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Abstract

Around 1923 the soon-to-be famous Soviet mathematician and probabilist Sergei N. Bernstein started to construct
an axiomatic foundation of a theory of heredity. He began from the premise of stationarity (constancy of type propor-
tions) from the first generation of offspring. This led him to derive the Mendelian coefficients of heredity. It appears
that he had no direct influence on the subsequent development of population genetics. A basic assumption of
Bernstein was that parents coupled randomly to produce offspring. This paper shows that a simple model of
non-random mating, which nevertheless embodies a feature of the Hardy-Weinberg Law, can produce Mendelian
coefficients of heredity while maintaining the population distribution. How W. Johannsen’s monograph influenced
Bernstein is discussed.
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Introduction

The model used here is of a population consisting of
three types of female and male individuals denoted by T0,
T1 and T2. The population reproduces in discrete and non-
overlapping generations and is assumed to be stationary in
senses which are to be described.

This paper concerns mainly the first result of Berns-
tein which was a proof that Mendel’s coefficients of hered-
ity (to be defined in Section 2) were a necessary outcome if
one assumed stationarity from the first generation of off-
spring, plus random mating, and that the union of two of the
types, T0 and T2 always produced offspring of type T1.

S.N. Bernstein (see Seneta (2001) for a biographical
sketch) published condensed versions of his work in two
short papers (Bernstein 1923a,b). Only the first of these is
considered here. The second considers the case when there
are an arbitrary number of types of individuals and another
(non-Mendelian) form of heredity. Sheynin (2004) pro-
vides translations into English of Bernstein’s publications
in Russian which concern the 1923 papers. The first of
these (Bernstein, 1922) gives background to the 1923 pa-
pers and refers to the studies on evolution by Charles Dar-
win (1859), experimental findings by Mendel (1866, 1965)
and biometrical work of Francis Galton and Karl Pearson.
Bernstein hoped that mathematics could help to unify the
various theories of evolution. The second paper (Bernstein,

1924) gives the solution in detail together with other mod-
els not considered here. A similar English version of the
second paper (Bernstein, 1942) was provided by Emma
Lehner of the University of California, Berkeley. Lehner
states that the original paper of 1924 appeared in Annales

Scientifiques de l’Ukraine, Vol. 1 (1924). p. 83-114.
Lehner’s version contains only the first half of the Berns-
tein (1924) paper.

Ballonoff (1974) reproduced Bernstein’s two papers
of 1923 (in the original French). Later (Bernstein, 1976) he
published an English translation of large parts of the 1924
paper which omitted some details of the proofs of theorems
(in this he transliterated the author’s name as “Bernshtein”,
but in the references of this paper, in the interests of consis-
tency, it is given as “Bernstein”). This was accompanied by
a short introduction in the same periodical (Ballonoff,
1976). The following quotation from Ballonoff (1976) sug-
gests that Ballonoff completely missed the main point of
the Bernstein (1923a) paper, despite the point being spelled
out in the title of the paper. “There are two major results of
this paper, one already an accepted part of genetics theory,
the other yet un-explored! The accepted result is the <<Har-
dy-Weinberg>> law for the equilibrium of Mendelian ge-
netic systems.” The other result to which Ballonoff refers is
outside the scope of this paper. As noted above, the main
point of Bernstein’s research was to establish Mendel’s
first law.

Lyubich has written a number of papers, including
Lyubich (1971 - translated into English by J. Wiegold) and
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Lyubich (1973), which were inspired by Bernstein’s work,
culminating in a monograph (Lyubich, 1992).

By the 1920’s the importance of the short paper by
Hardy (1908) was recognised by geneticists, although the
almost simultaneous independent presentation of the same
idea, almost in passing by Weinberg (1908) in a more ambi-
tious paper on the inheritance of twinning in humans, had
been overlooked till the 1940’s

An interesting feature of Bernstein’s presentation is
that he derives Mendel’s first law through Hardy’s formula
without any reference to Hardy. The only references in
Bernstein (1924) were to his own paper of 1922 and to the
monograph of Johannsen , given as “3. Auflage” [Third
Edition], but with no date. Bernstein’s (1922) paper is fairly
general relating mainly to his desire to enhance biology by
providing mathematical underpinnings to it. In his English
version of Bernstein (1924) Sheynin’s references include:
“Johannsen, Wm (1926) Elemente der exakten
Erblichkeitslehre. 3. Aufl. Jena.” Clearly there is a discrep-
ancy in publication years between Bernstein (1924) and
Johannsen (1926). The English-language version of Berns-
tein (1924) given by Sheynin contains the following:
“Here, I shall not dwell on those fundamental consider-
ations which convinced me in that, when constructing a
mathematical theory of evolution, we ought to base it upon
laws of heredity obeying the principle of stationarity. I only
note that the Mendelian law, which determines the inheri-
tance of most of the precisely studied elementary traits, sat-
isfies this principle (Johannsen 1926, p. 488). The so-called
Mendelian law concerns three classes of individuals, two of
them being pure races and the third one, a race of hybrids
always born when two individuals belonging to pure races
are crossing”.

We shall assume that Bernstein had to hand, in es-
sence, Johannsen (1913), that is the 2nd edition [2 Auflage].
Johannsen was familiar with the Hardy-Weinberg distribu-
tion of genotype frequencies and gives it in his book
(Johannsen, 1913, p.486).

Our next section gives basic concepts and notation as
well as a summary of the Hardy-Weinberg formulae. This
is followed by Bernstein’s (1924) question and a reference
to his proof without the details. We then demonstrate that
stasis (that is, constancy of type proportions over all gener-
ations , including the zeroth parental proportions) is possi-
ble under non-random mating. A model of assortative
mating which is a special case of non-random mating, to-
gether with a numerical example, is next. The final section
suggests that Johannsen supplied all the background which
Bernstein needed and makes some general comments.

Basic Concepts and Notation and
Hardy-Weinberg Equilibrium

The concepts and methods which we use have been
described disparagingly by Ernst Mayr as “beanbag genet-

ics”. Individuals are completely characterised by type of
which there are three, namely T0, T1, T2. Although they are
not emphasized here, genes G and G determine type ac-
cording to the following correspondence: GG ~ T0;
GG ~ T1; GG ~ T2. The effectively infinite population is re-
produced sexually in discrete and non-overlapping genera-
tions. Taking account of gender there are 9 mating combi-
nations as defined by the matrix:

T T T T T T

T T T T T T

T T T T T T

0 0 0 1 0 2

1 0 1 1 1 2

2 0 2 1 2 2

x x x

x x x

x x x

�

�

�
�
�

�

�

�
�
�

(1)

A ‘child’ which is one of the three types arises from
each coupling and the aggregate of children form the new
generation, later to become parents, in their turn. From his
study of peas Mendel established his first law. For each of
the above couplings it gives the set of probabilities as to
type of child. If we take the outputs, by column , of the 9
couplings, Mendel’s first law can be expressed in the form
of the following matrix:

�

M �

1 1 2 0 1 2 1 4 0 0 0 0

0 1 2 1 1 2 1 2 1 2 1 1 2 0

0 0 0 0 1 4 1 2 0 1

/ / /

/ / / / /
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�

(2)

where the order of columns is by mating couples:

	T T T T T T T T T T T T

T T T T T

0 0 0 1 0 2 1 0 1 1 1 2

2 0 2 1 2

x x x x x x

x x

, , , , , ,

, , 
xT2

(3)

and the rows are the proportions of offspring in the respec-
tive categories T0(GG), T1(GG), T2(GG).

�

M shows, for ex-
ample, that coupling T1 x T2 produces offspring in the
proportions 0, 1/2, 1/2. We shall call entries of arrays such
as

�

M coefficients of heredity. The important point to realise
about

�

M is that it expresses probabilities relating to out-
comes of single coupling events.

To use the law to make predictions about populations
requires a further step, namely a specification of the rule of
formation of the aggregate of couples. The most appealing

rule is that they are formed randomly. This can be ex-
pressed in the form of a matrix of proportions of couples in
the order given before. Following Bernstein (1924), we use

the symbols �� 
� � to denote the frequencies (proportions)
of the respective types T0, T1, T2, the same in each gender.
Then random mating is given by a vector whose form is, in
accordance with the form (3):

� �U ' , , , , , , , ,� � �
 �� 
� 
 
� �� �
 �2 2 2 (4)

Then the composition of the population, that is the
proportions of the three types, following one round of ran-
dom mating under Mendel’s law is given by
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The vector
�

T is known as the Hardy-Weinberg distri-
bution after the originators Weinberg (1908) and Hardy
(1908). This can be expressed more compactly after intro-
ducing the following definitions:

g g� � � ��



�



2 2
; (6)

The quantities g and g, which are referred to as gene
frequencies, give the proportions of genes of the two kinds
in the population since they weight the type frequencies ac-
cording to the number of genes, G or G, in each type. Then

�

T g gg g' { , , }� 2 22 (7)

The important property of the Hardy-Weinberg for-
mulation follows if we now subject the new array of type
frequencies to another round of random mating. The cou-
pling frequencies are given by the vector form:

( *) {( ) , ( ) , , , ( ) ,

, ,

U g g gg g g ggg gg

ggg g g

� � 2 2 2 2 2 2 2

2 2 2

2 2 2

2 2 2 2 2g gg g, ( ) }
(8)

Since g + g = 1, the type frequencies among offspring
are:

( *) { , , }
�

MU g gg g� � 2 22 (9)

that is, identical to
�

T. So one round of random mating pro-
duces a set of type frequencies which are maintained indefi-
nitely under random mating, often referred to as Hardy-
Weinberg equilibrium. Notice that gene frequencies, as
given by Eq. (6), of the initial parental generation are main-
tained.

Notice that the mating vector U* has the property that
frequency of matings of type T1 x T1 is 4 times that of either
T0 x T2 or T2 x T0, since the corresponding array is {g2, 2gg,
g2}. We express this in self-evident notation to be formal-
ized shortly as:

f11 = 4f02

Hardy (1908) pointed out that if the initial parental
frequencies satisfy the relation


2 = 4�� (10)

then equilibrium frequencies will have been attained under
random mating, even after the first round of mating.

Ewens (2004, p. 5), as a comment on Eq. (10),
Hardy’s equation, points out reasons why the Hardy-Wein-
berg Law is so important. Firstly, a population can be char-
acterised by a single gene frequency rather than a set of
genotype frequencies, so it provides economy of descrip-
tion. But much more important is the “stability behaviour”,
that is: there is no tendency for genetic variability to dissi-
pate. As we stress, stationarity was the bedrock on which
Bernstein based his proof.

Mayo (2008) concludes the summary of his review
article on the Hardy-Weinberg Law with “Its discovery
marked the initiation of population genetics”.

Bernstein’s Question

Bernstein (1924) repeated the steps above leading to
the derivation of the Hardy-Weinberg proportions. He then
turned the problem around by asking, if the population

maintains constant proportions of types, namely {�� 
� �},
after an initial round of mating, and assuming mating is ran-
dom, whether this implies that the heredity coefficients are
necessarily those given by

�

M. He began with a general form
denoted by M where M is given by

p q r s t u v w x

p p q q r r s s t t u u v v w w1 1 1 1 1 1 1 1 1                  
�

�

�
�
�

�

�

�
�
�

x x

p q r s t u v w x

However this form is too general to work towards constancy of type proportions from the first generation and
Bernstein modified it to

�

M

p q q t u u x

p p q q q q t t u u u u x x

p

�               

0 0

1 1 1 1 1 1 1 1 1

q q t u u x0 0

�

�

�
�
�

�

�

�
�
�

(11)

That is he assumed that mating T0 x T2 and the recip-
rocal mating T2 x T0 always produce offspring of type T1

and the other reciprocal matings produce offspring identi-
cally.

After one round of random mating the population
structure is

� �

T MU� (12)

Bernstein (1924) then submits this population to a

further round of random mating and he proves that
�

M is the

only set of heredity coefficients which reproduce
�

T, this be-

ing the Hardy-Weinberg array
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that is
� �

M M! .
Thus

p p q q

t t u u

x x

� � � �

� � � �

� �

1 0 1 2 0

1 4 1 4 0 1 2

0 1

, , / , ,

/ , / , , / ,

,

(14)

The argument by which he shows this is most readily
seen in Bernstein (1942).

Stasis Under Non-Random Mating

In this section we show that with two crucial assump-
tions, it is possible to derive Mendel’s heredity coefficients
under non-random mating, and the assumption of stasis:
that the proportions of types remain constant from an initial
parental generation. We first assume

M M�
�

which is just Bernstein’s (11).
Secondly assume that the matings vector is any prob-

ability distribution of the form:

U a b c b c d c d e' { , , , , , , , , }� 4 (15)

Thus the mating matrix (15) has the property that the
frequency of mating T1 x T1 is 4 times that of both T0 x T2

and T2 x T0. This last echoes the condition (10) of Hardy.
Applying

�

M and U gives offspring of types T0 and T2:

T pa qb tc ud xe0 2 4 2� � � � � (16)

T pa qb tc ud xe2 2 4 2� � � � � (17)

However the parental distribution is

{ , , }a b c b c d c d e� � � � � �4 (18)

Equating the coefficients of {a, b, c, d, e} in Eqs. (16)
and (17) with their coefficients in the parental distribution
(18) yields (14).

The step of equating coefficients of {a, b, c, d, e} in
Eqs. (16) and (17) with their coefficients in the parental dis-
tribution (18) can be justified rigorously by a few steps of
matrix theory from the fact that , for example, Eq. (16) is to
hold for fixed {p, q, t, u, x} but for all {a, b, c, d, e} for
which Eq. (15) forms a probability distribution.

Stasis Under Assortative and Random Mating

We now denote the proportions of couples in the vari-
ous mating combinations by fij, (i = 0, 1, 2; j = 0, 1, 2), indi-
cating the proportion of the mating Ti x Tj.

Stark (1976a,b) gives a mating system which can
maintain a given departure from the Hardy-Weinberg form
of genotype frequencies. In these citations Mendel’s first

law was assumed to hold [That is, the heredity coefficients
are given by Eq. (2)].

In this mating model the proportions of mating cou-
ples are given by

fij = fifj(1 + mdidj/V) (19)

where fi is the genotypic frequency of Ti, i = 0, 1, 2.

m
f f f

f f f f f f
�

 

� �

4

4
0 2 1

2

1 2 0 2 0 1

(20)

V f f f f f f� � �1 2 0 2 0 14 (21)

d f f d f f d f f0 2 1 1 0 2 2 0 12 2�  � �  � �( ), , (22)

The terms d0, d1 and d2 are phenotypic values attrib-
uted to the respective types. The second is intermediate in
value between the other two and separated from each by 1.
V is the variance of these values with respect to the distribu-
tion of type frequencies and m is the correlation between
mates with respect to their phenotypic values which are
standardised by dividing by their standard deviation.

The mating matrix of Eq. (19) satisfies f11 = 4f02, since
f02 = f0(f1)

2f2/V
2 and f11 is 4 times that expression, so that, by

the general result of the previous section on mating matri-
ces of type (15), genotype frequencies are maintained, veri-
fying the earlier results of Stark (1976a, 1976b).

We give a numerical example of such a mating matrix
which serves to illustrate various features of the model (and
which allows for considerable flexibility as demonstrated
here by incorporating a ‘taboo’ of mating T0 x T0):

�

C �
�

�

�
�
�

�

�

�
�
�

�
1

625

0 26 39

26 156 138

39 138 63

0 00416 0062. . 4

00416 02496 02208

00624 02208 01008

. . .

. . .

�

�

�
�
�

�

�

�
�
�

(23)

�

C is symmetric with elements adding to 1 and the middle el-
ement is 4 times the upper right hand (and lower left hand)

element. Summing rows and columns of
�

C gives the distri-
bution of types in females and males, namely {13/125,

64/125, 48/125}. The important property of
�

C is that, if
Mendelian heredity coefficients are applied to it, the off-
spring distribution is identical to the parental distribution.
The offspring then become the next parents and so can con-
tinue the population in unchanged form.

Example (23) conforms to (19) with {f0, f1, f2} =
{13/125, 64/125, 48/125}, m = -1/4, d0 = -32/25, d1 = -7/25,
d2 = 18/25, V = 256/625.

By contrast, if random mating is applied to frequen-
cies {13/125, 64/125, 48/125}, the distribution of offspring
is {81/625, 288/625, 256/625} and following a further
round of random mating, this offspring distribution is re-
produced. This is stationarity in the Bernsteinian sense, im-
itating the conclusion of the Hardy-Weinberg Law. Note
that, considering these proportions as genotypic frequen-
cies, gene frequencies remain constant at g = 9/25 and
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g = 16/25 under both random and assortative mating, that is
stasis in this gene frequency, rather than genotype fre-
quency , sense is achieved under both systems of mating.

Discussion

Since the theme of Bernstein (1923a) is the main fo-
cus of this paper, it is appropriate to discuss further
Bernstein’s achievements and limitations, in respect of that
paper. We believe that this paper encapsulates Bernstein’s
most notable contribution to genetics although he wrote
much more which he considered important.

In his celebrated and contentious paper Fisher (1936)
writes “In 1930, as a result of a study of the development of
Darwin’s ideas, I pointed out that the modern genetical sys-
tem, apart from such special features as dominance and
linkage, could have been inferred by any abstract thinker in
the middle of the nineteenth century if he were led to postu-
late that inheritance was particulate, that the germinal mate-
rial was structural, and that the contributions of the two
parents were equivalent”. Bernstein (1923a) demonstrates
that he not only anticipated Fisher’s assertion but showed
how it could be realised mathematically. Fisher believed
that Mendel had a clear view of his own first law during the
course of his experiment. In relation to Fisher (1936) Fran-
klin et al. (2008, p. ix) write “It is our contention that this
controversy should end.” While Fisher (1936) continues to
fascinate, Bernstein (1923a) and his other writings have
been largely ignored. His two papers of 1923 and Bernstein
(1942) are listed in Felsenstein (1981) and there is a pointer
to Holgate (1975) against the key word ‘stationarity’. There
is no reference to Bernstein in Wright (1969) but many to
Fisher and J. B. S. Haldane, as well as to other notable fig-
ures in the development of population genetics.

The discipline of genetics in the Soviet Union experi-
enced two periods of turbulence and isolation. The first was
because of the First World War and the revolution and the
second was when Lysenko was given wide powers of con-
trol over teaching and research in biology and agriculture.
Between these two periods, for reasons related to Commu-
nist ideology and politics, there was a resurgence of
Lamarckism. In relation to the former period, Dobzhansky
(1980) noted that, after a period of about seven years, “Ac-
quaintance with the experimental work of the Morgan

school, and with the findings of other geneticists in Europe
and in the United States, became possible only in about
1921.” Stark and Seneta (2011) describe how A.N. Kolmo-
gorov took a stand against Lysenkoism in 1940 and how the
publication of a new edition of Bernstein’s monograph on
probability was stopped because it included material on
Mendelism. A central tenet of Lysenkoism was acceptance
of Lamarckism. Both Weismann and Johannsen were in-
cluded in the list of people who were the targets of Ly-
senko’s vitriol.

Johannsen (1913) was the only source cited by Berns-
tein (1924), apart from one paper of his own. When intro-
ducing Mendel’s first law Johannsen (1913, p. 486) gave a
table, here reproduced as Table 1, which perhaps motivated
Bernstein as to how to approach his proof. In effect the ta-
ble is a derivation of the Hardy-Weinberg formula through
functional iteration. Implicit in the table is the assumption
of random mating. It can be said that Johannsen supplied all
the information that Bernstein needed for his task. Dunn
(1965) and Grant (1975) and others pay tribute to Johan-
nsen’s important role in the development of genetics. His
book was a reliable source of ideas available to Bernstein.
But Bernstein had to work in isolation from some important
developments in mathematical genetics, such as Fisher
(1918), Haldane (1919) and Wright (1921).

In Johannsen (1913) there are many references to
Galton, and Pearson, as well as to Darwin, but fewer to
Morgan. Johannsen, although a great supporter of statisti-
cal method in biology, was one of the leaders of a group of
biologists opposing the views of Galton, Karl Pearson and
Weldon on inheritance (Guttorp and Lindgren, 2009). The
conflict with Pearson started with Johannsen’s (1903) pa-
per (see Peters, 1959 for a version in English). However
Yule (1904), also a member of the English Biometric
School, came to Johannsen’s defence, calling his results
one of the most important contributions to genetics. It may
be of some relevance that Bernstein was an admirer in the
times of which we speak of Karl Pearson’s Grammar of

Science, in a Russian translation of the second edition of
1900 (Read, 1982, p. 24). Various editions of the Grammar

have contained sections on heredity.

Johannsen (1913, p. 711) cites Weinberg (1908,
1909a,b). Hill (1984, p. 12) notes that Weinberg’s paper of
1908 “was a small part of his work in genetics”. It is this pa-
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Table 1 - Johannsen’s (1913, p. 486) demonstration of population stationarity.

Zygote Relative frequency of AA, Aa, aa under free crossing

Initial proportions First generation
(F1)

Second generation (F2)
†

AA p p2 (p2 + pq)2 = p2(p + q)2

Aa 0 2pq 2(p2 + pq)(pq + q2) = 2pq(p + q)2

aa q q2 (pq + q2)2 = q2(p + q)2

†p + q = 1.



per , with Hardy (1908), which is nowadays associated with
the discovery of the Hardy-Weinberg Law. Hardy’s (1908)
paper is cited on p. 704 of Johannsen (1913), although this
page is not mentioned in the index, where only “ Hardy,
486” occurs. There is no indication in Bernstein (1924) that
he had used the Weinberg(1908) reference and no mention
of Hardy. Dunn (1965, p. 94) makes a remark which is im-
portant in the context of Bernstein’s place in genetics in the
Soviet Union between the two world wars and beyond. He
writes “Likewise, Johannsen, in effect, cleared the air of the
fear that acquired characteristics might, after all, be inher-
ited. Weismann’s arguments had in the long run been less
effective than Johannsen’s simple experimental demonstra-
tions, at least with those biologists who wanted to advance
the study of heredity. Johannsen’s conclusion that acquired
modifications were not inherited was backed up a little later
by Castle and Phillips (1909), using an argument of quite a
different kind.” While Bernstein’s model is ingenious and
is supported by intricate calculations which are best dis-
played in Bernstein (1942), he starts out by, in a sense, vio-
lating his main postulate, namely stationarity: he requires
random mating in the first (and subsequent) generations
which involves a change from the initial population, unless
it is already in Hardy-Weinberg form. It is the assumption

that stationarity is required only from the first generation

onwards which causes considerable mathematical diffi-

culty in arriving at Mendel’s coefficients of heredity. While
this assumption does imitate the Hardy-Weinberg Law in
its formulation, it does not seem realistic in considering sta-
bility of population proportions starting from an arbitrary
time point.

We have, in contrast, shown relatively simply that
Mendel’s set of heredity coefficients follow necessarily
from (11), and (15) which embodies the property f11 = 4f02.
This last equation reflects the situation which exists in the
Hardy-Weinberg approach after one generation of mating.

Before 1900 there were several kinds of study and
much speculation aimed at elucidating the phenomenon of
inheritance. Mendel’s experimental approach cut through
the vague ideas surrounding the question. Essentially,
Mendel’s was a study of individual hereditary events which
could be collated to form the basis of a theory. This enabled
many other scientists to frame studies around Mendel’s
model. The basic one of these was the Hardy-Weinberg
model (Weinberg (1908), Hardy (1908)). This is idealistic
in that the original formulation and current usage was and is
based on the assumption of random mating. It has been
shown by Stark (1980, 2005, 2006a,b, 2007) and Li (1988)
that random mating with Mendelian coefficients is a suffi-
cient, but not a necessary, condition for Hardy-Weinberg
equilibrium. Failure to appreciate this non-necessity is
widespread in the genetics literature. For example Wiki-
pedia (2011) states “Violations from the Hardy-Weinberg
assumptions can cause deviations from the expectations...
random mating... violations... will not have Hardy-Wein-

berg proportions.” The novelty of Bernstein’s approach is
that it starts from a view of a population and posits several
conditions to derive a model of inheritance for single repro-
ductive events.
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