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Abstract: Obesity and Type 2 Diabetes Mellitus (T2DM) are interrelated chronic conditions
whose global prevalence continues to rise, posing significant clinical and socioeconomic
challenges. Their pathophysiological intersection—commonly referred to as “diabesity”—is
sustained by a complex interplay of mechanisms, including visceral adipose tissue inflam-
mation, macrophage polarization, disrupted insulin signaling, and adipokine imbalance.
These processes contribute to chronic low-grade systemic inflammation, impair pancreatic
β-cell function, and exacerbate glucose intolerance. This review critically explores the
mechanistic connections between obesity and T2DM, with a focus on recent advances
in pharmacological therapies—such as GLP-1 receptor agonists, SGLT2 inhibitors, and
dual GIP/GLP-1 receptor agonists—alongside evidence-based lifestyle modifications and
bariatric procedures. By integrating current translational and clinical findings, we aim to
provide a comprehensive perspective to support the development of more effective and
individualized treatment strategies for diabesity.

Keywords: obesity; Type 2 Diabetes Mellitus; visceral adiposity; lifestyle intervention;
physical activity

1. Introduction
Obesity and Type 2 Diabetes Mellitus (T2DM) are among the most common chronic

diseases worldwide, and their coexistence is increasingly recognized as a significant public
health concern. The term “diabesity” has been introduced to describe this phenomenon,
emphasizing both their co-occurrence and the underlying mechanisms they share. These
include low-grade systemic inflammation, insulin resistance, β-cell dysfunction, and adi-
pose tissue dysregulation [1–3]. According to the World Health Organization (WHO), more
than one billion people worldwide are currently classified as obese, and this number is
expected to continue increasing in the coming years. At the same time, approximately 90%
of the 537 million individuals with diabetes have T2DM, and projections suggest that this
figure could rise to 783 million by 2045 [4,5]. This dual epidemic affects countries across all
economic levels, including high-income as well as low- and middle-income nations [6–9],
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and carries major public health and economic consequences. The World Obesity Atlas 2023
estimates that by 2035 the annual global economic burden of obesity will reach USD 4.32
trillion, which will account for nearly 3% of the world's gross domestic product (GDP).
The relationship between obesity and T2DM is influenced by a complex network of en-
docrine and metabolic mechanisms. Visceral adiposity contributes to insulin resistance
through changes in adipokine secretion, an increase in pro-inflammatory cytokines, and
impairment of insulin signaling [10]. This condition places considerable metabolic stress
on pancreatic β-cells. Initially, these cells compensate by producing more insulin, resulting
in hyperinsulinemia; however, over time, they lose function, leading to persistent hyper-
glycemia [11,12]. Beyond their shared etiology, the convergence of these conditions has
important therapeutic implications. While lifestyle changes remain the cornerstone of clini-
cal management, pharmacological and surgical interventions are increasingly designed to
target shared pathophysiological mechanisms [13]. Some anti-obesity drugs also improve
glycemic control, while many antidiabetic medications—especially insulin—can cause
weight gain, complicating disease management [14,15]. Despite the extensive literature on
the relationship between obesity and T2DM, a comprehensive synthesis that systematically
integrates epidemiological trends, shared mechanisms, and evolving therapeutic strategies
is still lacking. This review aims to address this gap through a structured and critical
analysis of current evidence. Section 2 explores recent epidemiological trends; Section 3
examines the main pathophysiological mechanisms, focusing on chronic inflammation,
insulin resistance, and β-cell dysfunction; and Section 4 reviews current therapeutic ap-
proaches, including pharmacological, surgical, and lifestyle-based interventions. The final
section discusses future perspectives and clinical implications.

2. Epidemiological Data on Obesity and T2DM
2.1. Obesity

Obesity is a significant global health challenge that varies widely across different
geographic regions, demographic groups, and socioeconomic contexts. This condition is
multifactorial, resulting from a complex interplay of genetic, behavioral, environmental,
and sociocultural factors [16,17]. The WHO defines obesity as an excessive accumulation of
body fat that poses an increased risk to health [18,19]. Over recent decades, the global preva-
lence of obesity has increased markedly, especially in low- and middle-income countries
that are experiencing rapid urbanization and nutritional transitions. While body mass index
(BMI) is the standard metric for monitoring populations, additional indicators such as waist
circumference (WC) and fat distribution are increasingly used to improve cardiometabolic
risk assessment [20]. WC and waist-to-hip ratio (WHR) are established markers of central
adiposity and are considered superior to BMI for predicting cardiometabolic risk, including
T2DM and cardiovascular disease [21,22]. International guidelines recommend the routine
measurement of WC and WHR, with sex-specific cut-off values as women and men differ
in fat distribution patterns [23]. After menopause, women show increased central fat
accumulation, further elevating their cardiometabolic risk [24]. The inclusion of WC and
WHR in clinical assessment is especially important for contextualizing the high prevalence
of obesity among women. Recent estimates based on BMI criteria indicate that over 1 bil-
lion individuals were living with obesity in 2022, which corresponds to 12% of the global
population. This marks a significant increase since the 1990s, with adult obesity more than
doubling and adolescent obesity quadrupling. Projections from the World Obesity Atlas
2023 suggest that by 2035 more than 50% of the global population will be classified as over-
weight or obese, with obesity alone expected to impact 24% of individuals [5,25]. Obesity
trends reveal significant demographic and regional disparities. Historically, obesity has
been most common in high-income countries; however, the most rapid increases are now
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occurring in low- and middle-income nations. In the United States, over 42% of adults and
an increasing proportion of youth are affected [19,26]. Similar patterns can also be observed
in southern Europe [27,28]. Gender disparities are consistent across regions, with a higher
prevalence of obesity among women [29]. Childhood obesity remains a critical public
health issue, as it strongly predicts adult obesity and is associated with premature mortality
and the early onset of cardiometabolic diseases [30]. In several countries, especially those
with high levels of social inequality, obesity prevalence has increased despite public health
interventions. Socioeconomic disadvantage plays a significant role in obesity risk, impact-
ing both urban and rural populations. Individuals living in low-resource settings often
lack access to healthy food options, safe spaces for physical activity, and protection from
the aggressive marketing of ultra-processed foods [31–33]. Rural and peri-urban areas are
increasingly affected, partly due to shifts in food systems and a decline in traditional dietary
practices [19,34]. While genetic predisposition contributes to individual susceptibility [35],
the primary drivers of the obesity epidemic remain environmental and behavioral factors.
These include the increased consumption of ultra-processed foods, physical inactivity, poor
sleep, and chronic psychosocial stress [36–41]. Obesity is strongly linked to a wide range of
health issues, which can vary by age and severity. Among adults with obesity, the preva-
lence of hypertension increases significantly—from 29% in individuals aged 18 to 39 years
to 89.4% in those aged 65 and older. Similarly, dyslipidemia affects 28.1% of younger adults
and rises to 88% in older adults. Additionally, more than 35% of older individuals with
obesity are affected by prediabetes. Mental health issues such as depression and anxiety
are also notably prevalent, especially among younger adults [25,42–45]. Obesity signifi-
cantly raises the risk of various health conditions, including T2DM, cardiovascular disease,
metabolic dysfunction-associated fatty liver disease (MAFLD), obstructive sleep apnea,
osteoarthritis, multiple types of cancer (such as colorectal, breast, and endometrial), and
neurocognitive disorders [46]. Furthermore, obesity has been associated with structural
and functional brain alterations, cognitive decline, and psychological disturbances, with
some studies highlighting a potential “obesity paradox” in elderly populations [47–53].
Severe obesity, defined as a BMI of 40 or higher, currently impacts over 9% of adults in
the United States and is more commonly seen in women [25]. Addressing obesity requires
coordinated strategies at the population level. Effective measures include taxing sugar-
sweetened beverages, implementing food labeling regulations, restricting advertising, and
promoting urban planning initiatives that encourage healthier environments [54]. A com-
prehensive understanding of obesity, including changing trends in high-risk populations,
is essential for developing targeted, equitable, and sustainable prevention strategies. This
is especially important given obesity's significant role in the global rise of T2DM, which
will be discussed in the following section [55].

2.2. T2DM

T2DM is a chronic and progressive metabolic disorder characterized by insulin resis-
tance, chronic low-grade inflammation, and the gradual dysfunction of β-cells [56]. Closely
associated with obesity, T2DM has become a significant global health concern, particularly
in light of rapid urbanization, dietary changes, and an aging population. This condition
places an increasing clinical and economic burden on healthcare systems worldwide, signifi-
cantly contributing to healthcare costs [57,58]. Current projections indicate a 12.2% increase
in the global adult population with diabetes, rising from 537 million in 2021 to 783 million
by 2045 [12,59,60]. The Western Pacific region has the highest number of cases, totaling
215 million, followed by Southeast Asia with 107 million, and the Middle East and North
Africa with 85 million. In 2021, approximately 41,600 new cases of T2DM were diagnosed
in individuals under 20 years old, with the highest incidences reported in China, India, and
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the United States [60]. Being overweight and obesity are significant modifiable risk factors
for health issues. Visceral fat promotes the release of pro-inflammatory cytokines and
adipokines, which disrupt insulin signaling and contribute to systemic insulin resistance
and hyperinsulinemia [61]. Clinical guidelines emphasize weight loss as a key strategy in
both the prevention and management of T2DM. A reduction of 5–7% in body weight can
significantly lower the risk of diabetes, while a loss exceeding 15% may lead to remission
in select individuals [62]. The increasing prevalence of T2DM is driven by the higher
consumption of ultra-processed foods, sedentary lifestyles, and insufficient public health in-
frastructure [63]. Although T2DM was previously more common in high-income countries,
the most rapid increases are now occurring in low- and middle-income nations undergoing
rapid epidemiological transitions. Additionally, the incidence is rising among children
and adolescents, especially in populations with high obesity rates [27]. There are also
gender-based differences, with a slightly higher prevalence observed among men in some
studies [64]. Socioeconomic disparities play a significant role in determining disease burden.
Individuals with lower incomes or educational levels are at a higher risk of health issues
due to their limited opportunities for physical activity and access to nutritious foods and
healthcare services [65,66]. Additionally, racial and ethnic minorities are disproportionately
affected by T2DM, which reflects a combination of genetic vulnerability, socioeconomic
disadvantages, and inequities in healthcare access [67]. Notably, these regional and socioe-
conomic disparities similarly affect the occurrence and management of both obesity and
diabetes, not only by limiting access to early diagnosis and effective, evidence-based treat-
ment, but also by influencing preventive strategies and long-term health outcomes [25,68].
T2DM is linked to a wide range of chronic complications. Cardiovascular disease affects
approximately 32% of patients and remains the leading cause of death in this popula-
tion [69,70]. Diabetic kidney disease impacts 30% to 50% of individuals with T2DM and is
the primary cause of end-stage renal disease worldwide [71]. Retinopathy is prevalent in
roughly 25% of patients and is a major cause of vision loss [72]. Additionally, lower-limb
amputations are a serious complication, with more than 154,000 performed annually in the
U.S., primarily due to diabetic foot disease [73]. T2DM is influenced by both modifiable
and non-modifiable risk factors. Modifiable factors include obesity, physical inactivity,
poor diet, and smoking, while non-modifiable factors encompass genetic predisposition,
family history, and ethnicity [74]. To effectively address the global burden of T2DM, coor-
dinated and multisectoral responses are necessary. Effective strategies should prioritize
early detection through screening, structured lifestyle interventions, and equitable access to
evidence-based care. Policy initiatives aimed at improving diet quality, increasing physical
activity, and enhancing public awareness are also essential [75–78]. A nuanced understand-
ing of the epidemiology of T2DM—particularly its intersection with social, behavioral, and
structural determinants—is crucial for designing targeted and sustainable interventions.

3. The Relationship Between Obesity and T2DM
A significant body of research indicates a bidirectional and multifaceted relationship

between obesity and Type 2 Diabetes Mellitus (T2DM). Excess visceral fat triggers metabolic
and immune changes that contribute to insulin resistance, pancreatic β-cell dysfunction,
and systemic inflammation, thus promoting the onset of T2DM. This section examines
the main mechanisms connecting obesity and T2DM, with a focus on chronic low-grade
inflammation, immune cell activation, macrophage polarization, and key intracellular
signaling pathways.
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3.1. Chronic Low-Grade Inflammation and Immune Cell Recruitment

Obesity is characterized by chronic, low-grade inflammation, which plays a pivotal
role in the pathogenesis of insulin resistance and T2DM [79,80]. In individuals with obesity,
the expansion and hypertrophy of white adipose tissue (WAT) lead to hypoxia, cellular
stress, and the increased secretion of pro-inflammatory mediators such as tumor necrosis
factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and C-reactive protein
(CRP) [81,82]. These factors recruit and activate macrophages and lymphocytes, creating
a local inflammatory environment that exacerbates adipocyte dysfunction and systemic
insulin resistance. Macrophages are central players in obesity-associated inflammation.
In lean individuals, adipose tissue macrophages (ATMs) display an M2-like phenotype
and contribute to tissue homeostasis. Obesity induces a shift toward the pro-inflammatory
M1 phenotype, which perpetuates immune activation and cytokine secretion [83]. This
M1 polarization is driven by signals such as interferon-gamma (IFN-γ) from T-helper
1 (Th1) lymphocytes and by adipocyte-derived danger-associated molecular patterns
(DAMPs). Toll-like receptor 4 (TLR4), expressed on ATMs, senses various ligands in-
cluding lipopolysaccharides (LPSs), free fatty acids, oxidized low-density lipoproteins
(oxLDLs), and retinol-binding protein 4 (RBP4) [84,85]. TLR4 activation promotes nuclear
factor-kappa B (NF-κB) signaling, leading to the transcription of pro-inflammatory cy-
tokines [86,87]. The accumulation of M1 macrophages is associated with increased activity
in signaling pathways such as those of c-Jun N-terminal kinase (JNK), inhibitor of nu-
clear factor kappa-B kinase (IKKβ), extracellular signal-regulated kinase (ERK), and p38
mitogen-activated protein kinase (MAPK), which impair insulin sensitivity by disrupting
insulin receptor substrates (IRS-1/2) [88]. Conversely, in lean WAT, a predominance of
M2 macrophages is maintained, supported by eosinophils and regulatory T (Treg) cells
that secrete anti-inflammatory cytokines (e.g., interleukin-4, IL-10, IL-13, and IL-33) [89,90].
IL-33 enhances M2 polarization and improves insulin sensitivity in obese models [91].
Adiponectin, secreted by functional adipocytes and supported by M2 macrophages, further
contributes to immunometabolic homeostasis [92]. The M1/M2 balance is dynamically reg-
ulated by the tissue microenvironment. Transitional “M3” phenotypes have been proposed,
reflecting macrophage plasticity [93,94]. In lean WAT, the M2:M1 ratio is approximately
4:1, while in obesity, this ratio is reversed [95]. This shift supports the progression from
metabolic health to insulin resistance and T2DM [96].

3.2. Macrophage Polarization and Immunometabolic Remodeling

As previously described, macrophage polarization plays a central role in the im-
munometabolic remodeling that characterizes obesity. Recent evidence underscores the re-
markable plasticity of adipose tissue macrophages, including transitional “M3” phenotypes
and context-dependent functional states [93,94]. The predominance of M1 macrophages
in obesity amplifies local cytokine production and perpetuates insulin resistance [83,97].
Clinically, these mechanistic insights have led to the development and adoption of targeted
therapeutic strategies. Interventions that promote M2 polarization—such as thiazolidine-
diones, glucagon-like peptide-1 (GLP-1) receptor agonists, and peroxisome proliferator-
activated receptor gamma (PPARγ) agonists—have demonstrated efficacy in reducing
adipose tissue inflammation and improving insulin sensitivity in both preclinical and
clinical settings [98–100]. Additionally, lifestyle interventions and novel immunomodula-
tory approaches are being actively explored to restore immune homeostasis and improve
metabolic outcomes [101,102]. Thus, a mechanistic understanding of macrophage polarization
has become integral to translating basic research into clinical practice, informing the iden-
tification and development of innovative therapeutic targets for obesity and T2DM. These
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findings underscore the relevance of macrophage plasticity and polarization not only for the
pathophysiology of diabesity but also for advancing patient-centered therapeutic approaches.

3.3. Intracellular Signaling Pathways Linking Inflammation to Insulin Resistance

Chronic inflammation in obesity activates multiple intracellular pathways that impair
insulin signaling, notably via the activation of kinases (JNK, IKKβ, ERK1/2, p38 MAPK)
which mediate the serine phosphorylation of insulin receptor substrates and disrupt the
phosphoinositide 3-kinase (PI3K)/Akt cascade, essential for glucose uptake [88]. The activa-
tion of TLR4 and downstream signaling through NF-κB and MAPKs leads to the increased
production of pro-inflammatory cytokines [87,103]. The NLRP3 inflammasome further
promotes IL-1β maturation and sustains tissue inflammation, while experimental evidence
suggests that modulating these pathways can restore insulin sensitivity [104–107]. These
interconnected mechanisms reinforce the feedforward loop between immune activation
and metabolic dysfunction in obesity and T2DM. Table 1 summarizes the principal im-
munometabolic mechanisms linking obesity and T2DM. The complex interplay of chronic
inflammation, macrophage polarization, and intracellular signaling within adipose tissue
underlies the pathophysiological connection between obesity and insulin resistance in
T2DM. Insights into these mechanisms provide the foundation for targeted therapeutic
interventions, as detailed in the next section.

Table 1. Key immunometabolic mechanisms linking obesity and T2DM.

Mechanism Description Clinical Implications

Chronic Inflammation
Persistent low-grade
inflammation in
adipose tissue

Promotes insulin resistance
and β-cell dysfunction

Macrophage Polarization

Shift from
anti-inflammatory (M2) to
pro-inflammatory (M1)
macrophages

Increases inflammation;
potential therapeutic target

Adipokine Dysregulation Altered secretion of leptin,
adiponectin, resistin

Drives insulin resistance,
T2DM progression

Insulin Signaling
Impairment

Disruption of insulin
receptor and PI3K/Akt
pathway by inflammation

Impaired glucose uptake,
hyperglycemia

Ectopic Lipid
Accumulation

Fat deposition in liver,
muscle, pancreas

Lipotoxicity; worsened
metabolic control

TLR4/NF-κB/NLRP3
Activation

Innate immune/
inflammasome activation
in adipose tissue

Sustains inflammation and
insulin resistance

4. Treatments for Obesity and T2DM
4.1. Lifestyle Modifications as Non-Pharmacological Treatment for Obesity and T2DM

Lifestyle modifications constitute the cornerstone of non-pharmacological strategies
for both the prevention and management of obesity and T2DM. Achieving glycemic con-
trol, improving metabolic parameters, and—where feasible—inducing remission of T2DM
requires a structured, individualized, and multidisciplinary approach, encompassing nutri-
tional counseling, behavioral support, increased physical activity, and sustained weight
management programs [108]. Although most effective when initiated at the time of di-
agnosis, these interventions remain clinically valuable throughout the disease course. In
individuals with newly diagnosed T2DM, adherence to a calorie-restricted diet has demon-
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strated substantial benefits. In a randomized controlled trial, participants following a
low-calorie regimen lost an average of 10 kg, and 46% achieved disease remission (glycated
hemoglobin [HbA1c] < 6.5%) after one year without pharmacological glucose-lowering
or antihypertensive therapy [109–111]. These outcomes highlight the critical role of inten-
tional weight loss in improving glycemic control and reducing pharmacologic requirements.
Weight reduction in individuals with obesity—regardless of diabetes status—has been as-
sociated with improvements in blood pressure, lipid profiles, systemic inflammation, and
overall mortality. From a nutritional standpoint, diets rich in refined carbohydrates, sat-
urated and trans fats, and ultra-processed foods have been consistently associated with
increased insulin resistance and adiposity [112–116]. In contrast, dietary patterns empha-
sizing complex carbohydrates, unsaturated fats, dietary fiber, and lean protein are linked
to improved glycemic regulation and reduced cardiometabolic risk [113,117–121]. Fiber-
rich foods, in particular, delay gastric emptying, enhance satiety, attenuate postprandial
glycemia, and promote weight loss. Micronutrient deficiencies—especially in vitamin D,
magnesium, and chromium—are frequently observed in individuals with obesity or T2DM
and may contribute to impaired metabolic control [122,123]. Moreover, dietary metabolites
such as branched-chain amino acids (BCAAs), lipid intermediates, and short-chain fatty
acids exert complex effects on insulin sensitivity and metabolic homeostasis [124,125]. Ex-
cessive alcohol consumption may further exacerbate metabolic dysfunction by increasing
visceral adiposity, disrupting appetite regulation, and impairing insulin signaling path-
ways [126]. Current clinical guidelines recommend an energy deficit of 500–750 kcal/day,
which generally results in a weight loss of 0.5–0.75 kg per week. Standard caloric targets
typically range from 1200 to 1500 kcal/day for women and 1500 to 1800 kcal/day for men,
with adjustments based on individual characteristics and comorbidities [127]. Among
dietary models, the Mediterranean diet—characterized by 50–60% carbohydrates, 15–20%
protein, and approximately 30% unsaturated fats—has demonstrated consistent efficacy
in improving glycemic control and cardiovascular outcomes across diverse populations.
When combined with regular physical activity, it further promotes sustainable weight
loss and enhanced insulin sensitivity [128–133]. Behavioral counseling, structured meal
planning, self-monitoring of food intake, and ongoing education have been shown to
enhance adherence and delay disease progression. When tailored to individuals’ clinical,
psychological, and social profiles, these strategies can be instrumental in achieving durable
T2DM remission [134–138]. Physical activity is an equally fundamental component of
lifestyle intervention. Regular aerobic exercise and resistance training improve insulin
sensitivity, enhance fat oxidation, reduce visceral adiposity, and improve cardiorespiratory
fitness [139–141]. Incorporating moderate-intensity activities into daily routines—such as
stair climbing or recreational sports—further supports long-term weight maintenance and
glycemic stability. At the molecular level, exercise promotes glucose uptake by skeletal
muscle through both insulin-dependent and insulin-independent mechanisms. Muscle con-
traction activates AMP-activated protein kinase (AMPK), which facilitates the translocation
of glucose transporter type 4 (GLUT4) to the plasma membrane, even in insulin-resistant
states [142–146]. As such, physical activity remains a potent therapeutic modality, even
in individuals with advanced metabolic dysfunction. Current international guidelines
recommend that adults with T2DM and obesity engage in at least 150 minutes per week
of moderate-intensity aerobic physical activity (such as brisk walking, cycling, or swim-
ming), ideally spread over at least three days per week with no more than two consecutive
days without activity. Additionally, resistance training involving major muscle groups is
advised at least 2–3 times per week. Flexibility and balance exercises may also be incor-
porated, particularly in older adults. This combination of aerobic and resistance training
has been shown to improve glycemic control, reduce visceral adiposity, and decrease car-
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diovascular risk [147,148]. In summary, lifestyle modifications—including individualized
dietary interventions, regular physical activity, and behavioral support—represent first-line,
evidence-based strategies for managing both obesity and T2DM. Their sustained imple-
mentation, supported by multidisciplinary care and educational resources, is essential to
achieving disease remission, preventing complications, and improving long-term clinical
outcomes and quality of life [149,150].

4.2. Surgical Treatments for Obesity and T2DM

Bariatric and metabolic surgery constitute highly effective therapeutic options for
individuals with obesity and T2DM, particularly when lifestyle interventions and pharma-
cological therapies fail to achieve adequate weight loss or glycemic control [108]. These
procedures have gained widespread clinical endorsement due to their durable impact
on weight reduction, metabolic improvement, and remission of obesity-related comor-
bidities. Comparative studies consistently show that surgical approaches outperform
non-surgical strategies in sustaining long-term weight loss and achieving superior glycemic
outcomes. Although novel pharmacotherapies—such as GLP-1 receptor agonists and
dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 receptor agonists—have
shown promising efficacy, their effectiveness in real-world settings is often limited by high
discontinuation rates and financial barriers [151,152]. In contrast, bariatric surgery exerts
not only restrictive and/or malabsorptive effects but also profound metabolic changes.
These include enhanced insulin sensitivity, elevated circulating bile acids that modulate
glucose homeostasis, and the increased secretion of incretin hormones—particularly GLP-
1—which enhance pancreatic β-cell function and improve glycemic regulation [153]. These
physiological mechanisms contribute to significant rates of T2DM remission, reduced car-
diovascular risk, and decreased all-cause mortality among postoperative patients [154].
Surgical eligibility is primarily determined by BMI and the presence of obesity-related
complications. Current international guidelines recommend bariatric surgery for indi-
viduals with a BMI ≥ 40 kg/m2, or ≥35 kg/m2 in the presence of at least one serious
obesity-associated comorbidity, such as T2DM, metabolic dysfunction-associated fatty liver
disease (MAFLD), or obstructive sleep apnea (OSA) [155,156].

The most commonly performed bariatric procedures include the following:

• Laparoscopic Roux-en-Y gastric bypass (LRYGB): This involves the creation of a small
gastric pouch anastomosed to the jejunum, bypassing the duodenum and proximal
small intestine. This technique combines restrictive and malabsorptive effects.

• Laparoscopic adjustable gastric banding (LAGB): This consists of placing a silicone
band around the proximal stomach to restrict food intake and enhance satiety.

• Laparoscopic sleeve gastrectomy (LSG): This entails a longitudinal resection of the
stomach’s greater curvature, resulting in a tubular, volume-reduced gastric reservoir.

• Biliopancreatic diversion with duodenal switch (BPD-DS): This combines sleeve gastrec-
tomy with a substantial bypass of the small intestine, maximizing malabsorptive effects.

These procedures are endorsed by international bodies, including the International
Diabetes Federation and the American Diabetes Association, as evidence-based treatments
for patients with obesity and T2DM [157]. Despite their efficacy, bariatric surgeries are
associated with risks and require careful long-term management. Postoperative compli-
cations may include anastomotic leakage, gastrointestinal symptoms, and micronutrient
deficiencies—particularly in folate, iron, calcium, zinc, selenium, and both fat- and water-
soluble vitamins—necessitating lifelong monitoring and supplementation [158]. Addi-
tionally, psychosocial challenges may emerge postoperatively, highlighting the need for
integrated multidisciplinary support. Long-term success is contingent upon sustained
behavioral changes, including adherence to dietary recommendations, regular physical
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activity, and continuous medical follow-up. Therefore, comprehensive preoperative assess-
ment is essential and should include medical, nutritional, and psychological evaluations to
ensure patient readiness and long-term commitment to lifestyle modification [159].

4.3. Pharmacological Treatments

T2DM is a chronic metabolic disorder closely linked to obesity, primarily through the
pro-inflammatory activity of visceral adipose tissue, which contributes to the development
and persistence of insulin resistance [160]. Within this pathophysiological framework,
reducing visceral fat mass is among the most effective strategies for improving glycemic
control and mitigating obesity-related metabolic complications, including T2DM [161].
Pharmacological therapy plays a central role in the comprehensive management of both
obesity and T2DM, particularly when lifestyle interventions fail to yield sufficient or sus-
tained clinical benefit. Numerous studies have demonstrated that weight loss in individuals
with coexisting obesity and T2DM leads to significant metabolic improvements, including
enhanced glycemic control, reductions in serum triglycerides and low-density lipoprotein
(LDL) cholesterol, improved blood pressure regulation, and decreased levels of systemic
inflammation and endothelial dysfunction. Even modest weight loss (5–10%) is associ-
ated with measurable reductions in cardiovascular risk and improved physical function
and quality of life. Although lifestyle modification remains the foundation of treatment,
long-term adherence and effectiveness are often limited, especially among individuals with
advanced insulin resistance and impaired metabolic flexibility. Moreover, several tradi-
tional antidiabetic medications, while effective in lowering glycated hemoglobin (HbA1c),
do not address the underlying drivers of obesity and, in some cases, may promote weight
gain—thereby complicating overall disease management. In recent years, the develop-
ment of pharmacological agents with dual efficacy in targeting both hyperglycemia and
excess weight has markedly expanded therapeutic options. These include biguanides
(e.g., metformin), glucagon-like peptide-1 receptor agonists (GLP-1 RAs), and centrally
acting agents that modulate appetite and energy intake. These compounds enhance insulin
sensitivity, improve metabolic regulation, reduce body weight, and lower the long-term
risk of complications associated with both conditions [162]. The following sections provide
an in-depth overview of pharmacological treatments currently available for obesity and
T2DM, with an emphasis on their mechanisms of action, clinical efficacy, and relevance
within an integrated model of metabolic care.

4.3.1. Pharmacological Treatments for Obesity

Several pharmacological agents have been developed to promote weight loss in in-
dividuals with obesity, particularly when lifestyle interventions alone fail to produce
adequate clinical outcomes. One of the most extensively studied compounds is Orlistat, a
gastrointestinal lipase inhibitor that reduces fat absorption by irreversibly binding to the
serine residues of gastric and pancreatic lipases, thereby inhibiting the hydrolysis of dietary
triglycerides into absorbable free fatty acids and monoglycerides [163,164]. The resulting
increase in fecal fat excretion leads to a net caloric deficit.

The XENDOS trial (Xenical in the Prevention of Diabetes in Obese Subjects) demon-
strated that Orlistat, when combined with lifestyle intervention, reduced the incidence
of T2DM by 37.3% over four years in individuals with impaired glucose tolerance—an
effect not observed with lifestyle modification alone [165]. Clinically meaningful weight
loss typically becomes apparent within two months. In the XENDOS trial, individuals
receiving orlistat lost an average of 5.6 kg after six months of therapy, compared to a
mean weight loss of 2.4 kg observed in the placebo group over the same period [166].
Additional benefits include decreases in waist circumference, BMI, total cholesterol, and
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LDL cholesterol. Orlistat is usually administered at 120 mg three times daily with meals.
Common gastrointestinal side effects, such as flatulence and steatorrhea, can be mitigated
by limiting dietary fat intake to less than 30% of total daily calories. Due to its favor-
able safety profile, Orlistat is also approved for adolescents aged 12 years and older with
obesity and T2DM [167]. Another class of anti-obesity agents includes centrally acting
sympathomimetic and antiepileptic compounds, such as the fixed-dose combination of
Phentermine/Topiramate, approved by the U.S. Food and Drug Administration (FDA) in
2012 for long-term weight management [168]. Phentermine, a sympathomimetic amine,
suppresses appetite by enhancing norepinephrine release within the hypothalamus [169].
Topiramate, originally developed as an antiepileptic drug, contributes to weight loss by
increasing energy expenditure, promoting fat oxidation, and modulating appetite-related
neuropeptides, including neuropeptide Y (NPY) and leptin [170]. In clinical trials, the high-
dose formulation (15/92 mg) of Phentermine/Topiramate resulted in a 9.8–11% reduction
in body weight over 56 weeks, accompanied by improvements in glycemic control, lipid
profiles, and blood pressure [171,172]. A third therapeutic option is the combination Nal-
trexone/Bupropion, which targets central appetite regulation and the reward system. Nal-
trexone, a µ-opioid receptor antagonist, enhances pro-opiomelanocortin (POMC) neuron
activity and dampens the hedonic response to food stimuli [173]. While Naltrexone alone
has a limited impact on weight, its combination with Bupropion—a norepinephrine and
dopamine reuptake inhibitor used in the treatment of depression and smoking cessation—
has demonstrated synergistic effects [174–176]. In the Contrave Obesity Research–Behavior
Modification (COR-BMOD) trial, individuals receiving Naltrexone/Bupropion in conjunc-
tion with intensive behavioral therapy experienced a mean weight loss of 15%, compared
to 7.3% in the placebo group receiving behavioral therapy alone [177].

4.3.2. Pharmacological Treatments for T2DM
Biguanides: Metformin

Metformin, a biguanide compound, is the most widely prescribed antidiabetic agent
globally and is considered the first-line pharmacological therapy for T2DM. It remains
the only agent in its class approved by the FDA and is listed among the World Health
Organization’s Essential Medicines, underscoring its established efficacy, favorable safety
profile, and affordability [178–180]. Metformin exerts its glucose-lowering effects primarily
by inhibiting hepatic gluconeogenesis, enhancing peripheral insulin sensitivity, and attenu-
ating postprandial glycemic excursions [181,182]. At the molecular level, its action involves
the inhibition of mitochondrial complex I, which triggers the activation of AMPK, a key
regulator of energy homeostasis [183–185]. AMPK activation promotes glucose uptake,
increases fatty acid oxidation, and suppresses lipogenesis, contributing to overall metabolic
improvement. In the postprandial state, metformin also enhances intestinal glycolysis,
resulting in elevated lactate production. This lactate is subsequently transported to the liver
and utilized in gluconeogenesis. Although seemingly counterintuitive, this mechanism in-
creases energy expenditure and contributes to plasma glucose reduction [186]. Furthermore,
metformin stimulates the endogenous secretion of GLP-1, thereby promoting insulin release
and suppressing glucagon secretion, with additional benefits for glycemic control [187].
Beyond its glycemic effects, metformin is associated with modest but clinically meaningful
weight loss. This effect is thought to be mediated by increased circulating levels of growth
differentiation factor 15 (GDF15), the downregulation of orexigenic neuropeptides such as
neuropeptide Y, and the enhanced expression of leptin receptors in the hypothalamus [188].
Although average weight reduction is limited (approximately 2 kg per year), the drug’s
excellent tolerability and minimal risk of hypoglycemia make it particularly suitable for
overweight or obese individuals with T2DM. Metformin is also frequently used off-label in
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individuals with prediabetes or in those with obesity unresponsive to conventional weight
loss interventions. Several studies have demonstrated its favorable effects on body com-
position, including reductions in both visceral and subcutaneous adipose tissue. Notably,
the Diabetes Prevention Program (DPP) trial reported an average weight loss of 2.1 kg
after one year of treatment, with greater reductions observed among individuals with high
adherence—highlighting the importance of sustained compliance [187].

GLP-1 RAs in Treatment of T2DM and Obesity: Focus on Liraglutide and Semaglutide

Several GLP-1 RAs are approved for the treatment of T2DM, including exenatide,
lixisenatide, dulaglutide, liraglutide, and semaglutide. Among these, liraglutide and
semaglutide are the most extensively studied and are approved for the treatment of both
T2DM and obesity. Other GLP-1 RAs, such as dulaglutide and exenatide, have demon-
strated efficacy in glycemic control but are not specifically indicated for weight management
in obesity. The following section focuses primarily on liraglutide and semaglutide, with
brief reference to other agents when relevant [189–191]. Liraglutide is a once-daily injectable
GLP-1 analog with a half-life of approximately 13 h, enabled by a single amino acid substitu-
tion and the attachment of a fatty acid side chain that promotes albumin binding [192,193].
Peripherally, it delays gastric emptying and stimulates insulin secretion; centrally, it acti-
vates POMC neurons and inhibits NPY expression in the hypothalamus [194]. In addition
to its glucose-lowering properties, liraglutide reduces LDL cholesterol and inflammatory
markers, reinforcing its cardiometabolic benefits. In patients with T2DM, liraglutide 1.8 mg
once daily results in mean HbA1c reductions of 1.0–1.5% and an average weight loss of
2.5–4 kg after 26–56 weeks of treatment (Liraglutide Effect and Action in Diabetes [LEAD]
trials) [195]. For obesity management, liraglutide 3.0 mg once daily is associated with
an average weight loss of 7–9 kg in adults with or without diabetes (Satiety and Clinical
Adiposity–Liraglutide Evidence [SCALE] trials) [196,197]. Semaglutide is available as both
a subcutaneous (0.5–2.4 mg/week) and oral (14 mg/day) formulation. In patients with
T2DM, subcutaneous semaglutide 1.0 mg/week leads to HbA1c reductions up to 1.5–1.8%
and a mean weight loss of 4–6 kg (Semaglutide Unabated Sustainability in Treatment of
Type 2 Diabetes [SUSTAIN] trials) [198]. The higher dose (2.4 mg/week) of subcutaneous
semaglutide, approved for obesity, results in mean weight losses of 10–15% in adults with
obesity, with or without diabetes (Semaglutide Treatment Effect in People with Obesity
[STEP] trials) [199,200]. The oral formulation (14 mg/day) produces HbA1c reductions
of approximately 1.0–1.4% and weight losses of 2–4 kg in patients with T2DM (Peptide
Innovation for Early Diabetes Treatment [PIONEER] trials) [201]. Dulaglutide (0.75–4.5 mg
weekly) and exenatide (twice daily or once weekly) are effective for glycemic control in
T2DM, but their impact on weight loss is generally modest, and they are not specifically
approved for obesity treatment [190,202]. Based on these findings, the FDA approved
semaglutide for the treatment of T2DM. The PIONEER trial program confirmed similar
efficacy for the oral formulation, with 55–80% of participants achieving HbA1c levels
<7% [203–209]. For obesity management, semaglutide has been extensively evaluated in
the STEP trial series. Across STEP 1 to STEP 8, semaglutide 2.4 mg/week consistently
induced significant and sustained weight loss, particularly when combined with lifestyle
interventions [151,152,210–215]. In STEP 8, semaglutide demonstrated superior efficacy
compared to liraglutide in reducing body weight and improving metabolic outcomes [214].
Across the STEP studies, the proportion of individuals achieving ≥5%, ≥10%, and ≥20%
weight loss ranged from 86 to 89%, 67 to 79%, and 32 to 40%, respectively [151,212,215].
In STEP 2, conducted in individuals with T2DM, semaglutide 2.4 mg/week reduced HbA1c
by 1.6%, outperforming the 1.0 mg dose and placebo. The STEP TEENS trial (Semaglutide
Treatment Effect in People with Obesity—Teen study) further demonstrated the safety and
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efficacy of semaglutide in adolescents aged 12–18 years, leading to its regulatory approval
for pediatric use [216]. Collectively, these findings underscore the central role of GLP-1
RAs—especially liraglutide and semaglutide—as cornerstone therapies for both glycemic
control and weight management in patients with T2DM and obesity.

Dual GIP/GLP-1 Receptor Agonists: Tirzepatide

Tirzepatide is the first-in-class dual incretin receptor agonist that simultaneously ac-
tivates both GLP-1 and GIP receptors. By mimicking the physiological actions of these
endogenous hormones, tirzepatide enhances glucose-dependent insulin secretion, im-
proves insulin sensitivity, and induces significant weight loss. Activation of the GLP-1
receptor reduces postprandial glycemia by delaying gastric emptying, stimulating insulin
release, and inhibiting glucagon secretion. It also promotes satiety through hypothalamic
anorexigenic signaling pathways [213]. GIP, secreted by intestinal K-cells in response to
nutrient intake, potentiates insulin secretion and may influence adipose tissue lipid storage.
Importantly, GIP does not stimulate glucagon secretion during hypoglycemia and may
independently modulate appetite and energy intake [210–212]. The dual-receptor activity
of tirzepatide results in synergistic metabolic effects that surpass those of selective GLP-1
receptor agonists, leading to greater improvements in glycemic control and body weight
reduction [214–217]. Tirzepatide has a higher binding affinity for the GIP receptor than for
the GLP-1 receptor, a property that may contribute to its enhanced clinical efficacy [218].
Molecularly, tirzepatide is a 39-amino-acid synthetic peptide (~48 kDa), structurally en-
gineered for prolonged pharmacokinetics. Its key modifications include the following:
(1) the substitution of position 2 with α-amino butyric acid (AABA) to confer resistance
to dipeptidyl peptidase-4 (DPP-4); (2) additional AABA residues to enhance molecular
stability; (3) the conjugation of a C20 fatty acid via a lysine linker, extending the drug’s half-
life to approximately five days and allowing once-weekly subcutaneous administration.
Clinical efficacy has been demonstrated in populations both with and without diabetes, as
shown in the SURMOUNT (Study of Tirzepatide in People with Obesity) and SURPASS
(Study of Tirzepatide in People with Type 2 Diabetes Mellitus) trial programs. In the
SURMOUNT-1 trial, adults with obesity but without diabetes who received tirzepatide
15 mg once weekly for 72 weeks achieved a mean weight loss of 20.9%, compared to 3.1%
with placebo. In SURMOUNT-3, combining tirzepatide 15 mg/week with intensive lifestyle
intervention in adults with obesity (without diabetes) resulted in up to 24.3% mean weight
loss—approaching levels typically observed with bariatric surgery [219–221]. In individu-
als with T2DM, the SURPASS program evaluated tirzepatide at weekly doses of 5, 10, and
15 mg. In SURPASS-1 (T2DM, no background antihyperglycemic therapy), tirzepatide led
to HbA1c reductions of 1.6–2.4% and weight losses of 4.8–11.3% over 26 weeks, compared to
placebo. Notably, over 20% of participants receiving tirzepatide 10–15 mg achieved ≥15%
weight loss, versus only 2% in the dulaglutide group [222,223]. In SURPASS-2, which
compared tirzepatide (5, 10, and 15 mg weekly) to semaglutide 1 mg weekly in patients
with T2DM on metformin, tirzepatide produced greater reductions in HbA1c (up to −2.46%
vs. −1.86%) and body weight (up to −11.2 kg vs. −5.7 kg) over 40 weeks. Similarly, in
SURPASS-3 (patients with T2DM on oral antihyperglycemic agents), tirzepatide (5, 10, or
15 mg weekly) showed superior efficacy to insulin degludec, achieving HbA1c reductions
of up to −2.4% and weight losses of 8–12%, compared to −1.34% HbA1c and less weight
loss with degludec [224–226]. Preclinical studies in diet-induced obese mouse models also
confirmed tirzepatide’s superiority over semaglutide in reducing body weight and caloric
intake [227]. Tirzepatide has received regulatory approval in multiple regions, including
the United States, European Union, United Kingdom, Japan, and several Middle Eastern
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countries. It is currently considered one of the most promising agents for the integrated
management of obesity and T2DM [214–217].

Sodium–Glucose Cotransporter 2 Inhibitors (SGLT2is)

Sodium–glucose cotransporter 2 inhibitors (SGLT2is) are oral antidiabetic agents
that lower plasma glucose levels by blocking the SGLT2 protein in the proximal renal
tubule, thereby increasing urinary glucose excretion. This insulin-independent mech-
anism enhances glycemic control regardless of pancreatic β-cell function and is associ-
ated with modest weight loss and significant cardiovascular and renal benefits in in-
dividuals with T2DM [228–230]. Approved agents in this class include canagliflozin,
dapagliflozin, empagliflozin, and ertugliflozin. These drugs promote the excretion of
approximately 50 to 85 grams of glucose per day, resulting in an estimated caloric loss of
200–340 kcal/day [231–235]. While this glycosuric effect may appear modest in isolation, it
contributes cumulatively to improved metabolic regulation and energy balance. A meta-
analysis of 43 randomized controlled trials reported an average weight loss of 1.88 kg with
SGLT2is compared to placebo [236]. Body composition studies—such as those performed
following 16 weeks of ipragliflozin treatment—indicate that 50–70% of this weight loss
is attributable to fat mass reduction, while fluid loss accounts for 15–35%. Importantly,
the preservation of lean body mass, including skeletal muscle, has been consistently doc-
umented across multiple trials [237–241]. Beyond glucose excretion, SGLT2is appear to
activate additional metabolic pathways, including lipolysis, hepatic glycogenolysis, and
ketogenesis, which enhance metabolic flexibility and promote sustained fat loss [242–244].
These agents also favorably influence adipokine profiles, attenuate oxidative stress, and
reduce ectopic lipid deposition, particularly in myocardial tissue, contributing to improved
cardiometabolic homeostasis [245–248]. SGLT2is can be used as monotherapy or in com-
bination with other antidiabetic agents, such as metformin, pioglitazone, or basal insulin.
Their HbA1c-lowering effect is generally modest (0.4–1.1%), but the cardiorenal protective
properties have shifted their clinical positioning. Current treatment guidelines increasingly
recommend SGLT2is as a first-line therapy for patients with T2DM and established chronic
kidney disease (CKD) or heart failure, irrespective of baseline HbA1c levels [249–256].
While generally well tolerated, SGLT2 inhibitors are associated with an increased risk of
genital and urinary tract infections, which warrants appropriate patient counseling and risk
stratification [257,258]. Given their multifaceted benefits, SGLT2is now occupy a central
role in the integrated management of T2DM, particularly in patients with concomitant
cardiorenal disease.

5. Discussion
Obesity is a multifactorial chronic disease strongly associated with metabolic dysfunc-

tion, particularly insulin resistance and T2DM [259]. According to the WHO, obesity has
reached pandemic proportions, especially in Western countries, while the global prevalence
of T2DM continues to increase, placing a growing burden on healthcare systems. Both con-
ditions substantially elevate the risk of cardiovascular disease and contribute to decreased
quality of life and reduced life expectancy. In this context, the development of effective
and sustainable strategies to address the dual burden of obesity and T2DM—collectively
termed “diabesity”—has emerged as a critical global health priority [260]. These disor-
ders are pathophysiologically intertwined. In individuals with obesity, the expansion
and dysfunction of WAT induce a state of chronic low-grade inflammation that disrupts
immune and metabolic homeostasis [261,262]. This inflammatory environment shifts WAT
immune cell composition from an anti-inflammatory M2 macrophage phenotype—typical
of lean individuals—to a pro-inflammatory M1 profile. The resulting cytokine cascade,
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including TNF-α, IL-6, and CRP, interferes with insulin signaling, primarily through the
serine phosphorylation of IRS-1 and suppression of the PI3K/Akt/mTOR pathway, thereby
reducing GLUT4-mediated glucose uptake. Consequently, targeting visceral adiposity is
essential for disrupting the pathophysiological feedback loop that underlies both obesity
and T2DM. A range of therapeutic strategies have been developed to address this dual
pathology. While lifestyle modification—comprising dietary changes and increased physi-
cal activity—remains the first-line intervention, pharmacological and surgical approaches
are often necessary to achieve or maintain metabolic targets, particularly in advanced
or refractory cases. Among pharmacological options, metformin continues to serve as
the foundational agent in T2DM treatment, owing to its insulin-sensitizing effects and
modest weight-lowering capacity. In recent years, incretin-based therapies—including
GLP-1 receptor agonists such as liraglutide and dual GIP/GLP-1 receptor agonists such
as tirzepatide—have demonstrated robust efficacy in reducing both glycemia and body
weight via complementary mechanisms. Centrally acting agents like naltrexone/bupropion
modulate appetite regulation and reward-related eating behaviors, while orlistat reduces
fat absorption by inhibiting gastrointestinal lipases. SGLT2 inhibitors, which promote
urinary glucose excretion, are associated with moderate but durable reductions in weight
and HbA1c, and offer additional cardiovascular and renal protection [263,264]. For indi-
viduals with severe obesity or suboptimally controlled T2DM, bariatric surgery provides
a highly effective therapeutic option. Procedures such as sleeve gastrectomy, Roux-en-Y
gastric bypass, and biliopancreatic diversion have been shown to reduce visceral adiposity,
improve insulin sensitivity, and, in many cases, induce partial or complete remission of
T2DM [264–266]. Surgical candidacy is typically based on BMI criteria and the presence
of obesity-related comorbidities. Despite these advancements, lifestyle intervention re-
mains the cornerstone of long-term management. Weight loss of 5% or more is associated
with improvements in insulin sensitivity, glycemic control, and cardiovascular risk. Nu-
tritional strategies often aim for daily caloric intakes of 1200–1500 kcal for women and
1500–1800 kcal for men, emphasizing whole grains, vegetables, and unsaturated fats, while
limiting saturated fats and processed foods [127]. Regular aerobic physical activity, totaling
200–300 minutes per week at moderate intensity, enhances insulin-independent glucose
uptake through AMPK activation and GLUT4 translocation [267,268]. However, the abil-
ity to achieve and sustain these lifestyle changes remains a major challenge. Long-term
adherence requires structured behavioral interventions that support motivation, promote
self-monitoring, and foster psychological resilience. Accordingly, an integrated, multidisci-
plinary approach—encompassing nutritional, pharmacological, surgical, and behavioral
strategies—is essential for optimizing long-term outcomes in individuals affected by obesity
and T2DM [267–272].

6. Conclusions
The global increase in obesity and T2DM is a major public health problem with sig-

nificant clinical, economic, and social consequences. These conditions are interconnected
through mechanisms such as visceral fat accumulation, chronic low-grade inflammation,
and insulin resistance, which often appear together in the same individuals. Consequently,
the employment of integrated and patient-centered treatment strategies is imperative.
Despite the fact that lifestyle modifications remain the primary focus of both prevention
and treatment, pharmacological and surgical interventions are frequently necessary for
cases that are advanced or treatment-resistant. Therapeutic options such as GLP-1 receptor
agonists, dual GIP/GLP-1 receptor agonists, SGLT2 inhibitors, and orlistat have signifi-
cantly expanded the available treatments for obesity and Type 2 Diabetes. Additionally,
bariatric surgery can be a highly effective option for carefully selected patients. However,



Healthcare 2025, 13, 1437 15 of 28

the long-term success of these interventions depends on sustained adherence to treatment,
personalized care plans, and multidisciplinary support. It is crucial to tailor treatment to
each individual’s needs in order to optimize outcomes and enhance quality of life. Future
advancements will require ongoing investment in translational research and precision
medicine, as well as efforts to improve the accessibility and affordability of therapies that
target shared metabolic pathways. Importantly, lasting lifestyle changes—supported by
public health initiatives, educational programs, and behavioral interventions—remain the
most scalable and cost-effective strategy for reducing the global impact of obesity and
T2DM. In this context, future clinical practice guidelines should emphasize individualized
care, multidisciplinary management, and long-term patient engagement, while regularly
updating recommendations to incorporate new evidence on pharmacological and surgical
options. Special attention should be given to addressing barriers to care, including socioe-
conomic and regional disparities, in order to ensure equitable access to effective treatments.
Moreover, future research should focus on generating high-quality evidence from large,
multicenter, and longitudinal studies that inform guideline development and improve the
implementation of evidence-based interventions in real-world settings.

Author Contributions: Conceptualization, S.A., A.M. (Antonietta Monda), M.L.M. and M.M.; method-
ology, S.A. and M.L.M.; validation, A.M. (Antonietta Messina), W.S., V.M. and R.P.; writing—original
draft preparation, S.A. and A.M. (Antonietta Monda); writing—review and editing, M.L.M., M.M.
and G.D.M.; visualization, M.C. and W.S.; supervision, M.L.M. and M.M.; project administration,
G.D.M. and M.L.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AABA—α-amino butyric acid
AMPK—AMP-activated protein kinase
ATMs—adipose tissue macrophages
BCAAs—branched-chain amino acids
BPD-DS—biliopancreatic diversion with duodenal switch
BMI—body mass index
CKD—chronic kidney disease
COR-BMOD—Contrave Obesity Research–Behavior Modification
CRP—C-reactive protein
DAMPs—danger-associated molecular patterns
DPP—Diabetes Prevention Program
DPP-4—dipeptidyl peptidase-4
ERK—extracellular signal-regulated kinase
FDA—U.S. Food and Drug Administration
GDF15—growth differentiation factor 15
GIP—glucose-dependent insulinotropic polypeptide
GLP-1—glucagon-like peptide-1



Healthcare 2025, 13, 1437 16 of 28

GLP-1 RA(s)—glucagon-like peptide-1 receptor agonist(s)
GLUT4—glucose transporter type 4
HbA1c—glycated hemoglobin
IKKβ—inhibitor of nuclear factor kappa-B kinase β

IL-1β—interleukin-1 beta
IL-4—interleukin-4
IL-6—interleukin-6
IL-10—interleukin-10
IL-13—interleukin-13
IL-33—interleukin-33
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LAGB—laparoscopic adjustable gastric banding
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LEAD—Liraglutide Effect and Action in Diabetes
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MAPK—mitogen-activated protein kinase
mTOR—mechanistic target of rapamycin
NPY—neuropeptide Y
OSA—obstructive sleep apnea
PIONEER—Peptide Innovation for Early Diabetes Treatment
POMC—pro-opiomelanocortin
PPARγ—peroxisome proliferator-activated receptor gamma
SCALE—Satiety and Clinical Adiposity–Liraglutide Evidence
SGLT2—sodium–glucose cotransporter 2
SGLT2i—sodium–glucose cotransporter 2 inhibitor
STEP—Semaglutide Treatment Effect in People with Obesity
STEP TEENS—Semaglutide Treatment Effect in People with Obesity—Teen study
SURMOUNT—Study of Tirzepatide in People with Obesity
SURPASS—Study of Tirzepatide in People with Type 2 Diabetes Mellitus
T2DM—Type 2 Diabetes Mellitus
Th1—T-helper 1
TNF-α—tumor necrosis factor-alpha
Treg—regulatory T cell
WAT—white adipose tissue
WHO—World Health Organization
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