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Brillouin Optomechanics in Coupled 
Silicon Microcavities
Y. A. V. Espinel, F. G. S. Santos, G. O. Luiz, T. P. Mayer Alegre & G. S. Wiederhecker

The simultaneous control of optical and mechanical waves has enabled a range of fundamental and 
technological breakthroughs, from the demonstration of ultra-stable frequency reference devices, to 
the exploration of the quantum-classical boundaries in optomechanical laser-cooling experiments. 
More recently, such an optomechanical interaction has been observed in integrated nano-waveguides 
and microcavities in the Brillouin regime, where short-wavelength mechanical modes scatter light 
at several GHz. Here we engineer coupled optical microcavities to enable a low threshold excitation 
of mechanical travelling-wave modes through backward stimulated Brillouin scattering. Exploring 
the backward scattering we propose silicon microcavity designs based on laterally coupled single 
and double-layer cavities, the proposed structures enable optomechanical coupling with very high 
frequency modes (11 to 25 GHz) and large optomechanical coupling rates (g0/2π) from 50 kHz to 90 kHz.

Brillouin scattering occurs due to the interaction of optical and mechanical waves and it leads to the inelas-
tic scattering of pump photons to Doppler red-shifted (Stokes) or blue-shifted (anti-Stokes) photons. In optical 
waveguides and microcavities this interaction occurs due to a combination of the photo-elastic effect1, induced by 
strain, and moving-boundary effect caused by the mechanical mode distortion of the optical boundaries2. These 
two scattering processes are strongly influenced by optical and mechanical properties of the confining structure 
and can be tailored for various applications. For instance, the generation of anti-Stokes photons, which is accom-
panied by destruction of phonon quanta, can be used to cool down mechanical modes in optical optomechanical 
cavities3,4; whereas the generation of stokes photons, which create phonons (heating), may foster the development 
of high-coherence lasers, ultra-stable radio frequency (RF) synthesizers5–8, and broadband tuning of RF filters9. 
Such confinement-enhanced optomechanical interaction has been observed as Stimulated Raman-like10 and 
Brillouin scattering in a range of photonic waveguides11–18 — where both energy and momentum conservation 
are directly fulfilled. In microcavities, however, the short roundtrip length and narrow linewidth further constrain 
the conservation laws, requiring both pump and scattered waves to be resonant with the optical cavity modes in 
order to ensure efficient Brillouin scattering. These constraints have limited the current cavity demonstrations of 
Brillouin scattering either to mm-scale cavities5,19–21, whose optical free-spectral range matches the mechanical 
resonant frequency; or heavily multimode micro-cavities, where the frequency difference of the distinct trans-
verse optical modes accidentally matches the mechanical frequency, both at the cost of reduced optomechanical 
coupling.

Here we explore a compound microcavity system based on silicon microdisk cavities and demonstrate its 
potential to drastically enhances backward Brillouin scattering (BBS) for mechanical modes at tens of GHz. The 
compound microcavity scheme is illustrated in Fig. 1a and can ensure a doubly-resonant condition for the pump 
and stokes wave, yet preserving the small footprint necessary to achieve large optomechanical coupling. The 
individual cavities forming the compound system could be of various types, however, they must support mechan-
ical modes whose frequencies can match the optical frequency splitting of the coupled modes. By engineering 
the mechanical modes, of single-disk (sd, Fig. 1b) and double-disk (dd, Fig. 1c) optical microcavities, to avoid 
cancellation between the photo-elastic (pe) and moving-boundary (mb) effect22, we demonstrate that both cav-
ity designs could be exploited as components of the compound cavity scheme, thus offering a promising route 
towards the demonstration of low threshold backward stimulated Brillouin lasing in a compact silicon platform.

In backward Brillouin scattering the optical pump and the scattered Stokes waves propagate in opposite direc-
tions, resulting in a large wavevector mismatch that favors the interaction between light and short-wavelength 
propagating mechanical modes1. In disk microcavities, the optical and mechanical modes are azimuthally trav-
eling waves with dependence exp(± imφ) (here m is an integer and φ the azimuthal angle). Hence, a pump laser 
exciting an optical cavity mode with frequency and azimuthal number (ωp, mp) may be scattered into another 
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optical mode (ωs, ms) through the interaction with a mechanical mode (Ω, M), provided that both energy and 
momentum (phase-matching) are conserved, i.e ωs(ms) =  ωp(mp) ±  Ω(M) and ms =  mp ±  M. While in forward 
Brillouin scattering the phase-matching condition favors mechanical modes close to their cut-off condition M =  0 
(ms =  mp), in backward Brillouin scattering (BBS) the scattered light frequency shift is proportional to the opti-
cal wavevector mismatch and can easily reach tens of GHz in solids. In order to enhance BBS, such a large fre-
quency shift would require the pump wave to be detuned from the optical resonance by tens or even hundreds of  
linewidth — in a single-resonance cavity, such a large detuning would drop the benefits of the resonant cavity 
build-up for the pump wave. In the proposed compound cavity system, illustrated in Fig. 1a, the interaction 
between the optical modes (through their evanescent fields) leads to a frequency splitting that can match the 
mechanical mode frequency. The outcome of this scheme is illustrated in Fig. 1d with the pump wave tuned to 
the higher frequency coupled mode at ωp, while the scattered wave is resonant with the lower frequency coupled 
mode at ωs, thus ensuring a high photonic density of states (PDOS) both at the pump and scattered frequencies 
(see Fig. 1e).

Results
Brillouin interaction. The large azimuthal numbers involved in BBS imply that the phase-matched mechan-
ical modes are localized near the cavity edge23–25, compared to low azimuthal number modes that are spread 
throughout the cavity; such an edge localization effectively increases the overlap between the optical and mechan-
ical modes26. The mechanical mode induces strain and boundary deformation at the cavity edge, which effi-
ciently Bragg scatter light and couples forward and backward propagating optical modes. The resulting energy 
exchange between the optical pump and Stokes wave can be modeled using coupled mode theory27,28, which 
leads to a set of coupled equations for the amplitudes of the pump, stokes, and mechanical waves (see Methods). 
We use the coupled mode theory to derive the threshold power necessary to achieve stimulated Brillouin lasing, 
which occurs when the Stokes photons gain, induced by the optical pump, suppresses the Stokes cavity mode 
loss. By assuming an undepleted pump the following expression can be derived for the input threshold power27  
(see Supplementary Information),
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s  is the so-called single-photon cooperativity; g0
c is the vacuum optomechanical coupling 

rate for the compound cavity, Γ is the mechanical loss rate ω ω∆ = −s s s0
 and ω ω∆ = −p p p0

 are the pump and 
stokes detunings relative to the cavity resonance doublets (ω ω,s p0 0

), as illustrated in Fig. 1f; κs and κp are the cor-
responding total (intrinsic and extrinsic) loss rates, κe is the extrinsic pump loss rate due to coupling to the driv-
ing mode of the bus waveguide.
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Figure 1. Backward Brillouin scattering in a compound microcavity system. (a) Schematic of the compound 
microcavity system based on microdisk cavities. The colorscale represents one optical coupled mode of the 
structure. Single-disk (b) and double-disk (c) cavity designs; tSi =  250 nm, tSiO =  100 nm, the Si radius 
corresponding to 5 micrometers. In the double-disk structure, the intermediate oxide layer has a radius of and 
3.8 micrometers. (d) Optical dispersion diagram schematic, the optical resonances are represented by discrete 
(red and blue) points lying along the bulk dispersion curves (solid lines). Each pair of red and blue resonances are 
frequency split due to the lateral evanescent interaction in the compound system; the superscript m denotes the 
azimuthal order of each mode family. The arrows indicate possible resonant optical transitions from the pump 
(ωp) to the Stokes mode (ωs) due to BBS (e) Photonic density of states (PDOS) at the pump and scattered waves 
when the optical frequency splitting matches the mechanical mode frequency Ω. (f) Photonic density of states 
obtained for the coupled cavity modes with a quality factor of 105 and splitting rate J =  25 GHz. The dashed blue 
and red lines indicate the optical mode resonant frequencies, ωp0

, ωs0
, respectively. (g) Calculated optical 

frequency splitting. Blue and red curves indicate the anti-symmetric and symmetric coupled modes for a single-
disk device. The insets show the calculated optical mode profiles for a 140 nm lateral air-gap between the cavities 
(circle’s labels).
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The lowest input threshold power is reached when both pump and Stokes waves are resonant with the mode 
doublet, (Δ s, Δ p) =  0. Since the Stokes photons are initially generated by spontaneous Brillouin scattering (due to 
thermally driven phonons), their frequencies are Doppler shifted ωs =  ωp −  Ω. When the pump and Stokes optical 
modes are split by a frequency difference J, their detuning is given by Δ s =  Δ p +  (J −  Ω) (see Fig. 1f ). 
Consequently, the threshold power scales as κ∝ + − ΩP J(1 4( ) / )th

2
s
2 , thus the minimum threshold occurs 

when the optical splitting precisely matches the mechanical frequency, i.e. J =  Ω. Such a threshold power scaling 
reveals the importance of the doubly-resonant condition ensured by the compound cavity scheme. For instance, 
the minimum threshold power achievable using a standard single-resonance cavity occurs in the so-called 
resolved sideband limit (Ωm ≫  κ), at an optimum pump detuning (Δ p =  Ω); this limit can be obtained from eq. 1: 
threshold assuming a large cavity separation (J →  0, then κs →  κp and →g g0

c
0). Hence a single-resonance cavity 

has a threshold power that is (Ωm/κp)2 larger than the proposed compound cavity doubly-resonant approach. For 
a typical 5 µm radius microdisk (Ωm/κp)2 ≈  100, a roughly two-orders of magnitude higher threshold; where we 
assume an intrinsic quality factor of 2 ×  105 (κp,s/2π ≈  960 MHz) and Brillouin frequency Ω/2π =  VlM/r ≈  22 GHz 
— where M/r ≈  4π(neff/λ) and neff =  1.73 for the transverse-magnetic (TM) optical mode phase index (λ =  1.55 m), 
Vl is the Si bulk dilatational wave velocity.

Such high mechanical frequencies at tens of GHz can also be readily matched to the optical resonance splitting 
accessible by employing either single or double-disk silicon cavities. For example, we show in Fig. 1g the numeri-
cally calculated frequency splitting curves (solid lines) for a compound microcavity based on silicon single disks 
(see Methods), demonstrating splitting at tens of GHz for a lateral gap of 100 nm. This contrasts with larger and 
lower refractive index coupled microcavities whose frequency splitting lies in the sub-GHz range29 and could not 
enable resonant backward Brillouin scattering.

Device design. We demonstrate the feasibility of our compound cavity scheme by investigating two designs 
that can achieve high optomechanical coupling rates and mechanical frequencies at tens of GHz, the sd and dd 
cavities shown in Fig. 1b,c. Both designs could be readily fabricated30 and enhance the optomechanical inter-
action for distinct mechanical mode families. The frequency dispersion is the starting point to infer general 
characteristics of the phase-matched mechanical modes leading to backward Brillouin scattering. Many aspects 
of the mechanical modes dispersion of sd and dd cavities can be regarded as mixtures among whispering gallery 
mechanical modes of an infinite cylinder, and Lamb-wave modes of a free-standing silicon slab23,31. The mechan-
ical mode dispersion of even and odd modes (with respect to z =  0 plane — see Fig. 1b) of a single disk are shown 
in Fig. 2. The dispersion curves were calculated using an axisymmetric finite element method (see Methods). In 
the dd-cavities, the mechanical modes are approximately symmetric/anti-symmetric combinations of the even 

Figure 2. Mechanical dispersion in the sd-cavity. (a) Dispersion diagram for even modes (grey curves). 
The dashed and dash-dotted black solid lines represent the longitudinal (Vl =  9660 m/s) and transverse 
(Vt =  5340 m/s) bulk Si acoustic velocities. The dashed blue lines represent the dispersion of the first two 
dilatational modes (d1 and d2) of a 250 nm thick silicon slab (inset shows the d1 mode at M =  70). The vertical 
dashed line (M =  70) indicates the phase-matching azimuthal number for the TM optical mode in 1550 nm, 
mp =  M/2 =  35 for a disk radius of 5um. (b) Zoom for the dispersion of the even modes around of M = 70. The 
red dashed lines represent the dispersion of the whispering gallery modes for an infinite cylinder with the same 
radius. The blue dashed line is the dispersion of the slab d1 mode. The geometrical markers along to the vertical 
dashed identifies distinct modes groups in the sd-cavity. (c) Dispersion diagram for the odd modes (grey 
curves). The dashed blue lines represent the dispersion of the first two flexural modes (f1 and f2) of a 250 nm 
thick silicon slab, inset shows the slab f1 mode at M =  70 (The vertical dashed line). (d) First modes of the 
whispering gallery family (squares markers in b). (e) Rayleigh mode (circle marker in b). (f) First modes of the 
flexural family (star markers in c). (g) First modes of the dilatational family (triangle markers in b).
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and odd parity sd-cavity modes, therefore, the key characteristics of both designs may be inferred by inspecting 
only the sd-cavity mode structure.

The mechanical modes of sd cavities that may efficiently interact with optical modes can be divided in 
four groups: whispering gallery (w-modes), Rayleigh (r-modes), dilatational (d-modes), and flexural modes 
(f-modes). Their dispersion curves are shown in Fig. 2(a–c), and signaled by markers in Fig. 2(b,c); the corre-
sponding displacement profiles are shown in Fig. 2(d–g). The whispering gallery group (w-modes) modes are 
remarkably similar to the modes of an infinite cylinder, as suggested by the excellent agreement between their 
dispersion curves (red-dashed lines), shown in the zoomed dispersion diagram of Fig. 2b. Despite the very small 
thickness/radius ratio of our disk (t/r =  0.05), the mechanical displacement components of w-modes are also 
similar to infinite cylinder modes, essentially in the radial-azimuthal (rφ) directions. The peak displacement of 
increasing frequency w-modes shifts radially inward, which suggests a varying overlap with the optical mode.

The Rayleigh (r-modes), dilatational (d-modes), and flexural (f-modes) mode groups are signatures of the thin 
disk; their dominant radial-vertical (rz) displacement are noticeable in Fig. 2e–g. The r-mode is a singleton group 
and has the lowest frequency dispersion branch in Fig. 2a, which is characterized by a phase velocity lower than 
both the longitudinal (Vl) and transverse (Vt) bulk velocities23,31. Such a surface wave localization, noticeable in 
the displacement profile of Fig. 2e, compromises its overlap with the optical mode.

The dilatation (d-modes) originate from the tight vertical confinement of our thin disks. These characteristics 
are evidenced not only by their displacement profiles, shown in Fig. 2g, but also through their matching disper-
sion characteristics, highlighted in Fig. 2b (blue-dashed curve). The onset of the distinct disk mechanical mode 
families in Fig. 2a is also well matched by slab-mode cutoff frequency. Based on their displacement profile, the 
d-mode group is likely a strong candidate to large overlap with optical modes.

On the other hand, the f-group modes are cantilever-like modes and exhibit and odd symmetry relative to 
the z =  0 plane (see Fig. 1b), resulting in a negligible interaction with sd-cavity optical modes. In the dd-cavities, 
however, the symmetric combination of upper and lower-disk f-modes strongly modulate the air-gap between 
the disks, thus having potential to strongly interact with the dd-cavity optical modes. Indeed, these symmetric 
f-modes are similar to those explored in previous double-disk devices32,33, but due to their large azimuthal num-
ber they can readily vibrate in the 10 GHz frequency range.

Optomechanical coupling. The spatial overlap between optical modes and mechanical modes is necessary 
but not sufficient for a large optomechanical coupling. The optomechanical interaction in these high refractive 
index structures occurs due to a combination of the photo-elastic effect1 and deformation of the cavity bound-
aries2. The calculated optomechanical coupling rate must consider both effects, g0 =  gpe +  gmb, where gpe stands 
for the volumetric photo-elastic contribution (pe-effect), and gmb for the cavity moving-boundaries contribution 
(mb-effect). In Fig. 3a,b we show the calculated photo-elastic (gpe, red), the moving-boundary (gmb, green) and 
total coupling rate g0 (bars) for the phase-matched mechanical modes in the single (Fig. 3a) and double-disk 
(Fig. 3b) structures. We focus on the mechanical modes that are phase-matched with fundamental TM (trans-
verse magnetic) optical mode (Fig. 3c) since the TM-modes exhibits the largest coupling rate and potentially 
higher optical quality factors34.

For both sd and dd-structures, the whispering, Rayleigh, and dilatational mode groups can be identified in 
Fig. 3a,b. The relative contributions from the pe and mb-effects, however, varies significantly for each structure 
and mode group. To understand this in detail, we analyze the weighting function role played by the optical field 
in the mb and pe-effects (see Methods). For the mb-effect, the normal mechanical displacement (u⊥) is weighted 
by the optical field as (see Supplementary Information),

ρ δε δε δε= − −φ
−E E D , (2)r zmb mb

2
mb

2
mb

1 2

where Er, Eφ and Ez are the energy-normalized electric field components, δεmb =  ε1 −  ε2 and δε ε ε= −− (1/ 1/ )mb
1

1 2  
with ε ε= n1 0 1

2 and ε ε= n2 0 2
2 being the permittivities of silicon and air, respectively. The spatial dependence of 

the three terms in Eq. 2: gmb_terms are shown in Fig. 3d,e for both sd and dd-cavities. It is evident that the 
mb-effect is dominated by the azimuthal component (− δεmb|Eφ|2) in both structures. The opposite sign of the 
azimuthal term relative to the radial contribution — due to the π phase difference between forward and backward 
azimuthal field components — substantially distinguishes the backward from the forward Brillouin optomechan-
ical interaction. The weighting terms peaks around r =  4.6 µm also hint which mechanical modes should benefit 
from the mb-effect.

The photo-elastic (pe-effect) contribution is a bit more intricate due to the anisotropic nature of the 
strain-induced permittivity perturbation. Each component is calculated from the permittivity perturbation ten-
sor, defined as δε ε= − n p S:pe 0 1

4 , in which p is the photoelastic tensor of the isotropic silicon and S is the strain 
tensor induced by the mechanical waves (see Methods). For TM optical mode, however, the main permittivity 
perturbations are the vertical (δε zz

pe ) and azimuthal (δε φφpe ) components since they are weighted by the dominant 
fields Ez and Eφ. Despite the complexity of the pe-effect, the dominant photo-elastic coefficient in silicon is p11, 
hence an insight about which modes will lead to a strong pe-effect can be obtained analyzing only the azimuthal 
(δε ε≈ −φφ

φφn p Spe 0 1
4

11 ) and vertical (δε ε≈ − n p Szz
zzpe 0 1

4
11 ) perturbations.

The w-mode group has the largest optomechanical coupling rate and give rise to several peaks in the high 
frequency range (20 ~ 28 GHz), for both sd (Fig. 3a) and dd cavities (Fig. 3b), which are unique to BBS due to the 
large mechanical azimuthal numbers imposed by the phase-matching condition. Due to their dominant displace-
ment components (ur, uφ), the largest strain components is azimuthal, Sφφ ≈  Muφ/r. Such a large azimuthal strain 
leads to a pe-effect dominated optomechanical coupling, reaching the highest coupling rate for the single-disk, 
g0/2π ≈  61 kHz at 24.34 GHz for the 16th radial order w-mode (w16); the strain profile of selected w-modes are 
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shown in Fig.  3f. In this mode group, δε φφpe  accounts for about 70% of the total coupling coefficient  
(see Supplementary Information, Table S2). The double-disk counterpart of this mode family (wdd) behaves sim-
ilarly, yet with a reduced strength (g0/2π ≈  35 kHz for the w16

dd) due to the larger optical and mechanical mode 
volumes. In either designs, the tiny in-plane displacement of this mode group always ensures a negligible contri-
bution from the mb-effect.

Another interesting feature of this mode group is the peaked g0 distribution in Fig. 3(a,b), which can be under-
stood by inspecting the overlap between the dominant azimuthal strain component Sφφ (Fig. 3f) and the opti-
cal mode profile (Fig. 3c). Despite the strain oscillations along the radial direction, there is a net tensile strain 
(Sφφ >  0) region indicated by the dashed arrow in Fig. 3f; as the mechanical frequency increases, the net strain 
region shifts radially inwards and sweeps the spatial matching between the strain and optical fields. The fine 
mechanical frequency spacing between adjacent w-modes and such a sweeping overlap lead to the observed 
peaked g0 distribution in Fig. 3(a,b). The physical origin of this net positive strain region relies on the hybrid 
longitudinal-transverse nature of the w-group, which can be precisely traced using the analytical solution of an 
infinite cylinder: the fast radial oscillation periods seen in Fig. 3f arise from the transverse-wave contribution to 
this mode, whereas the more slowly varying net positive strain regions are caused by longitudinal-wave contribu-
tion (see Supplementary Information, Fig. S4).

The Rayleigh mode (r1), which has the lowest resonant frequency (at 11.12 GHz, Fig. 3a), has a dominant 
radial displacement (ur) in the sd-cavity, which results in the edge-localized radial strain shown in Fig. 3g. On the 
other hand, its flexural odd counterpart in the dd-cavity, f dd

1 , has also a large vertical (uz) component. Combined 
with the large azimuthal component, this leads to a dominant shear Sφz strain, which is shown in Fig. 3g. Due to 
its edge localization, away from the optical mode maximum, a minor role from the mb-effect is expected for the 
r1 mode in the sd-cavity. However, the boundary contribution for f1

dd in the dd-cavity is outstanding, indeed this 
mode (11.15 GHz) has the second largest coupling rate among all the dd-cavity modes, reaching g0/2π =  31 kHz. 
Furthermore, the dd-cavity has a unique feature as its mb-effect strength can be tailored by adjusting the slot 
height between the two disks; in Fig. 3i we show that the total coupling rate (g0) of the f1

dd mode can be improved 
by 300% by reducing the slot height from 150 nm to 50 nm.

Finally, a very high optomechanical coupling rate could be expected for the d-mode group 
(16 GHz  <  Ω/2π <  18 GHz). These modes are striking examples that intuition based on mode shapes may fail 
when predicting the BBS interaction strength in microstructures. The d-modes display not only a large vertical 
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Figure 3. Optomechanical coupling in sd and dd-cavities. (a) and (b) Optomechanical coupling rate (black 
bars) between the optical mode and the mechanical even modes (respect to z =  0 plane in Fig. 1b,c) generated 
by the photoelastic gpe/2π (red) and moving boundary gmb/2π (green) contributions in the sd and dd cavities, 
respectively. (c) Electric field norm of the optical mode at 1550 nm for the sd-cavity (TM) and the dd-cavity 
(TMdd). (d) Contributions to the optical weighting function ρmb (eq. 2: gmb_terms) along the upper and lower 
sd-cavity boundaries. (e) Contributions to the optical weighting function along the outer (solid lines) and slot-
interior (dashed-lines) dd-cavity boundaries. In (d) and (e) the line colors relate to each field component: red 
(Er), black (Eφ) and blue (Dz). (f–h) Dominant strain component (color scale) and deformation (amplified) for 
the mechanical modes labeled in part a) and b). The strain component Sφφ is shown for the w-modes and  
r-modes (r1), Sφz is shown for f-modes ( f dd

1 ) and Szz is shown for the d-modes. (i) Optomechanical coupling rate 
for the f dd

1  mode as a function of the gap between the upper and lower disk of the dd-cavity. The blue, green and 
red markers represent the total, mb and pe optomechanical coupling rates, respectively. The solid lines should 
only be considered as a guide.
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strain but also a large deformation of the cavity boundaries, as shown in Fig. 3h. Indeed, these two effects are 
very strong individually but their opposite sign lead to a cancellation effect, a clear competition between the mb 
(gmb) and pe-effects (gmb)22. For the double-disk structure, whose optical weighting function is shown in Fig. 3e, 
the slot effect enhancement does not readily improve the optomechanical coupling with the dilatational modes, 
this is due to a balanced contribution from the azimuthal (dashed black line) and vertical field (dashed blue line) 
components along the slot boundaries, which oppositely contribute to the mb-effect and almost cancel it.

Discussion
The calculated BBS coupling rates for both sd and dd-cavities improve over a few orders of magnitude compared 
to coupling rates reported for larger silica microspheres (g0/2π ≈  20 Hz)35 and crystalline resonators 
(g0/2π ≈  61 Hz)20. Such high coupling rates ensure that the proposed designs will have a low input power thresh-
old to achieve stimulated Brillouin lasing, despite the lower quality factors often achievable with silicon cavities. 
For instance, we assume an optical mode resonant around the wavelength of 1550 nm, with an intrinsic optical 
quality factor of 2 ×  105 (κp/2π =  κs/2π ≈  1.2 GHz), and mechanical quality factor of 103, which are conservative 
optical and mechanical mode parameters. If these cavities designs are employed in the proposed compound cavity 
scheme, and the mechanical frequency matches the optical frequency splitting, i.e., (Δ s =  Δ p =  0) in Eq. 1: thresh-
old. The predicted threshold power for SBS lasing is only Pth ≈  8 mW for the single-disk w16 mode; Pth ≈  31 mW 
for the double-disk w dd

16  mode.
For the cantilever-like flexural mode of the dd-cavity ( f dd

1 ), the threshold power is Pth ≈  17 mW (assuming the 
same mechanical quality factor). This threshold power for the f dd

1 -mode can be reduced even further for smaller 
double-disk separation. For instance, if tSiO =  50 nm, it is possible to achieve g0/2π ≈  75 kHz (Fig. 3i), leading to a thresh-
old power of only Pth ≈  3 mW (considering the same optical and mechanical losses).

Experimentally, in order to ensure the simultaneous resonant condition, a set of coupled optical cavities with 
varying coupling gaps could be fabricated. The importance of the compound cavity scheme also becomes clear if 
we compare the results above with a single cavity (single or double-disk) input threshold power, which is pre-
dicted by eq:threshold assuming a resonant stokes signal Δ s =  0 and the optimal pump-detuning (Δ p =  Ωm). 
Using the same optical and mechanical linewidth above, and a single-photon optomechanical coupling rate 
( =g g2 c

0 0 , see Methods), the threshold for Brillouin lasing would be as high as Pth ≈  3.2 W for the w16, and 
Pth ≈  12.3 W for the w16

dd mode. Such a high input powers are rather impractical due to strong detrimental effects 
they induce, such as strong nonlinear light absorption or even thermal damage of the bus waveguides.

Conclusions
Our results provide a clear guideline towards the observation of backward Brillouin scattering lasing in integrated 
CMOS-compatible silicon cavities. Both the single-disk and double-disk designs were shown to enable large 
optomechanical coupling rates, a few orders of magnitude larger than previously reported resonators, allowing 
for mW-level input power lasing thresholds. The single-disk device, despite its simplicity, was shown to enable 
mechanical modes at very high frequencies (25 GHz) with large optomechanical coupling rates. The double-disk 
device, although exhibiting a lower optomechanical coupling for high frequency modes, was shown to drasti-
cally enhance the interaction with flexural modes around 11 GHz. Although we concentrated our discussion on 
silicon-based devices, our results could be adapted to similar structures fabricated from other high index materi-
als, such as III-V, Si3N4 and SiO2.

Methods
Frequency splitting. The frequency splitting simulation was performed using a two-dimensional approx-
imation to the actual sd-cavity. In this approximation, the modes of the coupled infinite cylinders are calculated 
while constraining the out-of-plane wave number,

= −





 −







k k n m

r
z

r
( ) ,

(3)z
m

0
2

2
,1

2

where m/r and zm,1/r are the azimuthal and radial components of the wave vector with norm k0n, k0 is the 
free-space wave number for λ =  1.55 µm, n =  3.5 is the silicon refractive index, r =  5 µm, m =  35 is the optical 
azimuthal number for the TM-mode of the sd-cavity and zm,1 is the first zero of the Bessel function Jm(z). This is 
equivalent to the Marcatilli effective index method and we verified that it leads to an electric field envelope that 
agrees well with the numerical mode obtained from the axisymmetric calculation.

Mechanical mode dispersion. We obtain the dispersion relation Ω(M) by solving the eigenfrequency problem 
derived from the full-vectorial elastic wave equation through the finite-element method (see 
Supplementary Information), due to the highly multimode character of the mechanical dispersion, we show in 
Fig. 2a–c a grey color shading proportional to the mechanical density of modes instead of the calculated pairs 
(ΩM, M). The mechanical density of modes is calculated as ρ σ σΩ = ∑ Ω Ω ΩM f M M g( , ) ( , , ) ( , , )i j

i ij
, 0

( )
M 0

( ) , where 
f and g are Gaussian weighting functions with a normalized product, full-width-half-maximum (FWHM) wave-
number σM =  0.1, FWHM-frequency σΩ/2π =  117.5 MHz and given one azimuthal acoustic number M i

0
( ) are cal-

culated each of the frequencies Ω ij
0
( ) from the elastic wave equation.
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Coupled mode equations. The resulting energy exchange between the optical pump and Stokes wave can be 
modeled using coupled mode theory27,28 (see Supplementary Information), which leads to a set of coupled equa-
tions for the amplitudes of the pump wave (ap), stokes wave (as) and mechanical wave (b),

κ κ

κ

= ∆ − − +

= ∆ − −

= − Ω − Γ − +







⁎

⁎

a i a ig ba s

a i a ig b a

b i b ig a a F

( /2) ,

( /2) ,

( /2) , (4)

p p p p 0
c

s e p

s s s s 0
c

p

m m 0
c

p s th

where ai’s are normalized such that |ai|2 is the intra-cavity photon number and b is normalized such that |b|2 is the 
phonon number. ω ω∆ = −i i i0

 is the frequency detuning between the pump (i =  p) or stokes wave (i =  s) relative 
to the optical cavity mode frequencies ωp ,s0 0

 . κp,s represents the optical loss rate for each mode, (Ωm,Γ m) are the 
mechanical mode frequency and damping rate, respectively; the optomechanical coupling rate is g0

c and repre-
sents the photon coupling rate between the stokes and the pump wave induced by the zero-point fluctuation of the 
mechanical mode, which will be calculated shortly using electromagnetic perturbation theory2,36. Note that g0

c is 
related to the more usual single-cavity coupling rate as =g g /20

c
0 . The factor 1/2 arises because the coupled opti-

cal mode is distributed within two optical cavities whereas the mechanical mode is localized within a single cavity 
due to the air gap between the cavities. κe is extrinsic coupling rate to the feeding waveguide carrying a 
photon-flux |sp|2. Fth is a white-noise random thermal force responsible for driving the mechanical motion.

g0 calculation. The mb-effect contribution is given by ref. 2 (see Supplementary Information),

ω
δε δε= − ⋅ − ⋅⊥

−
⊥ ⊥∮ ⁎ ⁎g u E E D D dA

2
( ) , (5)S

pmb
p

mb p, s, mb
1

, s,

where the permittivity differences are given by δεmb =  ε1 −  ε2 and δε ε ε= −− (1/ 1/ )mb
1

1 2 , in which ε ε= n1 0 1
2 and 

ε ε= n2 0 2
2 are the permittivities of the silicon and air, respectively. = ⋅⊥ ˆu x u nzpf  is the surface-normal component 

of the displacement vector u (normalized to unit); = Ωx m( /2 )zpf eff  is zero-point fluctuation of the mechanical 
mode with effective mass meff; the fields E j ,  and Dj,⊥ are boundary-tangential electric field and boundary-normal 
electric displacement field to the cavity surface S of the pump (j =  p) or scattered (j =  s) optical mode 
(energy-normalized). The pe-effect contribution is given by ref. 36 (see Supplementary Information),

∫
ω

δε= − ⋅ ⋅⁎g E E dV
2

, (6)Vpe
p

p pe s

where δε ε= − n p S:pe 0 1
4  is the photo-elastic perturbation in the permittivity inside the cavity volume V, p is the 

photoelastic tensor of silicon, and S =  xzpf∇ su is the strain tensor induced by the mechanical waves. The optical 
and elastic mode profiles are numerically calculated using the finite-element method (see Supplementary Information).

Simulation parameters. Si refractive index nSi =  3.5, silica refractive index = .n 1 45SiO2
, air refractive index 

nair =  1.0, wavelength of interest λ =  1550 nm, Si Young’s modulus ESi =  170 GPa, silica Young’s modulus =E 72SiO2
 

GPa, Si Poisson’s ratio νSi =  0.28, silica Poisson’s ratio ν = .0 17SiO2
, Si density mass ρSi =  2329 kg/m3, silica density 

mass ρ = 2203SiO2
 kg/m3 and Si photo-elastic coefficients37 p11 =  − 0.09, p12 =  0.017 and p44 =  − 0.0535. Here we 

neglect silicon anisotropy and assume the values of ESi and νSi along to principal crystal axes38.
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