (Chou et al., 2004; Yilmaz and Granger,
2010). Integrins and the immunoglobulin superfamily play a
major role in this process (Huang et al., 2006). CD11b/CD18 is
one of the major integrins in neutrophils and can recognize and
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TABLE 2 | Protective effect and mechanism of astragaloside IV against cerebral ischemia-reperfusion complications.

No. Study
object/model

Test indicator Mechanism Effect

1 MCAO (+) Neurological score
(-) Brain water content
BBB permeability
MMP-9 expression
AQP4 expression

(-) MMP-9 and AQP4 expression (+) BBB function
(-) Water enters astrocytes from microvessels
Cerebral edema

2 BCCAO (+) SOD levels
(-) IL-1β expression
TNF-α expression
MDA levels
ROS levels
TLR4 expression
TRIF expression
TRAF6 expression
p-P6 expression
NLRP3 expression
Caspase-1 expression
Iba1 expression

(-) TLR4/MyD88, TRIF, and TRAF6/NF-κB
pathways

(+) Memory function
(-) Excessive activation of astrocytes and
microglia
Inflammatory reaction

bind to immunoglobulin superfamily members on the surface of
endothelial cells (Springer, 1990; de Fougerolles et al., 1991; Shen
et al., 1998).

Astragaloside IV has been found to play a protective
role by significantly reducing the production of TNF-a and
IL-1b, decreasing the level of NF-κB, significantly reducing
the proportion of CD11b/CD18-positive neutrophils, and
downregulating the expression of intercellular adhesion
molecule-1 (ICAM-1). However, interestingly, this protective
effect is not significantly correlated with the dose of astragaloside
IV (Li et al., 2012).

Inflammatory Reaction in the Ischemic
Penumbra
M1 microglia/macrophages can be activated by factors such as
LPS, IFN-γ, TNF-α, hypoxia, and amyloid β, which increase
the synthesis of proinflammatory factors, chemokines, and
oxidative metabolites and worsen the inflammatory response,
thereby aggravating neuronal injury and death. In contrast,
M2 microglia/macrophages inhibit the inflammatory response
by secreting cytokines and neurotrophic factors and promote
neuronal repair and regeneration (Kanazawa et al., 2017).
Activated microglia/macrophages can be detected in the border
zone of ischemic lesions 30 min after permanent middle cerebral
artery occlusion (MCAO) (Qin et al., 2019), and it has been
demonstrated that the expression of the TLR family members
TLR2, TLR4, and TLR9 increases after ischemic brain injury.
Elevated TLR4 expression leads to activation of the NF-κB
pathway and activates microglia/macrophages, allowing them
to undergo the transition from the M2 phenotype to the
M1 phenotype (Zhao et al., 2017). In addition, peroxisome
proliferator–activated receptor γ (PPARγ), which is widely
expressed in macrophages and microglia, is a member of the
nuclear receptor superfamily and a ligand-activated transcription
factor (Straus and Glass, 2007). PPARγ agonists have been
reported to increase M2 microglial/macrophage polarization
and promote neurogenesis and angiogenesis after cerebral

ischemia-reperfusion (Kinouchi et al., 2018). Therefore, the
PPARγ receptor is considered an effective therapeutic target for
a variety of central nervous system diseases, including ischemic
stroke (Cai et al., 2018).

It was found that 5 µmol/l astragaloside IV can
inhibit the LPS-induced transition from the M2
phenotype to the M1 phenotype, NO production, and the
expression of proinflammatory factors (IL-6, TNF-α) in
microglia/macrophages but increase the expression of anti-
inflammatory factors (IL-10). Immunofluorescence staining
revealed that the expression of TLR4, MyD88, and NF-κB is
elevated under stimulation with LPS and that this change can
be inhibited by astragaloside IV, suggesting that astragaloside
IV exerts its effect through the TLR4/MyD88/NF-κB signaling
pathway (Yu et al., 2019). It was recently reported that
astragaloside IV is a natural PPARγ agonist (Wang et al.,
2017). It was found that astragaloside IV increases the M2
polarization of microglia/macrophages and the expression of
PPARγ mRNA and protein. Immunofluorescence staining
showed that after administration of the PPARγ antagonist
T0070907, the number of CD16/32+/Iba1+ (M1) cells increases,
the number of CD206+/Iba1+ (M2) cells decreases, the
numbers of BrdU+/NeuN+, BrdU+/GFAP+, and BrdU+/vWF+
cells dramatically decreases and astragaloside IV-mediated
neurogenesis and angiogenesis is blocked. The results indicate
that astragaloside IV promotes M2 microglial/macrophage
polarization through the PPARγ pathway (Li et al., 2021)
(Figure 4).

PROTECTIVE EFFECT AND MECHANISM
OF ASTRAGALOSIDE IV AGAINST
CEREBRAL ISCHEMIA-REPERFUSION
COMPLICATIONS

Astragaloside IV also exerts protective effects against cerebral
ischemia-reperfusion complications (Table 2).
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Cerebral Edema
Cerebral edema after intravenous thrombolysis is a rare
but potentially fatal complication (Cruz-Flores et al.,
2001) that occurs mainly due to cytotoxic edema resulting
from ischemia and vasogenic edema aggravated by
reperfusion. The aforementioned disturbance of the BBB
caused by ischemia-reperfusion can lead to vasogenic
brain edema and play an important role in the course
of brain edema. Matrix metalloproteinases (MMPs) are
proteolytic enzymes, and MMP-9 expression after cerebral
ischemia leads to degradation of several important structural
proteins, thus impairing the microvascular wall, increasing
microvascular permeability, and disrupting the BBB (Dong
et al., 2009; Liu et al., 2009). AQP4 is a member of the
transmembrane aquaporin family and the water/glycerol
transporter family (Agre, 2006), and AQP4 gene deficiency
ameliorates brain edema caused by cerebral ischemia
(Manley et al., 2000).

Studies have found that astragaloside IV can reduce
the expression of MMP-9 and AQP4, ameliorate BBB
dysfunction, and reduce cerebral edema complications. An
experiment also revealed that there is no significant correlation
between the protective effect and dose of astragaloside IV
(Li et al., 2013).

Memory Impairment
There is a direct relationship between hypoperfusion in the
hippocampal CA1 region and memory impairment after
cerebral ischemia (Zhang et al., 2010). BBB breakdown
(Winkler et al., 2014) and neurovascular dysfunction (Winkler
et al., 2015) are also significant pathological features of
Alzheimer’s disease. In addition, neuroinflammation also
plays an important role in impairing cognitive performance
during the progression of neurodegenerative diseases
(Harrison et al., 2014).

Astragaloside IV significantly decreases TLR4 expression
and the synthesis of downstream adaptor proteins, including
MyD88, TRIF, and TRAF6, and then suppresses NF-κB
phosphorylation while inhibiting the excessive activation of
astrocytes and microglia, alleviating the inflammatory response,
and significantly improving memory impairment in mice
with bilateral common carotid artery occlusion (BCCAO)
(Li et al., 2017). Moreover, as a natural PPARγ agonist,
astragaloside IV reduces the formation of neuritic plaques
and Aβ plaques by inhibiting the expression of BACE1 to
improve cognitive performance in Alzheimer’s disease patients
(Wang et al., 2017).

LIMITATIONS AND PROSPECTS

The mechanism underlying the cerebroprotective effect
of astragaloside IV against ischemia-reperfusion is clear.
Astragaloside significantly ameliorates injury caused by
ischemia-reperfusion at multiple levels. Astragaloside IV
acts on multiple signaling pathways to relieve neuronal
apoptosis, oxidative stress, BBB injury, leukocyte adhesion

to the vascular wall and parenchymal infiltration caused by
ischemia-reperfusion and the inflammatory response triggered
by ischemia and aggravated reperfusion to improve brain
injury and complications after ischemia-reperfusion and
improve prognosis.

However, most of the data have been obtained in cells,
rats and mice, as there have been few clinical trials on the
effect of astragaloside IV in stroke patients. We searched
for articles on clinical trials of astragaloside IV and found
that astragaloside IV has ameliorative effects on skeletal
muscle injury (Jiang et al., 2020), precancerous lesions of
gastric carcinoma (Zhang et al., 2018), liver fibrosis (Wang
et al., 2021), induction of natriuresis (Ai et al., 2008),
and heart failure (Luo et al., 1995). However, there are
very few clinical publication on the protective effect of
astragaloside IV on the brain. In addition, astragaloside IV was
shown to have a dose-independent effect on some aspects of
injury, such as leukocyte adhesion to the vascular wall and
parenchymal infiltration.

Astragaloside IV has a certain toxic effect at specific doses, as
10 µmol/l astragaloside IV significantly decreases cell viability
(Yu et al., 2019), but the appropriate dose of astragaloside
IV can achieve a certain synergistic effect when administered
in combination with other drugs such as ligustrazine (Cai
et al., 2014) and notoginseng (Huang et al., 2017), providing
guidance for clinical practice. Clinically, the use of rtPA for
the treatment of acute ischemic stroke is limited not only
by the small therapeutic window but also by the occurrence
hemorrhagic transformation during ischemia-reperfusion injury.
The incidence of spontaneous hemorrhagic transformation
after acute ischemic stroke ranges from 13 to 43%, although
autopsy results have suggested that the incidence is as high
as 38–71%, and the use of rtPA increases this risk by 10-
fold (Zhu et al., 2015). However, there is little evidence
showing whether astragaloside IV exerts a cerebroprotective
effect against intracerebral hemorrhage injury. We need to
more comprehensively explore the cerebroprotective effect of
astragaloside IV against ischemia-reperfusion through a more
in-depth study of astragaloside IV.
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