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Abstract: The ductus venosus is a vascular shunt situated within the fetal liver parenchyma, con-
necting the umbilical vein to the inferior vena cava. This vessel acts as a bypass of the liver micro-
circulation and plays a critical role in the fetal circulation. The ductus venosus allows oxygenated 
and nutrient-rich venous blood to flow from the placenta to the myocardium and brain. Increased 
impedance to flow in the fetal ductus venosus is associated with fetal aneuploidies, cardiac defects 
and other adverse pregnancy outcomes. This review serves to improve our understanding of the 
mechanisms that regulate the blood flow redistribution between the fetal liver circulation and fetal 
heart and the clinical significance of the ductus venosus waveform as generated by pressure-volume 
changes in the fetal heart. 
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1. INTRODUCTION 

 The ductus venosus (DV) is a vascular shunt situated 
within the fetal liver parenchyma connecting the umbilical 
vein (UV) to the inferior vena cava (Fig. 1). This vessel acts 
as a bypass of the liver microcirculation and plays a critical 
role in the fetal circulation. The DV allows oxygenated and 
nutrient-rich venous blood to flow from the placenta to the 
brain and myocardium, projecting a high-velocity jet flow 
posteriorly, from the umbilical vein to the foramen ovale [1]. 
The blood distribution through the DV is related to changes 
in umbilical venous pressure, blood viscosity, and an active 
regulation of the diameter of the entire DV [2]. Anatomi-
cally, the DV and the intrahepatic branches of the portal vein 
are arranged in parallel [3]. During pregnancy, the mean 
fraction of blood shunted through the ductus is not a constant 
[2, 3]. In human fetuses, the DV shunting rate is approxi-
mately 20-30%, and increases in the DV shunting rate are a 
mechanism of general adaptation to fetal distress [3] during 
extreme challenges of placental compromise or hypoxemia 
[2, 4, 5]. Additionally, the DV acts as a transmission line to 
the umbilical vein from pulse waves generated in the heart 
[2]. These waves, which may reflect cardiac function, are 
substantially influenced by the local variation of impedance 
and compliance [1]. 
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 An increased pulsatility index or impedance to flow in 
the fetal DV is associated with fetal aneuploidies, cardiac 
defects and other adverse pregnancy outcomes [6-9]. 
 This review serves to improve our understanding of the 
mechanisms that regulate the blood flow redistribution be-
tween the fetal liver circulation and the DV and to analyze 
the clinical significance of the DV waveform as generated by 
pressure-volume changes in the fetal heart.  

 
Fig. (1). Anatomy of the ductus venosus (DV). The DV is a vascu-
lar shunt situated within the fetal liver parenchyma connecting the 
umbilical vein (UV) to the inferior vena cava and right atrium 
(RA). 
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2. METHODS 

 To compose this review, a thorough literature search was 
repeatedly performed in PubMed and Medline, with a limita-
tion for articles written in the English language. Search terms 
used were DV, fetal venous circulation, DV shunting, ultra-
sound, and Doppler velocimetry. 

3. DUCTUS VENOSUS 

3.1. Ductus Venosus Development and Anatomy 

 The arteries and veins are developed by a combination of 
vasculogenesis and angiogenesis [10]. This process involves 
a series of steps. Vasculogenesis (VS) is the process of blood 
vessel formation occurring by de novo production of endo-
thelial cells and the construction of the primitive vascular 
plexus inside the embryo. Sometimes VS is treated as syn-
onymous with angiogenesis, which is responsible for the 
remodeling and expansion of this network. VS is under the 
control of signaling molecules secreted from endoderm cells 
and begins first in the yolk sac at day 17, where Indian 
hedgehog, bone morphogenic protein, and transforming 
growth factor β (TGF-β) modulate the yolk sac's mesoderm 
to originate hemangioblastic aggregates [11]. These cellular 
hemangioblastic aggregates are composed for hematopoietic 
stem cells and endothelial cells that coalesce to form the ex-
traembryonic umbilical vessels to act as a circulatory con-
nection between the embryo and the maternal compartments. 
Much of this complex vascular network development is un-
der the influence of vascular endothelial growth factor 
(VEGF) [10-13]. In addition, angiogenesis remodels this 
vascular system, promoting vascular intussusception that is 
facilitated by hypoxia. Oxygen depletion activates the ex-
pression of several genes, including those encoding VEGF, 
angiopoietin-2, and nitric oxide synthase [11]. These pro-
teins are important modulators of cell proliferation induction, 
guided migration, differentiation and cell-to-cell communi-
cation [14]. 
 At 4 weeks of gestation, a group of capillary networks 
begins to develop into the definitive veins of the embryo. At 
the same time, three paired venous systems form. The 
vitelline veins drain the yolk sac and the developing gastro-
intestinal tract, the umbilical veins return oxygenated blood 
from the placental tissue, and the cardinal veins drain the 
embryo [11]. Before the vitelline vein enters the venous end 
of the heart (sinus venosus), it forms the hepatic sinusoids in 
the developing liver [11]. The left vitelline vein regresses, 
and the enlarged right vitelline vein in the liver becomes the 
DV [10, 11]. The umbilical vein brings oxygenated blood 
from the placenta to the heart. Initially, the umbilical veins 
are paired, but as the embryo develops, the right umbilical 
vein degenerates, whereas the left persists [11]. The left um-
bilical vein forms a direct anastomosis with the DV, which 
delivers oxygen- and nutrient-rich blood from the placenta to 
the embryo-fetal heart. After birth, under normal conditions, 
the DV regresses and becomes the ligamentum venosum.  

3.2. Ductus Venosus Shunting 

 The mechanism of redistribution of blood flow between 
the fetal liver and the DV is still a matter of debate [3]. DV 
shunting corresponds to the percentage of umbilical blood 

flow that enters the DV, which is arranged in parallel to the 
intrahepatic branches of the portal vein [3] (Fig. 1). This 
aspect is of particular relevance because the amount of blood 
that is conducted by the DV is proportional to the resistance 
of the hepatic venous circulation [15, 16]. In other words, the 
flow regulation in the DV is a variable dependent on the de-
gree of permissiveness to the flow through this blood chan-
nel. 
 DV shunting can be assessed during pregnancy using the 
indicator dye-dilution method, a radioactively labeled micro-
sphere technique, and blood flow volume measurement using 
the Doppler ultrasound technique. In experimental situations 
in which the degree of blood flow through the DV is evalu-
ated, the increase in the DV shunting rate is a defense 
mechanism. Therefore, theoretically, an increased DV/UV 
ratio is a sign of a potential hemodynamic compromise. The 
proportion of umbilical blood shunting through the DV has 
been evaluated in several animals, such as sheep [17-26], 
macaques [27], baboons [5-28], marmosets [5] and, finally, 
humans [15, 16, 25, 29-32]. 
 Approximately 2 decades ago, Bellotti and colleagues 
[31] used color Doppler sonography to study umbilical, DV, 
and hepatic flows in 137 normal fetuses between 20 and 38 
weeks of gestation. In all the venous segments examined, 
blood flow increased significantly with advancing gesta-
tional age [31]. The weight-specific amniotic umbilical flow 
did not change significantly during gestation (120 ± 44 ml. 
min-1 kg-1), whereas DV flow decreased significantly (from 
60 to 17 ml min-1 kg-1). The percentage of umbilical blood 
flow shunted through the DV decreased significantly (from 
40% to 15%); consequently, the percentage of flow to the 
liver increased during gestation. The right lobe flow changed 
from 20 to 45%, whereas the left lobe flow was approxi-
mately constant (40%) [31]. The authors suggested that these 
changes are related to different patterns of growth of the um-
bilical veins and DV diameters [31], and the findings support 
the hypothesis that the DV plays a less important role in 
shunting well-oxygenated blood to the brain and myocar-
dium in late normal pregnancy than in early gestation, which 
leads to increased fetal liver perfusion [31].  
 The degree of shunting through the DV in the human 
fetus seems to be associated with fetal growth. In the study 
of Kiserud and colleagues, the average fraction shunted 
through the DV was 28% to 32% at 18 to 20 weeks, de-
creased to 22% at 25 weeks, and reached 18% at 31 weeks 
[30]. In this cross-sectional ultrasonographic study, fetuses at 
<10th percentile for birth weight had significantly more 
shunting (1.4%) than those at >90th percentile (95% confi-
dence interval, 0.1%-2.7%; p =0.04) [30]. In fact, Doppler 
velocimetry of the DV is abnormal only when fetuses are 
severely compromised, whereas the ratio of DV to UV flow 
rates might be an indicator of the impaired fetal condition 
[33]. 
 Tchirikov and colleagues have analyzed the blood flow 
rate through the liver as the difference between UV and DV 
blood flow [33]. The authors observed that the liver blood 
flow was significantly decreased in pregnancies with intrau-
terine growth retardation compared with normal pregnancies 
[33], and the normalized liver perfusion was significantly 
decreased only in intrauterine growth retardation pregnancies 
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[33]. The relative increase in DV blood flow in intrauterine 
growth retardation was attributed by the authors to an in-
crease in hepatic vascular resistance and not to increases in 
the DV diameter. Later, the same group of authors hypothe-
sized that changes in blood content of the liver evoked al-
terations to the vascular geometry of the DV, which would 
also affect its resistance to flow [33]. Consequently, these 
results suggest that the main factor responsible for the DV 
shunting regulation is the degree of resistance achieved by 
the portal circulation, the latter acting as a functional modu-
lator of the flow through the DV. 
 Jensen and colleagues have examined the effect of 
graded reduction in uterine blood flow on distribution of 
cardiac output and oxygen delivery to fetal organs and ve-
nous blood flow patterns in 9 fetal sheep using the radionu-
clide-labeled microsphere technique [24]. The results of this 
experiment described a graded reduction in uterine blood 
flow that induced a redistribution of fetal oxygen delivery 
and in venous flow patterns [24], influencing the DV shunt-
ing. Approximately 15 years later, the umbilical venous 
flow, DV blood flow, and blood flow to the fetal liver in 56 
severely intrauterine growth-restricted fetuses with an ab-
normal pulsatility index of the umbilical artery were com-
pared with 137 normal control fetuses [16]. In severe intrau-
terine growth-restricted fetuses, Doppler examination of 
blood flow volume showed a significant increase in the 
shunting of umbilical vein blood flow through the DV and 
noted a relatively constant blood flow to the heart and brain 
at the expense of fetal hepatic perfusion [16]. These observa-
tions suggested that chronic hypoxia promotes the flow of 
more oxygenated blood from the DV towards the left heart, 
coronary circulation and fetal brain, which is a much more 
ancillary effect to achieve in acute situations or in cases of 
severe fetal UV compromise. This reasoning can be ob-
served in one experimental study performed in 11 anesthe-
tized pregnant sheep, in which the obliteration of one um-
bilical artery increases the DV/umbilical vein volume flow 
(mL/min/kg) ratio [26]. In addition, compression of the um-
bilical cord shifts down blood flow velocity profiles in the 
DV, increasing dramatically the pulsatility index of this ves-
sel [26]. 
 To study the regulation of the DV inlet in vivo, Kiserud 
and colleagues measured the effects of vasoactive substances 
and hypoxemia on its diameter in nine fetal sheep in utero at 
0.9 gestation under ketamine-diazepam anesthesia [25]. Hy-
poxemia caused a 61% increase of the inlet diameter and a 
distension of the entire DV, suggesting that the DV inlet is 
under active regulation, demonstrated by its distension dur-
ing infusion of a nitric oxide (NO) donor or hypoxemia [25]. 
This observation has never been demonstrated in humans, 
and therefore, the presence of a sphincter in the trajectory of 
the DV remains controversial. 

3.3. Fetal Ductus Venosus Flow Assessment in Daily 
Clinical Practice 

 Doppler ultrasound is the technology of current use in 
daily clinical practice for the evaluation of the fetal DV 
waveform. In the recent years, as a result of the technologi-
cal evolution in this area, especially in the quality and reso-
lution of the ultrasound systems, Doppler ultrasound has 

proven to be an excellent technology for non-invasive 
evaluation of the fetal circulation. In particular, DV evalua-
tion is a technique that requires training and should be used 
for clinical decisions when it is performed by trained and 
properly certified operators. In fact, competence in Doppler 
assessment of the DV is achieved only after extensive super-
vised training [34]. 
 The evaluation of the DV flow can be made in the first 
[35-40] or second and third trimesters of pregnancy [41-49] 
(Figs. 2 and 3). The DV can be visualized in a mid-sagittal 
longitudinal plane of the fetal trunk or in an oblique trans-
verse plane through the upper abdomen [50].  

 

 
 

Fig. (2). Color Doppler imaging of the ductus venosus (DV) and a 
normal first-trimester DV waveform. (The color version of the fig-
ure is available in the electronic copy of the article). 
 
 According to the Fetal Medicine Foundation protocol 
[51], DV examination should be undertaken during fetal qui-
escence, in the absence of fetal movements. For an adequate 
observation of the DV, the magnification of the image 
should be such that the fetal thorax and abdomen occupy the 
whole image, and a right ventral mid-sagittal view of the 
fetal trunk should be obtained [51]. Color flow mapping 
should be undertaken to demonstrate the umbilical vein, DV 
and fetal heart [51]. This protocol suggests that the pulsed 
Doppler sample volume should be small (0.5-1.0 mm in the 
first trimester and 1.0-2.0 mm in the second and third trimes-
ters) to avoid contamination from the adjacent veins, and it 
should be placed in the yellowish aliasing area. The insona-
tion angle should be less than 30 degrees and the filter 
should be set at a low frequency (50-70 Hz) so that the a-
wave is not obscured. The sweep speed should be high (2-3 
cm/s) so that the waveforms are spread, allowing better as-
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sessment of the a-wave [51]. When these criteria are satis-
fied, it is possible to assess the a-wave and determine quali-
tatively whether the flow is positive, absent or reversed. The 
DV pulsatility index (DV-PIV), which is the Doppler ratio 
most utilized in daily clinical practice for impedance assess-
ment of the DV, is measured by the machine after manual 
tracing of the outline of the waveform [51]. 
 It is important to remember that the peak systolic velocity 
increases from 48 cm/s at 14 weeks to 71 cm/s at 41 weeks; 
therefore, the spectrum obtained by Doppler ultrasound 
should be in agreement with previously published reference 
curves [50, 52-55]. This is particularly relevant because of 
the similarity between DV waveforms and suprahepatic 
veins, which are in a satellite location to the DV and can be 
easily confused with the DV spectrum. The DV exhibits a 
normal flow-velocity profile that is typically antegrade 
throughout the entire cardiac cycle [56]. This feature is per-
missive to the semi-quantitative evaluation of its complex 
waveform. 
 The denomination of the phases that make up the DV 
venous flow-velocity waveform is closely related to the re-
spective period of the cardiac cycle. In normal conditions, 
the cardiac cycle involves five distinct phases: early diastole, 
atrial contraction, isovolumetric contraction, ejection phase, 
and isovolumetric relaxation.  

 During the isovolumetric contraction phase of the cardiac 
cycle, the ventricular pressure rises steeply with no change in 
ventricular volume as both the atrioventricular (AV) and 
semilunar valves are closed [57]. As the ventricular pressure 
continues to rise, it exceeds the pressure within the great 
arteries, and the semilunar valves open, resulting in rapid 
ejection of blood [57]. With ventricular ejection, myocardial 
deformation ensues, and this phase is associated with a drop 
in ventricular volume and pressure [57]. With the initiation 
of ventricular systole, the descent of the atrioventricular 
valve ring decreases atrial pressure and increases the amount 
of venous return that can be accommodated by the atria [56]. 
This produces the first increase in venous forward velocities, 
which peak at the S-wave [56] (Figs. 2 and 3). As the ven-
tricular pressure drops below the pressure within the great 
arteries, the semilunar valves close [57]. A period of iso-
volumetric relaxation ensues, which is associated with de-
creased ventricular pressure with no change in ventricular 
volume as the atrioventricular valves are closed [57]. At this 
time, the AV valve ring ascends towards its resting position, 
atrial pressures rise, and venous forward velocities fall to the 
first trough, designated the v-descent. As the ventricular 
pressure decreases below that of the atria, the AV valves 
open [57], and the higher pressures in the atria lead to an 
opening of the AV valves, allowing for an increase in venous 
forward velocities towards the second peak during passive 
diastolic ventricular filling (D-wave) [56] (Figs. 2 and 3). 
The atrial contraction occurs in late diastole and results in 
complete filling of the ventricles, promoting a slight increase 
in ventricular pressure [57]. During the isovolumetric 
contraction phase of the cardiac cycle, ventricular pressure 
rises steeply with no change in ventricular volume as both 
the atrioventricular and semilunar valves are closed [57]. The 
fall in venous forward velocities produces the second trough, 
designated the a-wave [56] (Figs. 2 and 3).  
 Although the correlation between the DV waveform and 
the phases of the cardiac cycle can be established temporally, 
there is no experimental evidence for a direct correlation 
between DV waveform and fetal heart function. Neverthe-
less, the continuity of venous forward flow fluctuates with 
the capacity of the heart to accommodate venous return, 
which depends on venous volume (preload), cardiac function 
(relaxation, compliance and contractility) and downstream 
arterial blood-flow resistance (afterload) [58]. In other 
words, DV blood velocity reflects the portocaval pressure 
gradient that drives this flow in addition to the portal liver 
perfusion, as assumed previously [53, 59]. However, this 
gradient must be modulated by adequate cardiac compliance, 
which varies according to the gestational age and in some 
fetal pathological conditions. Given that an umbilicocaval 
(portocaval) pressure gradient is the driving pressure for per-
fusing the liver and for causing the umbilical blood to reach 
the foramen ovale, it was assumed, in the construction of 
recent longitudinal reference ranges [53], that the peak sys-
tolic velocity or velocities close to this reflected the optimal 
perfusion pressure in the individual fetus [53]. 
 In daily clinical practice, an abnormal flow in DV is eas-
ily identified, qualitatively, by observing the absence or in-
version of the a-wave. In these cases, the pulsatility index 
increases significantly, translating a significant increase in 
the pressure gradient towards the right atrium. Nevertheless, 

 
 
Fig. (3). Color Doppler imaging of the ductus venosus (DV) and a 
normal second-trimester DV waveform. (The color version of the 
figure is available in the electronic copy of the article). 



Clinical Significance of Ductus Venosus Waveform Current Cardiology Reviews, 2019, Vol. 15, No. 3    171 

it is important to keep in mind that, during atrial systole, the 
venous blood column is in continuity with the right atrium, 
but this atrium is in continuity with the left atrium and right 
ventricle. For this reason, the identification of an abnormal 
DV waveform requires a careful examination of the fetal 
cardiovascular system, including the placental circulation, 
because multiple mechanisms of disease can coexist. The 
evaluation should be done in a systematic way and should be 
morphological and functional in order to rule out pathologi-
cal conditions such as increased cardiac preload, abnormal 
cardiac structure and function, and increased cardiac after-
load. 

3.4. Ductus Venosus Doppler to Screening of Cardiac 
Defects 

 Congenital heart defects are the most commonly occur-
ring congenital malformations that cause significant mortal-
ity and morbidity. For this reason, the interest in the early 
detection of this set of pathologies is a cause of concern for 
all those dedicated to prenatal diagnosis. In particular, visu-
alization of the fetal heart with adequate echographic resolu-
tion is only possible from the end of the first trimester, and 
therefore, the identification of risk markers for the occur-
rence of congenital heart defects deserves the full commit-
ment of the sonographers. Growing evidence suggests that 
assessment of DV flow improves the performance of nuchal 
translucency (NT) screening for cardiac defects.  
 With the objective to evaluate in a meta-analysis the 
screening performance of abnormal DV Doppler waveforms 
for detection of congenital heart disease (CHD) in chromo-
somally normal fetuses, a group of authors analyzed seven 
studies regardless of the NT status, nine studies with in-
creased NT and seven studies with normal NT [60]. In popu-
lations including participants regardless of NT status, the 
summary sensitivity and specificity of DV for detecting 
CHD were 50 and 93%, respectively [60]. In participants 
with increased NT, the summary sensitivity and specificity 
were 83 and 80%, and in those with normal NT, the sum-
mary sensitivity and specificity were 19 and 96%, respec-
tively [60]. The findings of this meta-analysis on chromo-
somally normal fetuses demonstrate that the DV waveform 
examination has moderate sensitivity for detecting CHD 
[60]. However, the authors concluded that DV assessment 
for the detection of CHD in chromosomally normal fetuses 
can be considered in evaluating the potential use and limita-
tions of this screening test [60]. These results are consistent 
with more recent evidence suggesting that in chromosomally 
normal fetuses, the addition of an abnormal DV a-wave to 
increased NT does not improve the screening performance of 
NT in the detection of major hearts defects in the first tri-
mester [61].  
 In conclusion, in fetuses with normal NT, the sensitivity 
of this marker is not strong enough to be used as a screen-
ing test for CHD [62]. Additionally, because there are some 
small differences in the DV flow of trisomy 21 (T21) fe-
tuses with and without CHD, DV flow is not clinically use-
ful in this group of patients [63]. Further investigations are 
needed to enhance the clinical utility of the DV in associa-
tion with other markers of CHD in high-risk pregnancies 
[64, 65]. 

3.5. Ductus Venosus Doppler Contribution to Screen for 
Chromosomal Defects 

 NT screening combined with maternal age at early mid-
trimester can identify approximately 75% of chromosomal 
abnormalities, with a false-positive rate of 5% [66, 67]. To 
improve the test performance, Doppler parameters have been 
included in the screening of fetal chromosomal abnormali-
ties. In the first trimester, a reversed a-wave is associated 
with an increased risk for chromosomal abnormalities [68] 
and fetal death [69] in singleton and twin pregnancies [70]. 
However, in approximately 80% of cases with a reversed a-
wave, the pregnancy outcome is normal [69]. Combining the 
DV-PIV and NT, overall sensitivity decreased to 55%, but 
specificity reached 99.3%, with a negative predictive value 
of 99.3% [71]. Because changes in the DV-PIV can be found 
in fetuses with chromosomal abnormalities, with or without 
cardiac defects, and in those with certain cardiac abnormali-
ties with normal karyotypes, the DV-PIV should not be used 
as a first-line screening test at 10–16 weeks of gestation [71]. 
Although the DV-PIV does not increase the number of cases 
detected by NT, it can be useful as a second-line test in 
screen-positive cases with NT in order to increase the speci-
ficity, reducing the need for invasive testing [8, 71]. Addi-
tionally, because DV blood flow pattern is correlated with 
the nuchal translucency measurement, it cannot be used as an 
independent variable to reduce the indication for fetal karyo-
typing [72]. 

3.6. Ductus Venosus Doppler in the Management of In-
trauterine Growth Restriction 

 Decreased, absent, or reversed flow in the a-wave of the 
DV may represent myocardial impairment and increased 
ventricular end-diastolic pressure resulting from an increase 
in right ventricular afterload. This abnormal DV waveform 
has been documented in fetuses with intrauterine growth 
restriction (IUGR) and linked to an increased neonatal 
acidemia and perinatal mortality [66]. 
 Recently, in a sheep model of increased placental vascu-
lar resistance, a group of authors investigated whether hy-
poxemia without acidemia affects the DV blood velocity 
waveform pattern in sheep fetuses with an intact placenta 
and whether worsening acidemia and impending fetal death 
are related to changes in DV velocimetry in fetuses with in-
creased placental vascular resistance [73]. The principal con-
clusion of this important experimental study was that fetal 
hypoxemia increases the pulsatility of the DV blood velocity 
waveform pattern [73]. However, in fetuses with elevated 
placental vascular resistance, DV pulsatility does not in-
crease further in the presence of severe and worsening fetal 
acidemia and impending fetal death [73]. The authors state 
that fetal hypoxemia can increase pulsatility in the DV blood 
velocity waveform pattern [73]. However, it appears that it 
cannot recognize those ovine fetuses that will become acidic 
and even die within a short time period [73], suggesting that 
the development of an abnormal DV blood flow pattern re-
quires additional pathophysiological events that lead to in-
creased ventricular end-diastolic and systemic venous pres-
sures [73]. In human fetuses, the duration of absent or re-
versed flow during atrial systole in the DV is a strong predic-
tor of stillbirth that is independent of gestational age [74].  
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 Although a progressive predictable sequence of placental 
and fetal Doppler changes has been described as an adaptive 
mechanism to a suboptimal intrauterine environment in 
pregnancies affected by IUGR, the optimal surveillance pat-
tern and timing of delivery remain the focus of much debate 
and research, with no internationally accepted approach to 
management [75]. With the objective to assess whether 
changes in the fetal DV Doppler waveform could be used as 
indications for delivery instead of cardiotocography (CTG), 
an extensive randomized study (including women with sin-
gleton fetuses at 26-32 weeks of gestation who had very pre-
term fetal growth restriction) found that when the timing of 
delivery was based on the study protocol using late changes 
in the DV waveform, the results exhibited an improvement 
in the developmental outcomes at 2 years of age [76, 77]. 
Although assuming that the optimal management of early 
IUGR fetuses should integrate clinical, Doppler, and CTG 
parameters, the authors caution that severe anomalies in the 
DV, when they precede CTG abnormalities, are an indication 
for undertaking delivery [77]. 

3.7. Ductus Venosus Doppler Contribution to Screening 
of Monochorionic Twin Complications 

 Ultrasonography is central to the proper diagnosis of the 
type of twinning. Monochorionic twin pregnancies are at 
increased risk for adverse outcomes compared to dichorionic 
twin pregnancies and singletons, including twin-twin trans-
fusion syndrome (TTTS), twin anemia-polycythemia se-
quence, single intrauterine fetal demise and its consequences 
on the co-twin, and selective intrauterine growth restriction 
[78]. In particular, TTTS is associated with significant mor-
tality and morbidity [79].  
 Several studies have assessed the role of first- and early 
second-trimester markers in the prediction of TTTS in 
monochorionic twin pregnancies [80] because DV flow pro-
files and the timing of waveform events are already altered 
in preTTTS and in the early-stage disease [81]. As a corol-
lary of an extensive meta-analysis that included approxi-
mately 2000 pregnancies, of which 323 developed TTTS, an 
increased risk of TTTS was associated with intertwin NT 
discrepancy (positive likelihood ratio (LR+), 1.92 (95% CI, 
1.25-2.96); a negative likelihood ratio (LR-), 0.65 (95% CI, 
0.50-0.84)); NT  >  95th percentile (LR+, 2.63 (95% CI, 1.51-
4.58); LR-, 0.85 (95% CI, 0.75-0.96)); CRL discrep-
ancy  >  10% (LR+, 1.80 (95% CI, 1.05-3.07); LR-, 0.92 (95% 
CI, 0.81-1.05)); and abnormal DV flow (LR+, 4.77 (95% CI, 
1.33-17.04; LR-, 0.49 (95% CI, 0.17-1.41)) [80]. The highest 
sensitivities were observed for intertwin NT discrepancy 
>10% (52.8% (95% CI, 43.8-61.7%)) and abnormal DV flow 
(50.0% (95% CI, 33.4-66.6%)) [80]. Additionally, unbal-
anced blood volume in TTTS led to alterations in the time 
intervals of DV, suggesting that the assessment of DV Dop-
pler velocimetry will provide detailed information on fetal 
cardiac function before and after laser therapy [82]. 

3.8. Agenesis of the Ductus Venosus 

 Congenital absence of the DV (ADV) is a rare vascular 
anomaly with a controversial prevalence. Prognosis largely 
depends on other fetal cardiac and extra-cardiac anomalies, 

chromosomopathies, the presence of effusions/hydrops fe-
talis and the pattern of umbilical venous drainage associated.  
 There are three main patterns of drainage. If the umbili-
cal vein bypasses the liver, it leads to an increased and un-
regulated flow into the right atrium (46%), putting this fetus 
at risk of developing cardiomegaly; this can result in high-
output cardiac failure and hydrops. The umbilical vein can 
also bypass the liver and connect to the inferior vena cava by 
one iliac or renal vein (26%), causing hyperperfusion of the 
liver sinusoids and portal hypertension and hydrops. Lastly, 
the umbilical vein may connect to the portal circulation 
without giving rise to the DV (21%) [83, 84]. Therefore, 
when ADV is detected, a more detailed fetal examination 
and the detection of other anomalies is often necessary.  
 The exact etiology of ADV is unclear, and it may result 
from primary agenesis and/or functional or structural clo-
sure. Usually, ADV can be detected during the early scan of 
the first trimester evaluation [85], but in some cases, the ul-
trasound scan is reported as normal in early pregnancy; there 
can be a missed diagnosis, but another explanation is the 
formation of a secondary closure due to an unknown gradual 
condition [86]. ADV can appear associated with varying 
comorbidities, some of which are incompatible with life: 
cardiomegaly, chromosomopathies, altered fetal growth and 
hepatic calcifications [87]. It was reported [84] that the over-
all survival rate was 60% and only 50% when the ADV was 
associated with effusions/hydrops. However, if there was no 
evidence of hydrops and cardiac overload associated with the 
ADV, the survival rate was 100%, regardless of the type of 
ADV [84]. In fact, many studies report a good outcome 
when there is no further pathological finding, as 
chromosomopathy or hydrops [84, 85, 88]. Fetuses with 
ADV and restrictive alternative umbilical venous pathways 
may have a more benign clinical course because the “small 
shunt” is unlikely to induce cardiac failure [88]. Not only the 
caliber of the shunt but also the NT thickness, seems to be 
important in the evaluation of the prognosis unless ADV 
appears isolated [85, 88].  
 Postnatally, cessation of umbilical venous flow occurs, 
and the short-term impact does not appear to be significant 
[84], with a regression of the anomaly [88]. However, ADV 
may lead to significant long-term complications if associated 
with particular fetal anomalies, such as portal vein agenesis 
with extrahepatic umbilical vein drainage or congenital ab-
sence of the portal venous system. Although ADV with in-
trahepatic drainage is associated with better chances of sur-
vival, infants with congenital absence of the portal venous 
system, complicated with intrahepatic drainage, have a po-
tentially serious condition [86].  
 Fetal echocardiography, with access to detailed anatomy, 
and fetal karyotyping are recommended actions when ADV 
is noticed [84]. The ultrasound plays an important role not 
only in detecting abnormalities that can help dictate the 
prognosis but also allowing parental counseling. 

3.9. Patent Ductus Venosus 

 Patent DV (PDV) is a rare congenital condition where the 
DV persists as a portosystemic shunt connecting the portal 
system and inferior vena cava [89-91]. A DV flow effect in 
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neonatal liver and its persistence after birth remain an un-
clear subject [90-92]. Few cases have been described so far, 
and diagnoses occurred not only in early childhood but also 
in adulthood or even on autopsy studies [93-96]. The major-
ity appear sporadic, but a recessive genetic heritage has been 
hypothesized since the description of PDV in three brothers 
[89]. 
 DV blood flow influences important liver functions in 
early neonates, such as ammonia detoxification, coagulation 
and serum bile acid concentration [97]. When this portosys-
temic communication persists, hepatic atrophy and hepatic 
failure will develop, and biochemical markers include 
hypergalactosemia, hyperbilirubinemia, hyperammonemia, 
an increased coagulation time and an augmented serum bile 
acid concentration. Thereafter, presentation of PDV includes 
systemic manifestations, representing hepatic, pulmonary 
and cardiac dysfunction [97-99]. Manifestations reported 
include cholestatic jaundice [93-100], hepatic encephalopa-
thy [91, 94, 95, 99], massive gastrointestinal bleeding [98]; 
acute liver failure [99, 101]; respiratory distress [102] and 
pulmonary arteriovenous fistulae [103, 104], and tumor-like 
hepatic lesions [92, 105]. A child with a single ventricle, 
who presented with spontaneous microbubbles on echocar-
diography, was found to have a PDV [106]. Other peculiar 
associations have been reported. Yamaguchi et al. presented 
a girl with T21 who was diagnosed with PDV after neonatal 
cholestasis and a transient abnormal myeloproliferative dis-
order [100]. Sagiv-Friedgut et al. questioned a genetically 
linked association of PDV and immunoglobulin E syndrome 
after their description of these conditions in a pair of siblings 
[107]. An association between PDV and autoimmune disor-
ders was noted by Yashimoto et al. [102]. Acute liver failure 
has been associated not only with PDV but also with Entero-
virus infection and neonatal hemochromatosis [99, 101]. One 
case of Budd-Chiari syndrome has been associated with 
PDV and confirmed only in autopsy [96].  
 Given these pleiotropic presentations, diagnosis may be 
challenging. Usually, biochemical alterations suggest a he-
patic disorder, and a liver ultrasound or abdominal computed 
tomography (with or without angiographic study) is per-
formed. This may reveal or at least raise the suspicion of a 
portosystemic shunt [91, 94, 95, 97, 99, 102, 103, 105, 106]. 
Magnetic resonance angiography has also been suggested as 
an important diagnostic tool, specifically for infants [108].  
 Most cases improve substantially with anomalous shunt 
closure by surgical ligation (via laparotomy or laparoscopy) 
or embolization using a vascular plug through interventional 
radiology [90, 91, 93-95, 98, 99, 101-104]. 
 In summary, the DV acts as a bypass of the liver micro-
circulation and plays a critical role in the fetal circulation. 
The DV allows oxygenated and nutrient-rich venous blood to 
flow from the placenta to the myocardium and brain. In-
creased impedance to flow in the fetal DV is associated with 
fetal aneuploidies, cardiac defects and other adverse preg-
nancy outcomes. Further research is necessary to determine 
the importance of the DV Doppler assessment in improving 
perinatal outcomes. 
 

CONCLUSION 

 In conclusion, the DV acts as a bypass of the liver micro-
circulation and plays a critical role in the fetal circulation. 
The DV allows oxygenated and nutrient-rich venous blood to 
flow from the placenta to the myocardium and brain. In-
creased impedance to flow in the fetal DV is associated with 
fetal aneuploidies, cardiac defects and other adverse preg-
nancy outcomes. Further research is necessary to determine 
the importance of the DV Doppler assessment in improving 
perinatal outcomes. 

LIST OF ABBREVIATIONS 

ADV = Congenital Absence of the Ductus Veno-
sus 

AV = Atrioventricular 
CHD = Congenital Heart Disease 
CTG = Cardiotocography 
DV = Ductus Venosus 
DV-PIV = Ductus Venosus Pulsatility Index 
IUGR = Intrauterine Growth Restriction 
LR = Likelihood Ratio 
NO = Nitric Oxide 
NT = Nuchal Translucency 
PDV = Patent Ductus Venosus 
T21 = Trisomy 21 
TGF-β = Transforming Growth Factor β 
TTTS = Twin-Twin Transfusion Syndrome 
UV = Umbilical Vein 
VEGF = Vascular Endothelial Growth Factor 
VS = Vasculogenesis 
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