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Abstract: This study was designed to investigate whether RET (rearranged during transfection)
mRNA over-expression could be considered an alternative driver event for the development of
medullary thyroid carcinoma (MTC), and if different RET isoforms could play a role in MTC tu-
morigenesis. Eighty-three MTC patients, whose mutational profile was previously identified by
next-generation sequencing (NGS) IONS5, were included in this study. Expression analysis was
performed by the quantitative reverse transcription-polymerase chain reaction technique. RET ex-
pression levels were found to be significantly higher in cases with RET somatic mutations than in
cases that were negative for RET somatic mutations (p = 0.003) as well as in cases with a somatic
mutation, either in RET or RAS than in cases negative for both these mutations (p = 0.01). All cases
were positive for the RET51 isoform expression while only 72/83 (86.7%) were positive for RET9
isoform expression. A statistically significant higher expression of the RET51 isoform was found in
cases positive for RET somatic mutation than in cases either positive for RAS mutation (p = 0.0006) or
negative for both mutations (p = 0.001). According to our data, RET gene over-expression does not
play a role in MTC tumorigenesis, neither as an entire gene or as an isoform. At variance, the RET
gene, and in particular the RET51 isoform, is expressed higher in RET mutated cases. On the basis of
these results we can hypothesize that the overexpression of RET, and in particular of RET51, could
potentiate the transforming activity of mutated RET, making these cases more aggressive.

Keywords: RET; RAS; medullary thyroid carcinoma; mRNA expression

1. Introduction

The rearranged during transfection (RET) proto-oncogene is localized on chromosome
10q11.2 and was first identified in 1985 based on its ability to transform NIH3T3 cells [1].
The RET proto-oncogene encodes for a transmembrane tyrosine kinase receptor involved
in the control of cell differentiation and proliferation [2]. As well as other growth factor
receptors, the RET gene may be involved in the development of human cancers through
different activating mechanisms [3]. Activating gain of function mutations are specifically
related to medullary thyroid carcinoma (MTC) [4], while RET gene rearrangements have
been reported in papillary thyroid carcinoma (PTC) [4], in lung cancer [5], and chronic
myelomonocytic leukemia [6]. Finally, overexpression of the RET gene has been demon-
strated in the most aggressive estrogen receptor-positive breast cancer [7] and in the more
advanced forms of pancreatic [8] and prostate cancer [9].

The RET proto-oncogene is subjected to alternative splicing that gives origin to
three functional isoforms: RET51, RET9, and RET43 [10,11]. Studies on animal models
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showed that RET9 is expressed in several human tissues while RET51 is only expressed
in some of them [12]. Moreover, when compared, RET9 expression has been found to
be higher than RET51 expression [13]. Conversely, RET51 isoform expression has been
reported to be higher in MTC than in PTC [14], in more aggressive forms of pancreatic
cancer [15], and in pheochromocytoma [16], suggesting a specific role of this isoform in
determining the aggressiveness of a tumor. As a matter of fact, the two isoforms are
characterized by different biochemical and biological properties, and, consequently, they
play distinct roles in tumorigenesis and/or development [17].

MTC arises from thyroid parafollicular C cells. Its overall incidence is about
0.2–0.8/100,000 people [18] and accounts for about 5% of all thyroid carcinomas. MTC can
be inherited (25%) as part of the multiple endocrine neoplasia type 2, or sporadic (75%).
The pathogenesis of this tumor is related to activating RET mutations that are germline
in hereditary cases (approximately 98% of cases) and somatic in sporadic cases (approx-
imately 45% of cases) [19,20]. The genetic landscape of sporadic MTC has been deeply
studied, and somatic mutations in the RET gene are the major events in its tumorigenesis
accounting for up to 80% of cases [21–23]. H-RAS (Harvey rat sarcoma virus) and K-RAS
(Kirsten rat sarcoma virus) mutations are indeed present in about 10–20% of cases and are
almost invariably mutually exclusive with RET mutations [21,24]. Only other rare genetic
alterations have been reported, thus 20–40% of MTC cases are still orphans of a driver
mutation [21–23].

The primary objective of the present study was to investigate whether RET gene
over-expression, a mechanism of RET activation different from activating mutation, could
be considered an alternative driver event for the development of MTC. As a secondary
objective, we also evaluated the expression levels of the two RET isoforms (RET9 and
RET51) according to the mutational profile.

2. Materials and Methods
2.1. Patients

Eighty-three MTC patients were included in this study. Tissues were collected at
surgery, immediately frozen in liquid nitrogen, and stored at −80 ◦C. All samples were pre-
viously analyzed by next-generation sequencing (NGS) IONS5, as previously described [21],
and the mutational profile of our 83 cases was used to define the groups to be analyzed in
the present study. In particular, we distinguished the 3 groups: cases with a somatic RET
mutation (RET+), cases with a somatic RAS mutation (RAS+), and cases that were negative
for RET and RAS mutations (RET− and RAS−).

All patients gave their consent to the study that was also approved by the Internal
Reviewing Board.

2.2. Expression Analysis

RNA was extracted from fresh tissues using the TRIzol reagent lysis buffer (Invitrogen,
Carlsbad, CA, USA) according to the protocol suggested by the manufacturer. Total
RNA was quantified using the Qubit RNA HS Assay. cDNA was obtained by reverse
transcription using the SuperScript IV VILO and 100 ng of total RNA in a final volume of
20 µL. The amplification of a house-keeping gene (Glucose-6-Phospate-dehydrogenase,
G6PD) was used to verify the quality of cDNA.

To analyze the RET gene and RET gene isoform expression levels, we used the quanti-
tative reverse transcription-polymerase chain reaction (qRT-PCR) technique with SsoAd-
vanced SYBR Green Supermix (Bio-Rad, Hercules, CA, USA). All reactions were performed
with the BioRad CFX96 instrument.

Primers for the quantitative amplification of the RET tyrosine kinase domain were
designed using the Primer3 software: (forward 5′ -> 3′ AACATCCTGGTAGCTGAGGG
and reverse 5′ -> 3′ CAGCAGGACACCAAAAGACC) and were respectively located on
exons 15 and 17. The efficiency and reproducibility of the primers were tested by a standard
curve using a serial dilution of TT cDNA. The efficiency of the RET TK assay was E = 97.3%,
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R2 was 0.996, and the slope was −3.38. RET9 and RET51 isoforms were amplified using
primers and conditions previously reported [14]. qRT-PCR reactions were performed in
duplicate. Ct values of the replicates were similar (difference ≤ 0.5).

The G6PD housekeeping gene was used to normalize the RET gene expression level
and its isoforms. It is not easy to find a reference tissue for MTC because normal thyroid
tissue is not a counterpart of MTC, so 2-∆∆Ct is not applicable. This is the reason for
which we decided to use the ∆Ct analysis, a well recognized method for the analysis of the
relative expression of genes. Gene expression level was calculated with the ∆Ct method
(∆Ct = Ct RET − Ct G6PD), where Ct is the threshold cycle for qRT-PCR. The lowest is the
∆Ct value, and the highest is the mRNA expression level.

2.3. Statistical Analysis

Statistical analyses were performed with the Statview 5.0 Program using the Chi-
squared test, 1-way ANOVA, and unpaired Student’s t-test. Differences were considered
statistically significant when the p-value was less than 0.05.

3. Results
3.1. RET Gene Expression

Eighty-three samples previously analyzed by NGS for their mutation profile [21] were
analyzed by qRT-PCR for RET gene expression. According to those data, cases with a RET
somatic mutation (RET+, n = 39), cases with a RAS somatic mutation (RAS+, n = 20) and
cases with no RET or RAS mutation (RET− or RAS−, n = 24). RET gene expression was
detected in all cases regardless of the presence or absence of the mutations, although at
different levels. As shown in Figure 1, a statistically significant higher expression of the
RET gene was found in RET+ cases than in RET− and RAS− cases (p = 0.005). Although
not statistically significant, RET gene expression was found to be higher in RET+ cases with
respect to RAS+ cases. Similarly, RAS+ cases had a higher level of RET gene expression
with respect to RET− and RAS− cases.
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Figure 1. RET gene expression levels according to the somatic mutation profile. A statistically
significant higher expression level was observed in RET+. Gene expression levels are reported as
∆Ct (∆Ct = Ct RET − Ct G6PD) where Ct is the threshold cycle for qRT-PCR. The lowest is the ∆Ct
value, and the highest is the mRNA expression level.
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RET gene expression levels were found to be significantly higher in RET+ cases with
respect to all other cases (i.e., RET− and RAS+) (p = 0.003) (Figure 2A). Similarly, cases
positive for RET or RAS (RET+ or RAS+) showed a higher level of RET gene expression
with respect to cases negative for both mutations (RET− and RAS−) (p = 0.01) (Figure 2B).
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gene expression level was observed in RET+ cases with respect to RET− and RAS+ cases. (B): gene expression levels
according to the somatic mutation profile. A statistically significant higher RET gene expression level was observed in RET+
or RAS+ cases with respect to cases negative for both gene alterations (RET− and RAS−).

Expression levels are reported as ∆Ct (∆Ct = Ct RET − Ct G6PD) where Ct is the
threshold cycle for qRT-PCR. The lowest is the ∆Ct value, and the highest is the gene
expression level.

3.2. RET51 and RET9 Expression

As shown in Table 1, all cases (83/83, 100%) showed a RET51 isoform expression
while only 72/83 (86.7%) showed a RET9 isoform expression. In the whole series, RET51
expression levels were significantly higher (p < 0.0001) than RET9 expression levels.

Table 1. RET9 and RET51 isoforms expression in our series of 83 MTC cases.

RET Gene Expression RET9 n(%) RET51 n(%) p

Pos expression 72 (86.7) 83 (100) Not applicable
Neg expression 11 0

∆Ct * 4.9 1.8 <0.0001
* Expression levels are reported as ∆Ct (∆Ct = Ct RET – Ct G6PD) where Ct is the threshold cycle for qRT-PCR.
The lowest is the ∆Ct value, and the highest is the mRNA expression level.

As shown in Figure 3, a statistically significant higher expression of the RET51 isoform
was found in RET+ cases than in RAS+ cases (p = 0.0006) and RET− and RAS− cases
(p = 0.001). No difference in the RET51 isoform expression levels was found when compar-
ing RAS+ cases and RET− and RAS− cases.

As shown in Figure 4A, a statistically significant higher expression of the RET51
isoform was found in RET+ cases than in RET− and RAS+ cases (p = 0.0001). RET51
expression levels were found to be significantly higher in RET+ and RAS+ positive cases
with respect to RET− and RAS− cases (p = 0.006) (Figure 4B). The RET9 isoform expression
levels were not different in RET+, RAS+, and RET− and RAS−MTC cases.
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Figure 3. RET51 isoform expression levels according to the somatic mutation profile. A statistically
significant higher expression level was observed in RET+ cases than in RAS+ cases and RET−
and RAS− cases. Gene expression levels are reported as ∆Ct (∆Ct = Ct RET – Ct G6PD) where
Ct is the threshold cycle for qRT-PCR. The lowest is the ∆Ct value, and the highest is the mRNA
expression level.
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Figure 4. (A): RET51 isoform expression levels according to the somatic mutation profile. A statistically significant higher
RET51 expression level was observed in RET-positive cases with respect to cases negative for a RET mutation. (B): RET51
isoform expression levels according to the somatic mutation profile. A statistically significant higher RET gene expression
level was observed in positive cases with respect to cases negative for both genes. Expression levels are reported as ∆Ct
(∆Ct = Ct RET – Ct G6PD) where Ct is the threshold cycle for qRT-PCR. The lowest is the ∆Ct value, and the highest are the
gene expression levels.

4. Discussion

The RET proto-oncogene encodes for a tyrosine kinase receptor involved in the control
of cell proliferation and differentiation [4]. Oncogenic mutations that constitutively activate
the ret receptor have been reported in human tumors. RET mutations involved in the
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tumorigenesis processes can be classified as activating gain of function mutations, mainly
in sporadic and hereditary MTC [25,26], and as gene rearrangements in PTC [26,27]. In
addition to these alterations, increased expression of the wildtype RET is involved in the
tumorigenesis and progression of some human tumors such as breast [7], pancreas [8], and
prostate [9]. Recently, a higher RET gene expression has been observed also in MTC with
respect to normal subjects [28]. In this study, we evaluated if an alternative mechanism
of RET activation, such as overexpression, could be involved in MTC tumorigenesis,
particularly in those cases that are still orphans of a driver mutation.

Using a qRT-PCR approach we demonstrated that RET gene expression levels are
higher in MTC cases harboring a RET somatic mutation than in cases with a RAS somatic
mutation or MTC cases without any of these mutations. These findings indicate that the
increased rate of RET transcription and its higher expression cannot be considered as
causative in RET− and RAS− cases. We recently demonstrated [29] that the prevalence
of RET somatic mutations is higher in MTC of a larger tumor size, suggesting that the
presence of this genetic alteration can induce a higher cell proliferation rate. According to
these data, RET-mutated MTC cells could have a more active metabolic condition, thus
also justifying higher levels of transcription. We could hypothesize that the over expression
of RET mRNA can potentiate the transforming acitivity of RET mutations, thus concurring
to the worse outcome of RET-mutated cases with respect to RET-negative cases and RAS-
positive cases. RET-mutated tumors (both germline and somatic) show higher transcript
levels of many epigenetic regulators than both RET wildtype and RAS-mutated MTC [30],
and we can hypothesize that the higher RET gene expression could be due to the same
mechanism.

Alternative splicing of the RET gene at the 3′ end has been described to produce
two major isoforms: RET9 and RET51 [10,11]. A RET43 isoform has also been reported,
although no evidence of its translational protein product has been provided so far [11]. The
two isoforms are characterized by different biochemical and biological properties, and, con-
sequently, they play distinct roles in tumorigenesis and/or development [17]. In particular,
RET51 more effectively enhances cell proliferation and motility as well as maintains a more
mesenchymal phenotype than RET9 [12,13] and is characterized by greater transforming
potential [17,18]. In addition, previous studies using RET gene overexpression models
have shown that RET51 has a greater transforming potential compared to RET9 [31–33].
In keeping with these observations, RET51 isoform expression is higher in MTC than in
PTC [14] and in the more aggressive forms of pancreatic cancer [15], suggesting a specific
role of this isoform in determining the aggressiveness of a tumor. In the present series,
we evaluated the expression of the two RET isoforms, and we correlated the expression
levels with the mutation profile. Interestingly, we found that all investigated cases were
positive for RET51 expression while RET9 expression was found in 72/83 MTC cases,
thus suggesting a predominant role of the longer isoform in MTC tumorigenesis. This
predominant role has been confirmed by the observation that RET51 expression levels are
higher than that of RET9.

We previously observed that overall RET51 isoform is more expressed than RET9 in
MTC [14]. In the present study we demonstrated that RET51 isoform expression is higher
in MTC cases harboring a RET somatic mutation with respect to cases with either a RAS
somatic mutation (i.e., RAS+) or any somatic mutation (i.e., RET− and RAS−). At variance,
no different levels of expression were found when analysing RET9 isoform expression.
As reported by Le Hiret al. [16] it is likely that, in tumors caused by RET mutations, the
presence of higher amounts of the long isoform can confer a selective growth advantage
as demonstrated by the evidence that, in PC12 cells, the RET51 isoform displays a more
prominent potential as compared to the corresponding RET9 isoforms [31,34]. This is in
line with our previous evidence that sporadic MTC cases with a RET somatic mutation
show a more rapid growth rate with respect to not-mutated cases in which RET51 isoform
is less expressed [29].
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5. Conclusions

In conclusion, according to our data, RET gene over-expression does not play a role
in MTC tumorigenesis, neither as an entire gene or as isoforms. At variance, RET gene,
and in particular the RET51 isoform, is expressed higher in RET-mutated cases. Taking
into consideration that the RET51 isoform seems to be able to confer a selective growth
advantage, our previous results, showing that RET mutated cases have a high percentage of
the mutated allele and that the corresponding tumors are usually bigger than not-mutated
cases, are further supported. Moreover, the overexpression of RET could potentiate the
transforming activity of mutated RET, making these cases more aggressive.
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