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Abstract

Autosomal dominant optic atrophy is one of the most common inherited optic neuropathies.

This disease is genetically heterogeneous, but most cases are due to pathogenic variants in

the OPA1 gene: depending on the population studied, 32–90% of cases harbor pathogenic

variants in this gene. The aim of this study was to provide a comprehensive overview of the

entire spectrum of likely pathogenic variants in the OPA1 gene in a large cohort of patients.

Over a period of 20 years, 755 unrelated probands with a diagnosis of bilateral optic atrophy

were referred to our laboratory for molecular genetic investigation. Genetic testing of the

OPA1 gene was initially performed by a combined analysis using either single-strand con-

formation polymorphism or denaturing high performance liquid chromatography followed by

Sanger sequencing to validate aberrant bands or melting profiles. The presence of copy

number variations was assessed using multiplex ligation-dependent probe amplification.

Since 2012, genetic testing was based on next-generation sequencing platforms. Genetic

screening of the OPA1 gene revealed putatively pathogenic variants in 278 unrelated pro-

bands which represent 36.8% of the entire cohort. A total of 156 unique variants were identi-

fied, 78% of which can be considered null alleles. Variant c.2708_2711del/p.(V903Gfs*3)

was found to constitute 14% of all disease-causing alleles. Special emphasis was placed on

the validation of splice variants either by analyzing cDNA derived from patients´ blood sam-

ples or by heterologous splice assays using minigenes. Splicing analysis revealed different

aberrant splicing events, including exon skipping, activation of exonic or intronic cryptic

splice sites, and the inclusion of pseudoexons. Forty-eight variants that we identified were

novel. Nine of them were classified as pathogenic, 34 as likely pathogenic and five as variant

of uncertain significance. Our study adds a significant number of novel variants to the
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mutation spectrum of the OPA1 gene and will thereby facilitate genetic diagnostics of

patients with suspected dominant optic atrophy.

Introduction

Neuropathies of the optic nerve severely impair vision. They mainly affect visual acuity, central

visual fields and color vision due to a progressive loss of retinal ganglion cells and their axons.

Optic neuropathies can be divided into inherited and acquired forms. The latter mostly result

from vessel occlusions, extrinsic or intrinsic lesions, optic neuritis, neurotoxic substances,

nutritional deficiencies, viral infections, and mixed etiologies [1]. The two most common

inherited optic neuropathies seen in clinical practice are Leber’s hereditary optic neuropathy

(LHON; MIM#535000) and dominant optic atrophy (DOA; MIM#165500) [2]. The prevalence

of DOA ranges between 1 in 12,000 in Denmark due to a founder mutation and 1 in 50,000 in

the rest of the world [3–5].

DOA usually presents with slowly progressive and bilateral visual impairment in the first

decade of life, while a correct diagnosis is often only made in the second decade [6, 7]. The

main clinical features are reduced visual acuity, central visual field loss and color vision distur-

bances mainly in the tritan axis [8, 9]. DOA severity is highly variable: visual acuity can range

from 20/20 to light perception with 40% of patients having a visual acuity better than 20/60

[10]. On the other hand, extra-ocular manifestations in DOA, often referred to as DOAplus

phenotypes, are reported in up to 20% of DOA cases and include sensorineural hearing loss,

progressive external ophthalmoplegia, peripheral neuropathy and ataxia [11–15].

DOA is genetically heterogeneous. Pathogenic variants in OPA1, which was the first gene to

be described as an underlying cause of DOA [16–23], are found in 32–90% of DOA cases,

depending on the population studied, the number of genes analyzed and the platform used.

Other genes associated with DOA include WFS1 [24–27], OPA3 [28–33], AFG3L2 [34, 35],

SPG7 [34, 36], DNM1L [37], MFN2 [38], SSBP1 [39–41], NR2F1 [42–45], and ACO2 [46].

Notably, with the exception of OPA1, all DOA-associated genes were first identified in the con-

text of syndromic neurodegenerative diseases, and only later shown to also cause non-syndro-

mic DOA [47]. Despite rather comprehensive workup using next generation sequencing

technologies, more than one third of the patients remain without the identification of the

genetic cause of their disease [48].

The OPA1 gene (MIM #605290) is located on chromosome 3q29 and encodes for a ubiqui-

tously expressed dynamin-related GTPase, which is imported into mitochondria by an N-ter-

minal import sequence and localizes to the inner membrane facing the intermembrane space

[49, 50]. Together with mitofusin 1, OPA1 plays a crucial role in mitochondrial fusion and is

therefore vital for the maintenance of the mitochondrial network and morphology [51, 52]. In

addition, OPA1 participates in cytochrome c release and reduced OPA1 expression has been

associated with a significant impairment of oxidative phosphorylation [53, 54]. The OPA1
gene is composed of 30 coding exons distributed across more than 90 kb of genomic DNA.

Alternative splicing of exons 4, 4b and 5b gives rise to eight different isoforms with open read-

ing frames for polypeptides of 960 to 1015 amino acid residues [55].

As of April 2021, the Human Gene Mutation Database (HGMD) [56] lists more than 400

disease-causing variants in OPA1 while the Leiden Open Variation Database database for

OPA1 (https://www.lovd.nl/OPA1) [57], which entries overlap largely but not completely with

HGMD, lists 593 unique public variants. Haploinsufficiency has been proposed as the predom-

inant pathomechanism for OPA1 variants [18, 57]. Accordingly, the majority of disease-
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causing variants are predicted to give rise to truncated OPA1 polypeptides, either due to non-

sense, frameshift or splice variants, the latter including deep intronic variants causing the

inclusion of pseudoexons into the transcript [58, 59]. In addition, structural variants such as

copy number variants (CNVs) and inversions are part of the mutation spectrum of OPA1 [60–

62]. Disease-causing variants are spread over the entire coding sequence, however, very few

have been reported for the alternatively spliced exons [63].

Notably, patients who are compound heterozygous for two pathogenic OPA1 alleles are

very rare. In fact, patients with biallelic null alleles have never been reported, probably because

such a genotype is most likely embryonic lethal, as suggested by animal models [64–66]. Most

patients (~80%) with biallelic OPA1 variants harbor a truncating variant on one allele and a

(hypomorphic) missense variant on the counter allele. These patients present with Behr

(MIM#210000) or Behr-like syndrome, a distinct severe neurological syndromic disease char-

acterized by early-onset optic atrophy, spasticity, spinocerebellar ataxia, peripheral neuropa-

thy, gastrointestinal dysmobility and sometimes intellectual disability [15, 58, 67–70]. With

respect to phenotype-genotype correlations, missense variants are more likely to cause a more

severe phenotype than null alleles [71, 72], potentially due to a dominant-negative effect caused

by partially inactive OPA1 homopolymers [73]. In general, genotype-phenotype correlations

in OPA1-associated diseases are hampered by the highly variable clinical expression observed

both between and within families harboring the same variant [20]. In fact, the penetrance may

vary considerably, between 43 to 88% [19, 74, 75], indicating the presence of yet undefined

modifying factors that have the potential to modulate the phenotypic expression of DOA.

The aim of the present study was to provide a comprehensive overview over the entire spec-

trum of likely pathogenic variants in the OPA1 gene in a large cohort of patients diagnosed

with DOA that has been genetically analysed over a period of 20 years since the original identi-

fication of the OPA1 gene in 2000 [16, 17]. Hence, many variants have already been described

and published by us. In this study, we present and classify 48 as yet unpublished OPA1 vari-

ants, which adds a considerable number of novel variants to the mutation spectrum of OPA1,

thereby facilitating the genetic diagnosis in future patients.

Methods

Editorial policies and ethical considerations

This was a retrospective cohort study of patients with a clinical diagnosis of DOA that were

recruited between July 1992 and December 2020 in several ophthalmic centers mainly in Ger-

many, and sent to the Institute for Ophthalmic Research in Tübingen (Germany) for genetic

investigation. Other referring centers are located in Italy, France, Belgium, The Netherlands,

UK, Spain, and Israel. Samples from all patients and family members were recruited in accor-

dance with the principles of the Declaration of Helsinki. All patients provided informed written

consent to use their medical records and samples for research purposes. For the probands who

were underage at the time of recruitment, informed written consent was obtained from the pro-

bands’ parents or guardians. Specifically, this study was approved by the institutional review

board of the Ethics Committee of the University Hospital of Tübingen under the study numbers

112/2001, 598/2011BO1 and 637/2017BO1. Data were not anonymized prior analysis.

Subjects and clinical diagnosis

Demographic data assessed in this study included age, gender and place of residence (see

Table 1). Inclusion criteria were a history of gradual, bilateral loss of vision associated with the

presence of central or caeco-central scotoma on visual field evaluation and symmetric tempo-

ral or diffuse optic disc pallor. Ocular coherence tomography (OCT) findings like thinning of
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retinal ganglion cell fibers and reduction of the peripapillary retinal nerve fiber layer were not

a prerequisite for patients to be included in this study.

DNA and RNA isolation

Genomic DNA was extracted from venous blood samples applying standard salting-out proce-

dure or by using the chemagic™ MSM1 system and the chemagic™ DNA Blood 7k Kit (Chema-

gen, Baesweiler, Germany). For RNA isolation whole blood was collected in PAXgene blood

RNA tubes and RNA was isolated using the PAXgene blood RNA Kit (Qiagen, Hilden, Ger-

many). Alternatively, leukocytes were isolated from venous blood by Ficoll-Paque density cen-

trifugation (Pharmacia Biotech, Freiburg, Germany) and total RNA was extracted with Trizol

reagent (Life Technologies, Eggenstein, Germany).

Mutation screening of the OPA1 gene

Genetic analysis has changed over the years, following the implementation of novel analysis tech-

niques. From 2000–2012, the coding region was analyzed by a combined approach using either

single-strand conformation polymorphism (SSCP) or denaturing high performance liquid chro-

matography (DHPLC) followed by Sanger sequencing to validate aberrant bands or melting pro-

files [18]. Sanger sequencing of all coding exons was performed in individual cases. For cDNA

analysis, RNA obtained from blood samples was reverse transcribed by using the SuperScript

First-Strand Synthesis System for RT-PCR (Invitrogen, Carlsbad, CA, USA) [76]. Screening for

large-scale rearrangements was performed using multiplex ligation-dependent probe amplifica-

tion (MLPA) [60]. Since 2012, patients’ DNAs were subjected to next-generation sequencing

(NGS), either using a panel-based approach or whole genome sequencing [62, 77].

Variant nomenclature

Genomic coordinates given in this manuscript are based on the GRCh37 genome assembly.

Mutation nomenclature is based on GenBank accession NM_015560.2 with nucleotide one being

Table 1. Demographic data of study cohort.

Mean agea 47.4±17.5

Range yearsa 9–93

Gender

Male 429

Female 311

Not known 15

Country of residence

Germany 587

Italy 69

France 35

Belgium 12

UK 9

Israel 7

The Netherlands 4

Spain 2

Other 30

arelated to birth date and not to age at recruitment

https://doi.org/10.1371/journal.pone.0253987.t001
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the first nucleotide of the translation initiation codon ATG. This isoform lacks the alternative

exons 4b and 5b. Mutation nomenclature was validated using the Mutalyzer name checker tool

(https://mutalyzer.nl/name-checker). All variants were cross-checked with a literature search per-

formed on February 1st 2021, HGMD [56], and the Leiden Open Variation Database database

for OPA1 (https://www.lovd.nl/OPA1) [57]. Only variants not listed in HGMD, LOVD or pub-

lished in a scientific journal searchable on Pubmed (https://pubmed.ncbi.nlm.nih.gov/) were

referred to as “novel”. All novel variants have been submitted to the "Global Variome shared

LOVD" (databases.lovd.nl/shared/references/ DOI: 10.1371/journal.pone.0253987).

In silico analyses

Novel variants identified in this study were evaluated with different web-based databases and

tools. Allele frequencies were retrieved from the Genome Aggregation Database (gnomAD

v2.1.1) [78]. The pathogenicity of missense variants was assessed with MutationTaster, which

integrates information from different biomedical databases and uses established analysis tools

including evolutionary conservation, splice-site changes, loss of protein features and changes

that might affect the amount of mRNA [79]. In addition, the online prediction tools Poly-

Phen-2 (http://genetics.bwh.harvard.edu/pph2/), and PROVEAN and SIFT (http://provean.

jcvi.org/genome_submit_2.php), were used to predict the impact of missense variants. Protein

sequence alignment of Homo sapiens OPA1 against its orthologues from twelve other species

was performed using Clustal Omega [80]. Non-canonical splice site variants were evaluated

with Alamut Visual v.2.14.0 (Interactive Biosoftware, Rouen, France, www.interactive-

biosoftware.com/alamut-visual/), which allows a simultaneous analysis with the programs

NNSPLICE [81], MaxEntScan [82], SpliceSiteFinder-like [83], and GeneSplicer [84]. All tools

were used according to the guidelines for the use of prediction tools [85].

Variant classification

Classification of novel variants identified in this study adhered to the guidelines published by

the American College of Medical Genetics and Genomics and the Association for Molecular

Pathology (ACMG/AMP) [86].

Minigene splice assays

Minigene splice assays were performed as described previously [76, 87]. Briefly, genomic seg-

ments encompassing the variant of interest along with flanking sequences were amplified from

patient genomic DNA using a proofreading polymerase and cloned into the pSPL3 minigene

plasmid vector [88, 89]. Specifically, cloned genomic segments were 1092 bp for the analysis of

variant c.2014-10A>G (GrCh37/hg19 3: 193,374,384–193,375,475; corresponding to exon 21

and flanking intronic sequences), and 1634 bp for the analysis of variant c.2356-8T>G

(GrCh37/hg19 3: 193,379,822–193,381,455; corresponding to exon 24 and flanking intronic

sequences). Following cloning, the resulting constructs in their wildtype and mutant version

were used to transfect HEK293T/17 cells (ATCC1 CRL-11268™), which were then analyzed

with respect to splicing of minigene-derived transcripts by reverse transcription polymerase

chain reaction (RT-PCR) using vector-specific primers (F: 5´-TGGACAACCTCAAAGGCAC
C-3´and R: 5´-AGTGAATTGGTCGAATGGATC-3´).

Quantification of RT-PCR products

Four hundred ng of total RNA isolated from blood samples was used for cDNA synthesis

using random hexamers and the Maxima H Minus Reverse Transcriptase according to the
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manufacturer’s protocol (Thermo Fisher Scientific, Carlsbad, USA). For the analysis of vari-

ants c.1065+6T>C and c.1212+4del, reverse transcription polymerase chain reaction

(RT-PCR) was performed using 2 μl cDNA, a forward primer located in exon 7 (5´- TGG
AACGATTAGAAAAGGAGAACAAAG-3´), a 50 FAM (6-carboxyfluorescein) labeled reverse

primer located in exon 14 (5´- CCATGAGGGTCCATTTGACT-3´), and standard PCR con-

ditions (35 cycles). For the analysis of variant c.1516+3A>G, a forward primer located in exon

11 (5´- GAACTTCGAATGAGGAAAAATGTGA-3´) and a 50 FAM (6-carboxyfluorescein)

labeled reverse primer located in exon 17 (5´- TGTTGTTCAACAGACTCTCGTACCAT-3´)

was used.

FAM-labeled RT-PCR products were mixed with 0.5 μl of GeneScan ROX500 size standard

(Life Technologies, Darmstadt, Germany) and 8.5 μl of Hi-Di Formamide (Life Technologies)

in a total volume of 10 μl. Mixes were separated by capillary electrophoresis on an ABI 3130XL

Genetic Analyzer instrument (Life Technologies). The area-under-the-curve (AUC) was calcu-

lated with GeneMapper 5 (Life Technologies) software. Ratios of RT-PCR products were

determined as the AUC for individual peaks divided by the sum of AUC of all peaks.

Results

Our cohort of clinically diagnosed DOA patients comprises 755 index patients. Demographic

data are shown in Table 1. Genetic screening of the OPA1 gene identified putatively patho-

genic variants in 278 unrelated individuals. Known and novel variants are presented in Tables

2 and 3, respectively, and the distribution of variants along the gene is shown in Fig 1.

The 156 unique variants identified in our cohort spread along the whole gene and include

98 variants located in exons and 44 variants located in introns. One variant, a 38 bp deletion,

affects both exonic and intronic sequence. In addition, we have identified 13 structural vari-

ants: 12 are copy number variants (CNVs) comprising one or more exons, and one is an inver-

sion that comprises exon 1. Exonic variations include 55 single nucleotide substitutions (25 of

them generating a stop codon, three of them possibly affecting splicing, and 27 of them causing

an amino acid substitution), and 27 deletions of one to few nucleotides (one of them generat-

ing a stop codon, 22 causing a frameshift, and four causing an in frame deletion). Furthermore,

exonic variants comprise eleven duplications or insertions of one or few nucleotides (one of

them generating a stop codon, and ten causing a frameshift) and five insertion/deletion vari-

ants (two causing a frameshift, two causing an in frame insertion/deletion, and one causing a

single amino acid substitution). Of the 44 intronic variations, 37 are single nucleotide substitu-

tions. Twenty-three of them affect the highly conserved GT and AG splice acceptor and splice

donor dinucleotides. In the following, these variants are referred to as canonical splice site

(CSS) variants. Twelve variants are located in the vicinity but outside the highly conserved

splice acceptor and donor sites. In the following, these variants are referred to as non-canoni-

cal splice site (NCSS) variants. Two variants are located deep in an intron. Five intronic vari-

ants are deletions of one to few nucleotides (three affecting CSSs, and two NCSSs), and two are

duplications or insertions of one nucleotide (both affecting CSSs).

When grouping all 156 unique variants according to their deduced effect on protein func-

tion, 34 variants are predicted to alter single amino acid residues (27 missense and 7 in frame

variants, shown as pink and green dots in Fig 1, respectively), 74 variants are predicted to

result in a truncated protein (25 nonsense, 36 frameshift, and 13 structural variants, shown as

blue and black dots and horizontal lines in Fig 1, respectively) and 48 variants (putatively)

affect splicing (shown as grey dots in Fig 1). Twenty-seven of the splicing variants have been

validated by us either by analyzing cDNA derived from patients´ blood samples or by heterolo-

gous splice assays using minigenes [58, 76, 90] (results for yet unpublished NCSS variants are
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Table 2. Known variants identified in this study.

NM_015560.2 NP_056375.2a Exon/Intron HGMDb

c.6G>A p.(W2�) Exon 1 CM012163

c.112C>T p.(R38�) Exon 2 CM024785

c.154C>T p.(R52�) Exon 2 CM076368

c.557-668G>A p.(S187Afs�28)/p.

(S187Afs�29)

Intron 4 CS147231

c.557-672G>A p.(G186Afs�9) Intron 4 CS147232

c.629C>A p.(S210�) Exon 6 CM012164

c.631_634del p.(D211Kfs�16) Exon 6 CD072458

c.635_636del p.(K212Rfs�4) Exon 6 CD012268

c.639_640del p.(K214Nfs�2) Exon 6 CD104762

c.655C>T p.(Q219�) Exon 6 CM111745

c.703C>T p.(R235�) Exon 7 CM136994

c.784-1G>A p.(K262_R290del) Intron 7 CS080724

c.784-2A>G p.(?) Intron 7 CS1410777

c.808G>A p.(E270K) Exon 8 CM012165

c.815T>C p.(L272P) Exon 8 CM031310

c.818A>C p.(D273A) Exon 8 CM012166

c.869G>A p.(R290Q) Exon 8 CM002636

c.868C>T p.(R290W) Exon 8 CM012167

c.870+1del p.(?) Intron 8 LOVD-ID:

OPA1_000475

c.870+1G>A p.(?) Intron 8 CS1410779

c.870+5G>A p.(?) Intron 8 CS012215

c.895G>C p.(A299P) Exon 9 CM080471

c.932del p.(A311Vfs�11) Exon 9 CD012270

c.937_938delinsGA p.(I313E) Exon 9 CP015804

c.984+2T>A p.(V291_K328del) Intron 9 CS080725

c.984+3A>T p.(?) Intron 9 CS024779

c.992T>C p.(L331P) Exon 10 CM131132

c.1065+1G>A p.(V329_D355del) Intron 10 CS080718

c.1065+3A>C p.(?) Intron 10 CS012216

c.1065+5G>A p.(?) Intron 10 CS1410781

c.1072_1093del p.(A358Ffs�3) Exon 11 PMID:11440988

c.1096C>T p.(R366�) Exon 11 CM002638

c.1126A>G p.(T376A) Exon 11 CM014008

c.1140G>A p.(L356_E380del) Exon 11 CS061311

c.1140+1dup p.(L356_E380del) Intron 11 CI080971

c.1140+5G>C p.(L356_E380del) Intron 11 CS080719

c.1410_1443+4del p.(V452_R481del) Exon 14/Intron

14

CG084686

c.1146A>G p.(I382M) Exon 12 CM080464

c.1153_1154del p.(N385Cfs�13) Exon 12 CD012271

c.1198C>T p.(P400S) Exon 12 CM080462

c.1199C>T p.(P400L) Exon 12 CM080465

c.1212_1212+4del p.(?) Intron 12 CD056198

c.1212+1G>A p.(T381_N404del) Intron 12 CS014017

c.1212+1G>T p.(?) Intron 12 CS013627

c.1212+5G>C p.(T381_N404del) Intron 12 CS080720

(Continued)
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Table 2. (Continued)

NM_015560.2 NP_056375.2a Exon/Intron HGMDb

c.1213-2A>G p.(T405fs�9) Intron 12 CS094201

c.1279C>T p.(Q427�) Exon 13 CM080466

c.1296_1298del p.(I433del) Exon 13 CD002706

c.1301T>C p.(L434P) Exon 13 CM1814099

c.1313A>G p.(D438G) Exon 14 CM066157

c.1313A>T p.(D438V) Exon 14 CM012169

c.1334G>A p.(R445H) Exon 14 CM030379

c.1346dup p.(D450Rfs�38) Exon 14 CI080972

c.1354del p.(V452Sfs�15) Exon 14 CD002707

c.1402A>G p.(K468E) Exon 14 CM012170

c.1481_1494del p.(K494Ifs�12) Exon 15 CD080877

c.1516+1G>A p.(?) Intron 15 CS152761

c.1516+1G>C p.(I482Gfs�10) Intron 15 CS080721

c.1516+3A>G p.(I482Gfs�10) Intron 15 LOVD-ID:

OPA1_000582

c.1560_1562del p.(E521del) Exon 16 CD094188

c.1645dup p.(S549Ffs�13) Exon 17 CI002739

c.1652_1654del p.(C551del) Exon 17 CD012272

c.1687C>T p.(Q563�) Exon 17 CM126970

c.1705+1G>T p.(V556Qfs�40) Intron 17 CS061312

c.1771-2A>G p.(?) Intron 18 CS094209

c.1778T>C p.(L593P) Exon 19 CM094166

c.1847+4_1847+7del p.(?) Intron 19 CD094193

c.1879A>T p.(R627�) Exon 20 CM094169

c.1881_1882del p.(R627Sfs�7) Exon 20 CD031533

c.1892_1893del p.(H631Rfs�3) Exon 20 CD094194

c.2013G>A p.(A673Rfs�3) Exon 20 CS061314

c.2014-1G>A p.(V672Lfs�14) Intron 20 CS061313

c.2119G>T p.(E707�) Exon 21 CM130780

c.2125_2138del14ins12 p.(I709Gfs�7) Exon 21 CX012305

c.2131C>T p.(R711�) Exon 21 CM013590

c.2142G>A p.(W714�) Exon 21 CM1410789

c.2197C>T p.(R733�) Exon 22 CM086329

c.2241del p.(F747Lfs�53) Exon 22 LOVD-ID:

OPA1_000579

c.2354A>G p.(Q785R) and p.(T759Mfs�5) Exon 23 CM012175

c.2355+1G>A p.(T759Mfs�5) Intron 23 CS067103

c.2396T>A p.(L799�) Exon 24 CM080472

c.2470C>T p.(R824�) Exon 24 CM066156

c.2569C>T p.(R857�) Exon 25 CM094173

c.2586_2587insA p.(Y863Ifs�9) Exon 25 CI080973

c.2613+1G>C p.(?) Intron 25 CS012219

c.2614-1G>A p.(?) Intron 25 CS094217

c.2614-9A>G p.(L872_Q884del) Intron 25 CS068103

c.2707+2T>C p.(E873Gfs�3) Intron 26 CS012220

c.2708-1G>T p.(V903Gfs�3) Intron 26 CS061315

c.2708_2711del p.(V903Gfs�3) Exon 27 CD002708

(Continued)
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shown in S1 and S2 Figs). The two deep intronic variants act by the insertion of pseudoexons,

thereby leading to a frameshift and premature termination codon (PTC) in the aberrant tran-

scripts. Fifteen splicing variants were shown to lead to the skipping of the respective exon, with

four of them leading to a frameshift and PTC while eleven retain the reading frame. Ten vari-

ants were shown to activate exonic or intronic cryptic splice sites, thereby leading to a PTC in

eight cases and causing an in frame deletion in two cases. The infered effect on protein level of

these experimentally validated splicing variants is shown in Tables 2 and 3.

Assuming that all splice variants and structural variants give rise to transcripts that either

harbor a PTC or lack important protein domains, 78% of the variants in our cohort can be

considered null alleles. Most of the 27 missense variants cluster to the GTPase domain encoded

by exons 9–16 (see Fig 1), which is essential for protein function. Several missense variants in

this region have been demonstrated to cause a severe loss of mitochondrial fusion activity [91,

92].

Several variants were recurrent. Table 4 lists the ten most frequent alleles found in our

cohort. The most frequent variant, c.2708_2711del/p.(V903Gfs�3), was found in 39 of 278 fam-

ilies, accounting for 14% of disease-causing alleles.

Five index patients harbored two variants each in the OPA1 gene. In three of them, the two

respective variants were shown to be in trans configuration by family segregation analysis.

Two of these patients carried a splice variant on one allele and the p.(I382M) missense variant

on the counter allele. The latter is considered a hypomorphic allele that causes a severe DOA-

plus phenotype when occurring in trans with a null allele [58, 67]. Indeed, both patients were

diagnosed with a Behr syndrome-like phenotype [58, 69]. Another patient was shown to be

compound heterozygous for the two missense variants p.(E270K) and p.(R290W). This patient

presented with a much more severe phenotype than her single heterozygous parents and

Table 2. (Continued)

NM_015560.2 NP_056375.2a Exon/Intron HGMDb

c.2713C>T p.(R905�) Exon 27 CM012176

c.2729T>A p.(V910D) Exon 27 CM080468

c.2790_2798delins9 p.(R932_V933delinsHR) Exon 27 CX080992

c.2797G>A p.(V933I) Exon 27 CM104765

c.2815del p.(L939Sfs�29) Exon 27 CD104766

c.2818+1G>A p.(?) Intron 27 CS170561

c.2818+5G>A p.(V903_K940delinsE) Intron 27 CS080722

c.2819-2A>C p.(K940_V942delinsI) Intron 27 CS080723

c.2825_2828del p.(V942Efs�25) Exon 28 CD002709

c.2844dup p.(L949Tfs�2) Exon 28 CI1814095

g.193,310,511_193,312,933 delins193,310,603_193,311,825

[193,310,603_193,310,540inv]

p.(0?) Exon 1 PMID:33243194

c.(?_-1)_(2818+1_2819–1)del p.(0?) Exon 1–27 CG091336

c.(?_-1)_(624+1_625–1)del p.(0?) Exon 1–5 CG091338

c.871-162_985-1789delinsGTGATTGATGCA p.(?) Exon 9 CG091339

c.2356-586_2497-616del p.(C786_L832del) Exon 24 CG091337

c.(2496+1_2497–1)_(2707+1_2708–1)del p.(I833Lfs�4) Exon 25–26 CG112206

c.678+674_984+2026dup p.(L227_K328dup) Exon 7–9 CN091340

c.(?_-1)_(�3211_?)del p.(0?) Entire gene CG091335

aprotein level for splicing variant was given when established by cDNA analysis
bin case variant is not listed in HGMD, identifier of LOVD or Pubmed is given

https://doi.org/10.1371/journal.pone.0253987.t002
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Table 3. Novel variants identified in this study.

NM_015560.2a NP_056375.2b Exon/Intron Alleles in gnomAD ACMG/AMP criteriac ACMG/AMP classification

c.50del p.(L17�) Exon 2 - PVS1;PM2 Likely pathogenic (I)

c.86del p.(P29Hfs�20) Exon 2 - PVS1;PM2 Likely pathogenic (I)

c.295_301dup p.(R101Qfs�22) Exon 2 - PVS1;PM2 Likely pathogenic (I)

c.394del p.(Y132Ifs�32) Exon 3 - PVS1;PM2;PP1 Pathogenic (Ia)

c.557-8_557-3del p.(?) Intron 4 - PM2;PP1 Likely pathogenic (II)

c.572C>T p.(T191M) Exon 5 1/152120 PP3 VUS

c.586dup p.(T196Nfs�6) Exon 5 - PVS1;PM2 Likely pathogenic (I)

c.814C>T p.(L272F) Exon 8 - PM1;PM2;PM5;PP1;PP3 Pathogenic (IIIa)

c.838_839insT p.(A280Vfs�4) Exon 8 - PVS1;PM2 Likely pathogenic (I)

c.874G>T p.(V292F) Exon 9 - PM1;PM2;PP3 VUS

c.975del p.(P326Qfs�4) Exon 9 - PVS1;PM2 Likely pathogenic (I)

c.989_994del p.(T330_L331del) Exon 10 - PM1;PM2;PM4 Likely pathogenic (IV)

c.992dup p.(S332Efs�2) Exon 10 - PVS1;PM2 Likely pathogenic (I)

c.1065+6T>C p.(V329_D355del) Intron 10 - PM2;PS3 Likely pathogenic (II)

c.1140_1140+1insT p.(?) Intron 11 - PVS1;PM2 Likely pathogenic (I)

c.1154_1161del p.(N385Rfs�11) Exon 12 - PVS1;PM2 Likely pathogenic (I)

c.1180A>G p.(M394V) Exon 12 4/152182 PP3 VUS

c.1212+1G>C p.(?) Intron 12 - PVS1;PM2;PP1 Pathogenic (Ia)

c.1212+4del p.(T381_N404del) Intron 12 - PM2;PS3 Likely pathogenic (II)

c.1213-1G>A p.(?) Intron 12 - PVS1;PM2 Likely pathogenic (I)

c.1282A>G p.(N428D) Exon 13 - PM1;PM2;PP1;PP3 Likely Pathogenic (II)

c.1360C>T p.(Q454�) Exon 14 - PVS1;PM2 Likely pathogenic (I)

c.1558G>T p.(E520�) Exon 16 - PVS1;PM2 Likely pathogenic (I)

c.1632_1638del p.(S545Qfs�62) Exon 17 - PVS1;PM2;PP1 Pathogenic (Ia)

c.1723G>A p.(E575K) Exon 18 - PM2;PP3 VUS

c.1734G>A p.(W578�) Exon 18 - PVS1;PM2 Likely pathogenic (I)

c.1754del p.(L585Rfs�24) Exon 18 - PVS1;PM2;PP1 Pathogenic (Ia)

c.1770+2T>G p.(?) Intron 18 - PVS1;PM2 Likely pathogenic (I)

c.1864C>T p.(Q622�) Exon 20 - PVS1;PM2 Likely pathogenic (I)

c.2013G>C p.(?) Exon 20 - PS1;PM2;PP1;PP3 Pathogenic (II)

c.2014-10A>G p.(V672�) Intron 20 - PM2;PS3 Likely pathogenic (II)

c.2032C>T p.(Q678�) Exon 21 - PVS1;PM2 Likely pathogenic (I)

c.2103delinsTAAG p.(L700_K701insN) Exon 21 - PM2;PM4;PP3 VUS

c.2150_2151del p.(F717Cfs�20) Exon 21 - PVS1;PM2;PP1 Pathogenic (Ia)

c.2237_2240del p.(Y746Lfs�53) Exon 22 - PVS1;PM2 Likely pathogenic (I)

c.2267T>C p.(L756P) Exon 22 - PM2;PP1;PP3 Likely pathogenic (II)

c.2347dup p.(Q783Pfs�8) Exon 23 - PVS1;PM2 Likely pathogenic (I)

c.2356-8T>G p.(C786Ffs�7) Intron 23 - PM2;PS3 Likely pathogenic (II)

c.2511G>A p.(W837�) Exon 25 - PVS1;PM2 Likely pathogenic (I)

c.2540_2564dup p.(C856Nfs�7) Exon 25 - PVS1;PM2 Likely pathogenic (I)

c.2585dup p.(Y862�) Exon 25 - PM2;PVS1 Likely pathogenic (I)

c.2704G>T p.(E902�) Exon 26 - PVS1;PM2 Likely pathogenic (I)

c.2795_2801delinsTC p.(R932Lfs�10) Exon 27 - PVS1;PM2;PP1 Pathogenic (Ia)

c.(1847+1_1848–1)_(2013+1_2014–1)del p.(E617Lfs�14) Exon 20 - PVS1;PM2 Likely pathogenic (I)

c.(1847+1_1848–1)_(�3211_?)del p.(0?) Exon 20–28 - PVS1;PM2 Likely pathogenic (I)

c.(2013+1_2014–1)_(2355+1_2356–1)del p.(V672_Q785del) Exon 21–23 - PVS1;PM2 Likely pathogenic (I)

c.(2707+1_2708–1)_(2818+1_2819–1)del p.(V903Efs) Exon 27 - PVS1;PM2;PP1 Pathogenic (Ia)

(Continued)
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siblings, indicating that these two OPA1 alleles behave semi-dominantly [18]. Zygosity (i.e. cis
or trans configuration of two variants in heterozygous state) could not be established in

another two patients harboring two variants: one of them carried a novel nonsense p.(E520�)

and a novel missense variant p.(M394V), while the other carried a known in frame insertion/

deletion variant p.(I313E) and a known missense variant p.(T376A).

Of the 156 unique variants identified by us, 48 were neither listed in HGMD and the LOVD

database for OPA1 (as of April 2021), nor have they been published in a journal searchable on

Pubmed (as of April 2021). We followed the ACMG/AMP guidelines to classify these novel

variants. Assignment of individual criteria and final classification is given in Table 3. Since

haploinsufficiency has been proposed as the predominant disease mechanism for OPA1 vari-

ants [18, 57], the criterion PVS1 was used for nonsense, frameshift, and CSS variants as well as

for structural variants. Variants located in the GTPase domain of the OPA1 protein were

assigned the PM1 criterion. All novel variants but two fulfilled criterion PM2, since no allele

frequency was reported in gnomAD. The criterion PS3 was used for variants that have been

analyzed on cDNA level. For novel missense variants at an amino acid residue where a differ-

ent missense change determined to be pathogenic has been reported in prior studies, criterion

Table 3. (Continued)

NM_015560.2a NP_056375.2b Exon/Intron Alleles in gnomAD ACMG/AMP criteriac ACMG/AMP classification

c.(448+1_449–1)_(2355+1_2356–1)del p.(E150Vfs�5) Exon 4–23 - PVS1;PM2 Likely pathogenic (I)

abreakpoints have not been defined for CNVs
bprotein level for splicing variant was given when established by cDNA analysis
ccategories published in the ACMG/AMP guidelines [86]. VUS, variant of uncertain significance.

https://doi.org/10.1371/journal.pone.0253987.t003

Fig 1. Distribution of OPA1 variants. Shown is the isoform that lacks the alternative exons 4b and 5b

(NM_015560.2). Exons are represented by grey vertical boxes. Note that exons and intervening intronic sequence

(represented by black horizontal line) are not drawn to scale. Each distinct variant observed in our cohort is

represented by a single distinct color coded dot above the respective exon or below the respective intron. Structural

variants are indicated by horizontal lines above the exons. Shown below the gene structure is the protein with its most

important domains including a GTPase domain, a middle domain that is involved in oligomerization, a pleckstrin

homology (PH) domain and a GTPase effector domain (GED). The peptide encoded by exons 17–18 (shown in

yellow) forms a long helix that connects the GTPase domain and the middle domain. Exons 1 and 2 encode a

mitochondrial targeting sequence (MTS) which is cleaved by the mitochondrial processing peptidase (MPP). The N-

terminal region encoded by exons 3–8 (shown in orange) does not include specific domains but comprises

mitochondrial proteolytic cleavage sites for the mitochondrial processing peptidases OMA1 and YME1L. Protein

structure was adapted from Li et al., 2019 [109].

https://doi.org/10.1371/journal.pone.0253987.g001
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PM5 was used. The criterion PP3 was used for missense variants that were classified as “disease

causing” by MutationTaster which predicts pathogenicity by a combination of criteria, includ-

ing the conservation on nucleotide and amino acid level, potential loss of functional protein

domains, and the effect on splicing [79]. Variants that were found to segregate within families

were assigned the criterion PP1. Following the ACMG/AMP guidelines, nine variants were

classified as pathogenic, 34 as likely pathogenic and five as variant of uncertain significance

(VUS). Among the variants classified as VUS are four missense variants, and one in frame

insertion/deletion variant. To provide additional information for these variants, we performed

an amino acid alignment of the OPA1 protein in different species (Fig 2A). The respective

amino acid residues are fully conserved for variants p.(V292F), p.(M394V), p.(E575K) and p.

(L700_K701delinsN), whereas the threonine residue of variant p.(T191M) is conserved in

mammals and birds only. Accordingly, four different in silico bioinformatic tools predicted the

variants to be pathogenic with high agreement (Fig 2B).

Discussion

The prevalence of putatively pathogenic OPA1 variants in our cohort is 36.8% (278/755). This

value is at the lower end of the range of 32–90% observed in other studies [18, 23]. There are

two possible explanations. First of all, our cohort is not homogeneous with respect to clinical

phenotyping. The patients in our study were diagnosed and recruited at different centers

throughout Germany and Europe. The diagnosis of DOA was based on a history of gradual,

bilateral vision loss associated with the presence of central or caecocentral scotoma and sym-

metric temporal or diffuse optic disc pallor. However, clinical records were not available for all

patients. In addition, considering the known reduced penetrance and the presence of asymp-

tomatic carriers in DOA [6, 19, 74, 75], the cohort includes cases in which an autosomal domi-

nant mode of inheritance could not be unequivocally established. Eventually, not all of the

patients in our cohort might be DOA cases, especially when considering the overlapping phe-

notypes seen within the group of optic neuropathies [2]. Of note, in our cohort 429 cases are

male while 311 are female (see Table 1). A gender bias (i.e., a higher incidence in men) is not

typical for DOA, but for LHON [93]. It is tempting to speculate that the observed gender bias

in our cohort is caused by a large proportion of LHON cases that were misdiagnosed as DOA.

However, as the bias is still present when considering only those cases harboring pathogenic

variants in OPA1 (151 male subjects, 115 female subjects), the larger proportion of male cases

must be caused by other factors about which we could only speculate at the moment.

DOA as well as recessively inherited optic neuropathies are genetically heterogeneous.

Accordingly, we found disease-causing variants in OPA3 [31], SSBP1 [41], ACO2 [46], and

Table 4. Ten most frequent variants in our cohort.

Variant Allele count

c.2708_2711del/p.(V903Gfs�3) 39

c.869G>A/p.(R290Q) 8

c.870+5G>A/p.(?) 8

c.2569C>T/p.(R857�) 7

c.1313A>T/p.(D438V) 6

c.635_636del/p.(K212Rfs�4) 5

c.1212+1G>A/p.T381_N404del) 5

c.2241del/p.(F747Lfs�53) 5

c.154C>T/p.(R52�) 4

c.1096C>T/p.(R366�) 4

https://doi.org/10.1371/journal.pone.0253987.t004
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TMEM126A [94] in some patients. In addition, individual cases harbored pathogenic variants

in WFS1, MFN2, and DNAJC30 (unpublished), as well as in the mitochondrial DNA [95]. The

diagnosis in the latter patients was changed from DOA to LHON. The diagnosis in those

patients harboring pathogenic variants in genes exclusively asscociated with recessively inher-

ited optic neuropathies was changed accordingly. In total, 5.5% of cases in our cohort could be

solved by pathogenic variants in genes other than OPA1. Note that we cannot give actual prev-

alences since the abovementioned genes have not been analysed in the entire cohort. The sec-

ond possible reason for the relatively low prevalence of patients harboring OPA1 variants in

our cohort might be due to the fact that our genetic testing during the early 2000s was based

on less sensitive methods like SSCP and DHPLC. A comprehensive re-analysis of all unsolved

patients in our cohort has not been performed. In addition, even with NGS platforms, which

are used for genetic diagnostic testing of newly recruited patients since 2012, structural vari-

ants as well as variants in non-coding regions remain challenging to identify and interpret.

Information on family history was available for roughly two-third of patients in our cohort

that harbored OPA1 variants. While 38 patients (13.6%) reported a negative family history,

139 (49.8%) reported one or more affected family members. Genotyping of available family

members confirmed the presence of multiple affected subjects in 100 families. In contrast,

Fig 2. Novel amino acid substitution variants in OPA1 classified as VUS. A) Multiple sequence alignment of Homo sapiens OPA1 against its orthologues from twelve

other species was performed using Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/). The mutated amino acid residues 191, 292, 394, 575, and 700–701 are

highlighted in yellow. Reference sequences were taken from NCBI and are as follows: H. sapiens (NP_570849.2), P. troglodytes (XP_003310225.1), M. mulatta
(XP_001087037.2), C. lupus (XP_005634679.1), B. taurus (NP_001179890.1), M. musculus (NP_001186106.1), R. norvegicus (NP_598269.3), G. gallus
(NP_001034398.1), D. rerio (NP_001007299.1), X.tropicalis (NP_001120510.1), D. melanogaster (NP_725369.1), A. gambiae (XP_309360.3), and C. elegans
(NP_495986.3). Vertebrates are labeled in black; non-chordates are labeled in blue. B) In silico predictions of different pathogenicity-computation tools. N/A, not

applicable.

https://doi.org/10.1371/journal.pone.0253987.g002
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only 25.3% of unsolved patients in our cohort reported affected family members while 24.1%

reported a negative family history. The higher rate of simplex cases among unsolved cases is in

line with the observation that multi-generation families are more likely to harbor disease-caus-

ing variants in the OPA1 gene [18].

A limitation of our study is the lack of detailed clinical data in a considerable number of

patients which hampers the assessment of phenotype-genotype correlations. Several studies

have indicated that missense variants in OPA1 tend to be associated with more severe pheno-

types [12, 13, 15, 96]. We can neither confirm nor deny such a correlation due to the lack of

comprehensive clinical data in our study. However, in line with other studies, we observed

more severe phenotypes in the few biallelic OPA1 patients [18, 58].

With 39 index cases, the c.2708_2711del/p.(V903Gfs�3) variant is the most frequent OPA1
disease-associated allele in our cohort. Since our cohort mainly comprises patients of German

origin, we found the p.(V903Gfs�3) variant mainly in German patients (n = 27), but also in

patients originating from France (n = 4), Italy (n = 4), Belgium (n = 2) and the Middle East

(n = 2). The c.2708_2711del/p.(V903Gfs�3) variant has been described repeatedly in the litera-

ture, including studies performed in Italy, France, Denmark, UK, China and the USA [17, 68,

71, 97–104]. This suggests a mutation hotspot rather than a founder effect. Another mutation

hotspot seems to be the splice donor site of exon 12, which we found to be altered in 13 index

cases.

Of note, of the 46 intronic variants that are located at the canonical splice sites or in their

vicinity, 14 affect the acceptor site, and 32 affect the donor site, accounting for a ratio of 2:1 of

donor to acceptor splice site mutations. The reason for this imbalance is unknown but a simi-

lar value has been reported in a study that investigated 478 splice mutations in 38 different

human genes [105].

Among the 156 unique variants identified in this study, 48 (30.8%) have not been reported

before. This demonstrates that, although the identification of the OPA1 gene as the underlying

cause of DOA dates back 20 years [16, 17], the mutation spectrum of this gene is still far from

being saturated. We have applied the ACMG/AMP guidelines to classify all novel variants

identified in our study. After having validated that five as yet unpublished NCSS variants

exerted a splicing defect (see S1 and S2 Figs), 43 of the 48 novel variants could be classified

either as pathogenic or likely pathogenic. Five novel amino acid substitution variants had to be

classified as VUS. Novel missense variants will always be classified as VUS without family seg-

regation data or functional analysis supporting their pathogenicity. Naturally, this “gray zone

category” is equally unsatisfying for geneticists, physicians and patients. A limitation of our

study is that we could not evaluate the pathogenicity of the five novel amino acid substitution

variants. One approach to assess the impact of a variant on OPA1 protein function is to mea-

sure the oxygen consumption rates of urine cells [106]. Other studies have successfully applied

targeted metabolomics to explore the different signatures of OPA1 variants expressed in Opa1

deleted mouse embryonic fibroblasts [107, 108]. These kind of investigations were beyond the

scope of the present study. Instead, we performed an in silico analysis using different bioinfor-

matic tools (Fig 2B). Concordant results were obtained for missense variants V292F, M394V,

and E575K, which were predicted to be disease-causing by four algorithms. Variant T191M

was predicted to be pathogenic by three algorithms. Variant L700_K701delinsN could only be

assessed with one algorithm and was predicted to be pathogenic. Of note, two of the novel mis-

sense variants affect fully conserved amino acid residues in the GTPase domain, where numer-

ous pathogenic missense variants have been reported to date (see Figs 1 and 2). Probably no

one would doubt the pathogenic effect of these variants. However, according to the ACMG/

AMP guidelines, the classification of these variants has to be VUS until additional evidence is

supporting their pathogenicity.
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Not only missense variants, but also novel NCSS variants have to be classified as VUS with-

out further supporting evidence. Among the 48 splicing variants we have identified, 21 are out-

side the highly conserved GT and AG splice acceptor and splice donor dinucleotides. For 13 of

them, we performed further analyses on cDNA level (either by direct mRNA analysis or by

minigene assays if RNA from patients was not available) and could confirm that they cause a

splicing defect [58, 76, 90] (details of splicing analyses of yet unpublished variants are shown

in S1 and S2 Figs). According to the ACMG/AMP guidelines, we were able to upgrade the clas-

sification of these variants from VUS to likely pathogenic. This demonstrates that variants clas-

sified as VUS have the true potential to be disease-causing and should always be included in

the diagnostic reports. On the other hand, functional analysis of individual variants can hardly

be implemented in routine workflows of diagnostic laboratories. Hence, the validation of VUS

variants is largely dependent on research-based efforts.

Supporting information

S1 Fig. Direct cDNA analysis from patients´ blood samples. Following reverse transcription,

the region of interest was amplified from cDNA. Note that RT-PCR products were sequenced

without prior subcloning. The sequence electropherograms of variants c.1065+6T>C (A),

c.1212+4del (B), and c.1516+3A>G (C) show an overlay of wildtype (black letters) and mutant

sequences (grey letters), starting at the respective exon-exon junction and indicative of exon

skipping. While the skipping of exon 10 and exon 12 is not predicted to change the reading

frame, the skipping of exon 15 is predicted to lead to a frameshift and PTC. (D-F) Quantitative

analysis of fluorescently labeled RT-PCR products. The fragment size scale is given on the x-

axis and the fluorescence intensity (in arbitrary units) is given on the y-axis. Relative amounts

of each fragment are given for the corresponding peak as determined by Gene Mapper. In

each graph, the larger product corresponds to the correctly spliced transcript while the smaller

product is the aberrant transcript with exon skipping. Wildtype and mutant allele were found

to be expressed in approximately equal amounts in the two patients heterozygous either for

variant c.1065+6T>C or c.1212+4del. In contrast, the mutant transcript is clearly less abun-

dant in the patient heterozygous for variant c.1516+3A>G, most probably due to NMD.

(TIF)

S2 Fig. In vitro splice assays of variants c.2014-10A>G (A+C) and c.2356-8T>G (B+D). (A

+B) Agarose gel electrophoresis of RT-PCR products. Gel loading is as follows: A size standard

(low molecular weight DNA ladder, NEB) is loaded in the leftmost lane. The RT-PCR product

derived from HEK293T cells transfected with the wildtype minigene construct is shown in

lane 2, while the RT-PCR product obtained upon transfection with the mutant minigene con-

struct is shown in lane 3. RT-PCRs from transfection with empty pSPL3 vector (lane 4) and

untransfected HEK293T cells (lane 5) served as controls. NRT (lane 6), no reverse transcrip-

tase control; NTC (lane 7), no template control. Schemes of the amplified products are pre-

sented next to the agarose gel image (not drawn to scale). Blue boxes represent pSPL3 resident

exons tat1 and tat2, and pink boxes OPA1 exons, respectively. The dotted edging represents

retained intronic sequence. The green arrows indicate the location of the RT-PCR primers. (C

+D) Sequencing analysis of RT-PCR products. Only the relevant junctions are shown. The

minigene splicing assay performed for variant c.2014-10A>G (C) showed that the last nine

nucleotides of intron 20 (given in lowercase letters) are spliced between the resident pSPL3

exon tat1 and exon 21 of the OPA1 gene. The aberrant transcript would lead, if translated, to

the generation of a PTC (p.(V672�)). The minigene splicing assay performed for variant

c.2356-8T>G (D) showed that the last seven nucleotides of intron 24 (given in lowercase let-

ters) are spliced between the resident pSPL3 exon tat1 and exon 24 of the OPA1 gene. The
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aberrant transcript would lead, if translated, to the insertion of six altered amino acid residues

followed by a PTC (p.(C786Ffs�7)).

(TIF)

S1 Raw images.

(PDF)
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dynamics and disease, OPA1. Biochim Biophys Acta. 2006; 1763:500–9. https://doi.org/10.1016/j.

bbamcr.2006.04.003 PMID: 16737747

74. Cohn AC, Toomes C, Potter C, Towns KV, Hewitt AW, Inglehearn CF, et al. Autosomal dominant optic

atrophy: penetrance and expressivity in patients with OPA1 mutations. Am J Ophthalmol. 2007;

143:656–62. https://doi.org/10.1016/j.ajo.2006.12.038 PMID: 17306754

75. Fuhrmann N, Schimpf S, Kamenisch Y, Leo-Kottler B, Alexander C, Auburger G, et al. Solving a 50

year mystery of a missing OPA1 mutation: more insights from the first family diagnosed with autoso-

mal dominant optic atrophy. Mol Neurodegener. 2010; 5:25. https://doi.org/10.1186/1750-1326-5-25

PMID: 20546606

76. Schimpf S, Schaich S, Wissinger B. Activation of cryptic splice sites is a frequent splicing defect mech-

anism caused by mutations in exon and intron sequences of the OPA1 gene. Hum Genet. 2006;

118:767–71. https://doi.org/10.1007/s00439-005-0096-7 PMID: 16323009

77. Weisschuh N, Obermaier CD, Battke F, Bernd A, Kuehlewein L, Nasser F, et al. Genetic architecture

of inherited retinal degeneration in Germany: A large cohort study from a single diagnostic center over

a 9-year period. Hum Mutat. 2020; 41:1514–1527. https://doi.org/10.1002/humu.24064 PMID:

32531858

78. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint
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95. Leo-Kottler B, Jägle H, Küpker T, Schimpf S. How to distinguish between autosomal dominant optic

atrophy and Leber’s hereditary optic neuropathy. Ophthalmologe. 2007; 104:1060–5. https://doi.org/

10.1007/s00347-007-1577-y PMID: 17899121

96. Barboni P, Savini G, Cascavilla ML, Caporali L, Milesi J, Borrelli E, et al. Early macular retinal ganglion

cell loss in dominant optic atrophy: genotype-phenotype correlation. Am J Ophthalmol. 2014;

158:628–36.e3. https://doi.org/10.1016/j.ajo.2014.05.034 PMID: 24907432

97. Lodi R, Tonon C, Valentino ML, Iotti S, Clementi V, Malucelli E, et al. Deficit of in vivo mitochondrial

ATP production in OPA1-related dominant optic atrophy. Ann Neurol. 2004; 56:719–23. https://doi.

org/10.1002/ana.20278 PMID: 15505825

98. Pretegiani E, Rufa A, Gallus GN, Cardaioli E, Malandrini A, Federico A. Spastic paraplegia in ’domi-

nant optic atrophy plus’ phenotype due to OPA1 mutation. Brain. 2011; 134:e195. https://doi.org/10.

1093/brain/awr101 PMID: 21646330

99. Dames S, Chou L-S, Xiao Y, Wayman T, Stocks J, Singleton M, et al. The development of next-gener-

ation sequencing assays for the mitochondrial genome and 108 nuclear genes associated with mito-

chondrial disorders. J Mol Diagn. 2013; 15:526–34. https://doi.org/10.1016/j.jmoldx.2013.03.005

PMID: 23665194
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