
EMBO
open

Neural stem cell transcriptional networks
highlight genes essential for nervous
system development

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
distribution,andreproduction inanymedium,provided theoriginalauthorandsourceare credited.This licensedoesnot
permit commercial exploitation without specific permission.

Tony D Southall and Andrea H Brand*

The Gurdon Institute and The Department of Physiology, Development
and Neuroscience, University of Cambridge, Cambridge, UK

Neural stem cells must strike a balance between self-renewal

and multipotency, and differentiation. Identification of the

transcriptional networks regulating stem cell division is an

essential step in understanding how this balance is achieved.

We have shown that the homeodomain transcription factor,

Prospero, acts to repress self-renewal and promote differen-

tiation. Among its targets are three neural stem cell trans-

cription factors, Asense, Deadpan and Snail, of which Asense

and Deadpan are repressed by Prospero. Here, we identify

the targets of these three factors throughout the genome.

We find a large overlap in their target genes, and indeed with

the targets of Prospero, with 245 genomic loci bound by all

factors. Many of the genes have been implicated in vertebrate

stem cell self-renewal, suggesting that this core set of genes

is crucial in the switch between self-renewal and differentia-

tion. We also show that multiply bound loci are enriched

for genes previously linked to nervous system phenotypes,

thereby providing a shortcut to identifying genes important

for nervous system development.
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Introduction

Recent work on Drosophila neural stem cells (or neuroblasts)

has provided important insights into stem cell biology and

tumour formation (Yu et al, 2006; Doe, 2008; Egger et al,

2008; Zhong and Chia, 2008). Neuroblasts divide in an

asymmetric, self-renewing manner producing another neuro-

blast and a daughter cell that divides only once to give

post-mitotic neurons or glial cells (Wodarz, 2005; Egger

et al, 2008). During these asymmetric divisions the atypical

homeodomain transcription factor, Prospero, is asymmetri-

cally segregated to the smaller daughter cell, the ganglion

mother cell (GMC), where it can enter the nucleus and

regulate transcription (Figure 1B). Neuroblasts lacking

Prospero form tumours in both the embryonic nervous

system (Choksi et al, 2006) and the larval brain (Bello et al,

2006; Betschinger et al, 2006; Lee et al, 2006). Using the

chromatin profiling technique DamID (van Steensel and

Henikoff, 2000; van Steensel et al, 2001), together with

expression profiling, we showed that Prospero represses

neuroblast genes and is required to activate neuronal differ-

entiation genes (Choksi et al, 2006). Therefore, Prospero acts

as a binary switch to repress the genetic programs driving

self-renewal (by directly repressing neuroblast transcription

factors) and to promote differentiation. We find that Prospero

represses the neuroblast transcription factors (Choksi et al,

2006), Asense, Deadpan and Snail, suggesting that these

transcription factors may control genes involved in neural

stem cell self-renewal and multipotency.

To identify the transcriptional networks promoting neural

stem cell fate, we profiled, on a whole genome scale, the

binding sites of Asense, Deadpan and Snail. These three

proteins are members of a small group of transcription factors

that are expressed in all embryonic neuroblasts (Figure 1A).

The first, Asense, is a basic-helix–loop–helix protein, a mem-

ber of the achaete–scute complex (Gonzalez et al, 1989;

Jarman et al, 1993), and a homologue of the vertebrate neural

stem cell factor, Ascl1 (Mash1). Unlike the other members of

the achaete–scute complex, Asense is not expressed in pro-

neural clusters in the embryo. Asense expression is initiated in

the neuroblast and is maintained in at least a subset of GMC

daughter cells (Brand et al, 1993). Asense is also expressed in

most larval brain neuroblasts but is markedly absent from the

DM/PAN neuroblast (Bello et al, 2008; Bowman et al, 2008).

In these lineages, Asense expression is delayed and the

daughter cells (secondary neuroblasts) of the Asense-negative

DM/PAN neuroblasts undergo multiple cell divisions, expand-

ing the stem cell pool before producing GMCs (Bello et al,

2008; Boone and Doe, 2008; Bowman et al, 2008). Ectopic

expression of Asense limits the division potential of DM/PAN

neuroblast progeny (Bowman et al, 2008). A study in the optic

lobe showed that Asense expression coincides with the upre-

gulation of dacapo and cell-cycle exit (Wallace et al, 2000).

Perhaps in combination, these results suggest that Asense

may also have a pro-differentiation role.

The second transcription factor, Deadpan, is a basic-helix–

loop–helix protein (Bier et al, 1992) related to the vertebrate

Hes family of transcription factors. Deadpan is expressed in

all neuroblasts and has been shown to promote the prolifera-

tion of optic lobe neural stem cells (Wallace et al, 2000).

Unlike Asense, Deadpan is also expressed in the DM/PAN

neuroblasts of the larval brain (Boone and Doe, 2008).
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The third factor, Snail, is a zinc-finger transcription factor

whose vertebrate homologues have roles in the epithelial to

mesenchymal transition and in cancer metastasis (Hemavathy

et al, 2000). The Snail family members (Snail, Worniu and

Escargot) are known to regulate neuroblast spindle orientation

and cell-cycle progression (Ashraf and Ip, 2001; Cai et al, 2001).

To further understand the role of these pan neural stem cell

transcription factors, we have mapped their targets through-

out the genome. This, combined with expression profiling,

allows us to begin to build the gene regulatory networks

governing neural stem cell self-renewal, and to enhance our

knowledge of the function and mode of action of these

transcription factors in neural stem cells.

Results

Asense, Deadpan, Snail and Prospero bind to many

common targets

To identify the genes regulated by Asense, Deadpan and Snail

in the embryo, we mapped their binding sites in vivo by

DamID (van Steensel and Henikoff, 2000; van Steensel et al,

2001), as we have previously done for Prospero (Choksi et al,

2006). In brief, DamID involves tagging a DNA or chromatin-

associated protein with a Escherichia coli DNA adenine

methyltransferase (Dam). Wherever the fusion protein

binds, surrounding DNA sequences are methylated.

Methylated DNA fragments can then be isolated, labelled

and hybridised on a microarray. Here, we express Dam fusion

proteins in vivo, in transgenic Drosophila embryos.

Methylated DNA fragments from transgenic embryos expres-

sing Dam alone serve as a reference. Target sites identified by

DamID have been shown to match targets identified by

chromatin immunoprecipitation (Sun et al, 2003; Song et al,

2004; Tolhuis et al, 2006), by mapping to polytene chromo-

somes (Bianchi-Frias et al, 2004) and by 3D microscopy data

(Pickersgill et al, 2006; Guelen et al, 2008).

In comparing our results for Asense, Deadpan, Snail and

Prospero, we observe a high degree of overlap between their

targets (Figure 2A and C; Supplementary Table S1). The

average overlap for the four factors in pairwise comparisons

is 40%, with the highest overlap between Deadpan and Snail

(66%). The similarity in binding is illustrated by the binding

of all four factors to the intronic regions of the cell-cycle

regulation gene CycE (Figure 2B). 245 genes are bound by all

four proteins, including genes involved in neuroblast cell fate

determination, cell-cycle control and differentiation. These

loci are unlikely to represent regions of chromatin accessible

to all transcription factors as we find only 17/245 (7%) also

bound by another neural transcription factor, Pdm1 (Wu and

Brand, unpublished). The large overlap in the targets of

Asense, Deadpan, Snail and Prospero implies that these

may be a core set of genes involved in neuroblast self-renewal

and differentiation.

Properties of loci bound by Asense, Deadpan and Snail

Genome-wide analysis of Asense DamID peaks shows that

Asense binding is associated with increased levels of DNA

conservation (determined by the alignment of eight insect

species (Remm et al, 2001) (Figure 3B). A representation of

Asense binding around a generic gene (Figure 3D) shows an

enrichment of B2 kb upstream of the transcriptional start

site, binding within intronic regions (32%) and also down-

stream of the gene (20%). This distribution is consistent

with transcription factor-binding analysis and regulatory

sequence studies in mice and humans (Birney et al, 2007;

Chen et al, 2008).

The resolution of DamID is B1 kb (Vogel et al, 2007) and

there are currently no motif discovery tools available that can

analyse the large amount of sequence data generated by full

genome DamID. Therefore, we developed a motif discovery

tool, called MICRA (Motif Identification using Conservation

and Relative Abundance) to identify overrepresented motifs

in low-resolution data. In brief, 1 kb of sequence from each

binding site is extracted and filtered for conserved sequences.

The relative frequency of each 6–10 mer is then calculated and

compared with background frequency (see Supplementary

data for more details). Using MICRA we identified the

E-box, CAGCTG, as the most overrepresented 6 mer in the

regions of Asense binding (131% overrepresented using a

conservation threshold of 0.6; see Supplementary Figure S6;

Figure 3C). In support of our in vivo binding data, in vitro

studies (Jarman et al, 1993) had previously shown that

Figure 1 Expression of neural stem cell factors Asense, Deadpan and Snail in the Drosophila embryo. (A) Expression of asense, deadpan and
snail in neuroblasts, left panel shows RNA in situ analysis and right panel shows expression of protein compared with Prospero. (B) Schematic
showing the asymmetric division mode of neuroblasts, in which Asense, Deadpan and Snail are nuclear in neuroblasts and Prospero is
segregated to the GMC daughter cell.
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Asense binds to CAGCTG, which is also the binding site

of the vertebrate Asense homologue Ascl1 (Mash1) (Castro

et al, 2006).

A GO annotation analysis (Martin et al, 2004) of the genes

bound by Asense shows a highly significant overrepresenta-

tion of genes involved in nervous system development and

cell fate determination (Supplementary Figure S1). Similar

analyses were performed for Deadpan and Snail and for both

transcription factors; DNA conservation was enriched sur-

rounding their binding sites (Supplementary Figure S5).

Deadpan and Snail targets fall broadly into the same gene

ontology classes as Asense and Prospero (Choksi et al, 2006)

(Supplementary Figures S2 and S3) and the binding peaks

show a similar distribution relative to gene structure as for

Asense (Supplementary Figure S4). Motif discovery using

MICRA identifies sites consistent with previously published

in vitro studies for Deadpan (CACGCG and CACGTG) (Winston

et al, 1999, 2000) and Snail (CAGGTA) (Mauhin et al, 1993)

(Supplementary Figure S6). These analyses provide unbiased

support for the Deadpan and Snail DamID experiments.

Multiple transcription factor binding is associated

with increased conservation of regulatory sequences

and with genes critical for the development

of the nervous system

When comparing our data sets for Asense, Deadpan, Snail

and Prospero we find genomic loci in which multiple tran-

scription factors bind. This phenomenon has been described

previously in a Drosophila cell line (Moorman et al, 2006)

and, more recently, in mouse embryonic stem (ES) cells

(Chen et al, 2008) in which these loci are termed ‘multiple

transcription factor-binding loci’ (MTL). The ES cell MTLs

are associated with ES-cell-specific gene expression and are

thought to identify genes important for stem cell self-renewal.

Our data provide an independent and direct, in vivo demon-

stration of the phenomenon described in these two earlier

studies. Analysis of neural MTLs (as determined by binding

of Asense, Deadpan, Prospero and Snail within a 2 kb win-

dow) shows increased sequence constraint, correlating with

the number of transcription factors bound (Figure 4A and B).

The increase in conservation is higher than expected solely

based on the combined binding sites of the factors studied

(Figure 4B, orange hashed line, presuming a single binding

event that would fully constrain 8 bp of sequence). This

suggests that further factors may bind to these loci. The

loci associated with MTLs are enriched for genes required

for proper neural development (Figure 4C) and for viability

(lethal alleles, see Figure 4D).

To investigate further the relationship between the number

of transcription factors bound at a locus and the importance

of the associated target gene in neural development, we

assembled a database (www.neuroBLAST.org) comprising

DamID data, expression profiling of neural transcription

factors, and data on Drosophila nervous system development

collated from genetic screens, expression screens, gene

homology and text mining screens (see Supplementary

data for details of database construction). Using a random

permutation algorithm and training sets of known nervous

system development genes we assigned weighted scores to

each screen (Supplementary Figure S7). A total score is

Figure 2 Asense, Deadpan, Snail and Prospero target genes overlap. (A) Venn diagram showing shared targets. Numbers in brackets show
total number of genes bound. (B) Binding of Asense, Deadpan, Snail and Prospero at the CycE loci. Grey and black boxes represent genes.
Brown bars represent exons. Bar heights are proportional to the average of normalised log2-transformed ratio of intensities from DamID in vivo
binding site experiments. (C) Heat diagram with individual overlap information.
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calculated for each gene, providing an indication of the gene’s

involvement in nervous system development. Multiple gene

lists can be searched in the database, which is a useful

method to pinpoint key genes in user generated gene lists

(e.g. expression array results).

Using the data collected for the database, we consistently

find a correlation between gene sets bound by increasing

numbers of transcription factors and genes in Drosophila

genetic screens for defects in nervous system development,

eye development and cell-cycle progression (r¼ 0.83,

Supplementary Figure S8A) or in text mining screens (occur-

rence of the gene or its homologue with neural or stem cell

terms; r¼ 0.98, Supplementary Figure S8B).

Neural stem cell gene regulatory networks highlight

genes crucial for neural development

We have shown that Asense, Deadpan, Prospero and Snail

bind to genes essential for neural development. This finding

enables us to highlight novel genes that may be involved in

neural development. The neuroBLAST database ranks genes

based on the number of transcription factors bound, together

with their appearance in external screens. In this way it

identifies known key players in neural development

(Figure 5) such as prospero, brain tumour (Bello et al,

2006; Betschinger et al, 2006; Lee et al, 2006), miranda

(Shen et al, 1997), seven up (Kanai et al, 2005) and glial

cells missing (Jones et al, 1995). The majority of these genes

are identified by multiple binding information (DamID data),

independent of external screens and weighted scores.

Interestingly, there are many high scoring genes that have

not previously been characterised for a role in Drosophila

neural development (a selection are highlighted in Figure 5).

These include CG32158, an adenylate cyclase known to be

expressed in the CNS, two putative transcription factors

(CG2052 and CG33291), an NADH dehydrogenase (CG2014)

and an F-box protein (CG9772). There is also cenG1A, an

ARF GTPase activator, is bound by all four transcription

factors and is expressed in neuroblasts (BDGP expression

screen (Tomancak et al, 2007)). CG9650 is bound by Prospero

and Deadpan, and is a homologue of the BCL11b oncogene,

which is essential for proper corticospinal neuron develop-

ment in vertebrates (Arlotta et al, 2005). Another high scor-

ing gene identified by this method is canoe (bound by all four

transcription factors, neuroBLAST score of 33.7), which has

recently been shown to regulate neuroblast asymmetric divi-

sions (Speicher et al, 2008).

High-resolution expression profiling suggests a dual

role for Asense

Using the binding data for these four transcription factors as a

foundation, we sought to construct the transcriptional net-

works governing neural stem cell self-renewal and differen-

tiation. Although DamID reports protein-binding sites, it

cannot show how individual target genes are regulated in

response to binding. Expression profiling of neuroblasts and

Figure 3 Binding profile of Asense. (A) Mean DamID peak as determined from all identified binding sites. The green dashed line represents the
peak of enrichment. (B) Plot of mean non-exonic conservation (across eight insect species) at sites of Asense binding. Red line is a moving
average plot using a window of 100 bp. (C) Frequency of predicted Asense-binding motif (CAGCTG) at sites of Asense binding (as determined
by DamID). Red line is a moving average plot using a window of 500 bp. (D) Distribution of Asense binding. UTR, untranslated region; CDS,
coding sequence.
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GMCs from wild type and mutant embryos can provide this

information, and provide greater insight into the biological

function of each of the transcriptional regulators (see, for

example, Choksi et al, 2006).

Expression profiling of asense mutants was performed on

50–100 neuroblasts and GMCs microdissected from the ven-

tral nerve cord of stage 11 wild type and mutant embryos (see

Material and methods). Figure 6A shows genes that are

bound by Asense and exhibit a significant change in expres-

sion level in asense mutant neuroblasts and GMCs. In many

cases, neuronal differentiation and Notch pathway genes

(enhancer of split complex (E(spl)-C) and bearded complex)

are upregulated in the mutant, suggesting that Asense nor-

mally represses them, whereas neuroblast genes are down-

regulated, suggesting they require Asense for expression

(Figure 6A; full data in Supplementary Table S2). This con-

trasts with our data for Prospero, which represses neuroblast

genes and is required for the activation of differentiation

genes. Combined with the fact that Prospero represses ex-

pression of Asense, these data support an antagonistic rela-

tionship between Prospero and Asense. For example, the

neuroblast genes miranda (Shen et al, 1997) and grainy

head (Brody and Odenwald, 2000) are activated by Asense

and repressed by Prospero, whereas transcription of the

differentiation gene Fasciclin I (Elkins et al, 1990) is promoted

by Prospero but inhibited by Asense (Figure 6B).

Interestingly, however, there are also examples of differentia-

tion and cell-cycle exit genes activated by Asense, such as

commissureless (Tear et al, 1996), hikaru genki (Hoshino

et al, 1996) and dacapo (de Nooij et al, 1996). Furthermore,

when the full expression array data from prospero mutants

(Choksi et al, 2006) and asense mutants are compared by

cluster analysis (Supplementary Figure S9) we find two

clusters in which genes are regulated antagonistically, but

also two clusters in which genes are similarily regulated.

These data suggest a dual role for Asense: activating the

expression of neuroblast genes and repressing differentiation

genes in the neuroblast, whereas promoting differentiation

when present in the GMC.

Discussion

We combined in vivo chromatin profiling and cell-specific

expression profiling to identify the gene regulatory networks

directing neural stem cell fate and promoting differentiation

in the Drosophila embryo. We find that the transcription

factors Asense, Deadpan, Snail and Prospero bind to many

of the same target genes. The targets of Asense, Deadpan

and Snail include neuroblast genes but also many differ-

entiation genes. The binding of these neural stem cell factors

to differentiation genes is not entirely unexpected. In verteb-

rates, stem cell transcription factors bind to and repress

differentiation genes to maintain the stem cell state (Boyer

et al, 2005; Loh et al, 2006). Additionally, it is becoming

apparent that transcription factors can have roles in both

activation and repression, in Drosophila (Choksi et al, 2006)

and in vertebrate stem cell transcriptional networks (Boyer

et al, 2005; Loh et al, 2006). The ability to either repress or

activate is likely to be due to interaction with co-factors, and

Figure 4 Properties of identified multiple transcription-binding loci (MTLs). (A) Mean plot of DNA conservation at loci with one and multiple
instances of transcription factor binding (determined by DamID). (B) Correlation between number of transcription factors bound and DNA
conservation. Hashed orange line represents predicted increase if increments are only because of the binding of 1, 2 or 3 additional factors.
(C) Frequency of genes proximal to MTLs that have alleles with nervous system phenotypes. (D) Frequency of genes proximal to MTLs that
have lethal alleles. Bars represent standard error (s.e.m.).
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the ability to recruit chromatin remodelling complexes to

specific loci.

We showed previously that Prospero represses the expres-

sion of Asense and Deadpan in GMCs, supporting a model

whereby a core set of genes involved in neuroblast self-

renewal and multipotency is activated by the neuroblast

transcription factors and repressed by Prospero. Here, we

show that, in part, Asense acts oppositely to Prospero,

promoting the expression of neuroblast genes and repressing

certain differentiation genes. However, our data also indicate

that Asense can promote the expression of some genes

required for differentiation, including the cell-cycle inhibitor

dacapo, which is a member of the p21/p27 family of cdk

inhibitors (de Nooij et al, 1996). dacapo expression inititates

in the GMC (Liu et al, 2002) and we observe a reduction in

levels of dacapo mRNA in the asense mutant neuroblasts

and GMCs, similar to what has been reported in the

developing optic lobe (Wallace et al, 2000). asense mRNA

is known to be expressed in at least a subset of GMCs

(Brand et al, 1993) and Asense protein is present in larval

GMCs (Bowman et al, 2008). This suggests that Asense

has a secondary role, to promote GMC cell-cycle exit and

differentiation. Asense is absent in larval PAN neuroblasts

whose progeny, unlike GMCs, divide in a stem cell-like

manner. (Bello et al, 2008; Bowman et al, 2008). Ectopic

expression of Asense prevents formation of these daughter

cells, which can undergo extra divisions (Bowman et al,

2008), possibly by the upregulation of dacapo, and other

differentiation genes.

The expression pattern, function and binding site specifi-

city of Asense all correlate strongly with its vertebrate

counterpart, Ascl1 (Mash1). Mash1 is expressed in neural

precursors in vertebrates (Parras et al, 2004), is known to

regulate genes involved in Notch signalling (Delta, Jag2, Lfng

and Magi1), cell-cycle control (Cdc25b) and neuronal differ-

entiation (Insm1) (Castro et al, 2006) and recognises the

E-box sequence, CAGCTG (Hu et al, 2004; Castro et al,

2006). Furthermore, Mash1 is consistently found to promote

neuronal differentiation (Sommer et al, 1995; Tomita et al,

1996), which is consistent with a pro-differentiation role for

Asense. Conversely, we show that Asense activates the

expression of certain neuroblast genes, such as miranda,

which is expressed in all neuroblasts and repressed by

Prospero. Deadpan and Snail bind to many neuroblast

genes. Given that the expression of deadpan and snail is

restricted to pan-neural neuroblasts, it is likely that they can

Figure 5 Prediction of key neural developmental genes using the neuroBLAST database. Identification of key neurogenesis genes using the
neuroBLAST database. Red arrows indicate higher expression levels and green arrows lower expression levels in the mutant tissue. Weighted
scores for each screen were generated by a random permutation algorithm, using a training set containing known nervous system development
genes.
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also activate the expression of neuroblast genes. However,

confirmation of this awaits expression profiling of deadpan

and snail mutant neuroblasts and GMCs.

Finally, we show that multiple transcription factor bind-

ing is associated with genes that have critical functions in

neural development. We show that this relationship can be

used to identify novel genes involved in neural develop-

ment, including those with vertebrate counterparts. A

similar gene network and data mining study, using two

pair-rule genes in Drosophila, has recently been used to

identify a new marker for kidney cancer (Liu et al, 2009).

Therefore, large-scale analysis of gene regulatory net-

works, as used here, provides a powerful approach to

identifying key genes involved in development and

disease.

Materials and methods

Fly lines
asense1 is a deficiency removing the entire asense gene (Gonzalez
et al, 1989). Control flies used for expression profiling were w1118.
UAS-Dam has been described previously (Choksi et al, 2006).

DamID
Full-length coding sequences from asense, deadpan and snail were
PCR amplified from an embryonic cDNA library and cloned into
pUASTNDam (Choksi et al, 2006) using BglII and NotI sites. Trans-
genic lines were generated as described previously (Choksi et al,
2006). Stage 10–11 embryos (4–7 h AEL) were collected from UAS-
Dam, UAS-Dam-Asense, UAS-Dam-Deadpan and UAS-Dam-Snail.
DNA isolation, processing and amplification were performed as
described previously (Choksi et al, 2006). Samples were labelled
and hybridised to a custom whole genome 375 000 feature tiling
array, with 60-mer oligonucleotides spaced at B300 bp intervals
(Choksi et al, 2006). Arrays were scanned and intensities extracted
(Nimblegen Systems). Two biological replicates for each TF were
performed. Log2 mean ratios of each spot were median normalised.

DamID analysis
A peak finding algorithm with false discovery rate (FDR) analysis
(PERL script available on request) was developed to identify
significant binding sites. All peaks spanning four or more
consecutive probes (4B1200 bp) over a two-fold increase were
analysed and assigned an FDR value (using 100 iterations). This
analysis was performed for each chromosome arm. Nimblegen
genome coordinates were converted to Release 5.0 of the Drosophila
genome and genes were defined as targets in which a binding event
(with an FDR of 0%) occurred within up to 5 kbp of the gene
structure (depending on the proximity of adjacent genes). MTLs
were defined as B1800 bp genomic regions (six consecutive

Figure 6 Neural stem cell transcriptional network integrating data from DamID chromatin profiling and high-resolution transcriptional
profiling of neuroblasts and GMCs. (A) Graph represents genes bound by Asense that show a significant change in expression level in asense
mutant neuroblasts and GMCs. x axis represents log2-transformed ratio of mRNA levels between wild type and asense mutant cells. (B) An
abbreviated neural stem cell transcriptional network integrating data from DamID chromatin profiling and high-resolution transcriptional
profiling of neuroblasts and GMCs. Key groupings of genes are emphasised. Arrows represent activation, bars represent repression.
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probes) containing binding events from 2, 3 or 4 transcription
factors.

Expression profiling
Using a drawn out and bevelled capillary, samples of B100 cells
were extracted in vivo from the ventral and intermedial columns of
the ventral nerve cords of late stage 11 homozygous ase1 embryos
(ase1/ FM7c, Kruppel-GAL4; UAS-GFP) and w1118 embryos. cDNA
was amplified from the cells, labelled and hybridised to microarrays
(FL002; Flychip Cambridge Microarray Facility) as described previously
(Choksi et al, 2006).

Statistics
FDR analysis was performed for DamID determined binding sites
(see above). Linear correlation regression and significance were
calculated in Graphpad Prism. Significance analysis of microarrays
(Tusher et al, 2001) was used to analyse the expression microarray
data. Genes with less than 1% FDR were identified as significant.

MICRA, conservation analysis and database construction
See Supplementary data.

Immunohistochemistry and in situ hybridisation
See Supplementary data.

Public database access of microarray data
The raw and normalised data for the DamID- binding experiments
and the expression profiling experiments described here are

available on the GEO public database (http://www.ncbi.nlm.nih.-
gov/projects/geo/). The accession numbers are as follows: Four
DamID data sets (Asense, Deadpan, Snail and Prospero)—
GSE18270. asense mutant expression profiling—GSE18214. pros-
pero mutant expression profiling—GSE18213.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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