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Sensory input is inherently ambiguous but our brains achieve remarkable perceptual

stability. Prior experience and knowledge of the statistical properties of the world are

thought to play a key role in the stabilization process. Individual differences in responses

to ambiguous input and biases toward one or the other interpretation could modulate

the decision mechanism for perception. However, the role of perceptual bias and its

interaction with stimulus spatial properties such as regularity and element density remain

to be understood. To this end, we developed novel bi-stable moving visual stimuli in which

perception could be parametrically manipulated between two possible mutually exclusive

interpretations: transparently or coherently moving.We probed perceptual stability across

three composite stimulus element density levels with normal or degraded regularity using

a factorial design. We found that increased density led to the amplification of individual

biases and consequently to a stabilization of one interpretation over the alternative. This

effect was reduced for degraded regularity, demonstrating an interaction between density

and regularity. To understand how prior knowledge could be used by the brain in this

task, we compared the data with simulations coming from four different hierarchical

models of causal inference. These models made different assumptions about the use of

prior information by including conditional priors that either facilitated or inhibited motion

direction integration. An architecture that included a prior inhibiting motion direction

integration consistently outperformed the others. Our results support the hypothesis

that direction integration based on sensory likelihoods maybe the default processing

mode with conditional priors inhibiting integration employed in order to help motion

segmentation and transparency perception.

Keywords: visual perception, bias, bayesian, computational modeling, regularity, psychophysics, human

perception, motion perception
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INTRODUCTION

Our brains are subjected to ambiguous sensory inputs from
a variety of sources, yet the world that we perceive appears
stable and coherent. To constantly maintain such a percept,
dynamic sensory inputs are thought to be combined with
our prior knowledge and experience to form what should be
consistent neural representations (Knill and Richards, 1996;
Rao et al., 2002). Alternative percepts compete dynamically,
continuously resulting in changes to the dominant representation
driven by interactions taking place at several stages of the
cortical hierarchy. Perception can thus vary between multiple
outcomes by a myriad of possible mechanisms (Desimone and
Duncan, 1995; Beck and Kastner, 2009; Meso et al., 2016b).
Biased competition theory suggested that objects simultaneously
presented in the visual field compete for neural representation
and attention can bias this competition (Desimone and Duncan,
1995; Desimone, 1998; Beck and Kastner, 2009). When stimuli
are inherently more ambiguous, such internal processes become
more critical in perceptual selection and could govern the
outcome of the competition. However, the role of observer
bias and how that might interact with key visual stimulus
properties which may often control signal strength, remains
unexplored. Questions arise following evidence recently found
that the human visual system possesses internal templates for
regular patterns, indicating that regularity is a coded feature in
human vision (Morgan et al., 2012; Ouhnana et al., 2013).

Here, we developed novel bi-stable visual stimuli (Figure 1)
that exploited the significant role of plaid local elements
such as intersections (Stoner et al., 1990), to parametrically
manipulate perception between two possible interpretations,
coherent and transparently moving. We then probed perceptual
stability during the resulting ambiguous motion perception
across three stimulus density levels with normal or degraded
regularity using a factorial design. Further, a set of Bayesian
observer models based on the causal inference frame work
(Shams and Beierholm, 2010) were developed to perform a
perceptual task analogous to the experiments carried out in
order to support the investigation of the underlying mechanism.
Causal inference has been demonstrated to model perceptual
judgements of multisensory integration (Körding et al., 2007;
Sato et al., 2007) and fine motion direction judgments done using
discrimination (Stocker and Simoncelli, 2007). The approach
tackles the problem of having to decide whether two sensory
signals come from the same source (in which case they should
be integrated) or come from different sources (in which case
they should be segregated). These models typically have just four
parameters which correspond to the observer’s individual bias
toward one or the other of the of the alternatives; two parameters
capturing the sensory noise associated with the representation of
each competing alternative and finally a prior width parameter
which defines the extent of the influence the prior has across
the measurement space when it is applied. We implement the
models in the current experimental context to explore whether
performance changes across the density and regularity conditions
measured during the tasks are better explained by shifts in one or
both sensory likelihood parameters or in prior parameters.

MATERIALS AND METHODS

Participants and Apparatus
Five subjects (college students, four females) participated in all
the experiments, four of whom were naïve to the aims of the
study. All had normal or corrected-to-normal vision. The study
was approved by the ethical committee of the University of
Tuebingen. Before data collection, a written participant informed
consent was obtained from each subject.

The experiments were performed in a dimly lit room. The
stimuli were programmed using Matlab Psychophysics toolbox
(Brainard, 1997) and presented on a 17-inch CRT monitor
(iiyama, 21sd017) with a resolution of 1,280 × 1,024 and a
refresh rate of 100Hz. The monitor was gamma corrected with
a mean luminance of 15.6 cd/m2. The distance from the eyes of
the subject to the monitor was 43 cm. Responses from subjects
were acquired by using a bespoke 2-button response box (see
Procedures). Eyemovements weremonitored continuously using
an infrared video eye tracker (iView XTM Hi-speed, SMI).

Stimuli
The novel plaid stimuli in this study were designed to mimic
and manipulate the local elements—lines and intersections—
that are carrying the motion signals within the square line
plaid stimuli that have been used extensively in psychophysics
(Stoner et al., 1990). To achieve this, we decomposed the
original plaids into two different types of stimulus patches (see
Figures 1A–C; Supplementary Movies 1, 2): separated lines (SL)
and line intersections (LI). Although in what follows we refer to
these patches as apertures, it should be noted that their dynamic
content remained always the same (SL or LI) independent of the
position they were plotted. Thus, this allowed us to manipulate
the locations of these motion signals to be either consistent
with an underlying plaid or jittered in space. The mimicked
plaid from which these apertures were created, consisted of
two identical superimposed asymmetric line gratings (Hupé and
Rubin, 2003; Takahashi, 2004; Moreno-Bote et al., 2010) with
a directional difference of 120◦ (±60 with respect to vertical).
Stimulus directions were fixed with respect to the vertical rather
than being randomized during the task to avoid previously
reported idiosyncratic anisotropies in participant representations
of direction (Rauber and Treue, 1999) and to simplify simulated
categorical perceptual decisions during the modeling. The spatial
frequency of each narrow line grating was 1 cycle per degree, with
a duty cycle of 1 pixel or 0.03◦ and a speed of 2◦ per second.
In order to minimize the luminance effect of the intersection
for plaid stimuli (Stoner et al., 1990; Thiele and Stoner, 2003),
the luminance of the small intersections remained the same as
that of the line. The color of the lines was black (0.9 cd/m2)
and the background was gray (15.6 cd/m2). In Experiment 1
(Regular; Figure 1B) their positions were selected based on a
regular grid of locations where either intersections or single lines
would be expected in the classic plaid (see positions of red and
green dotted circles in Figure 1A). In Experiment 2 (Irregular;
Figure 1C), the possible positions of apertures were dynamically
jittered vertically from the grid locations (±0.025◦ of visual-
angle) and SL and LI could be located in any of the locations
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FIGURE 1 | Stimuli and Experimental design. (A) Illustration of moving stimuli. The line-plaid (composed of two overlaid drifting line gratings) can be analyzed as

containing two different local inputs and namely LI (red) and SL (green). Locations of lines at time t and t + 1t were plotted in black and gray, respectively, in each

aperture. Red and green dotted lines indicate exemplary positions of LI and SL apertures respectively. (B,C) Cartoon versions of regular and irregular stimuli. In the

regular condition (B) as the pattern moves up only SI or nothing can appear in SI apertures and likewise for the LI. In the irregular condition (C) the aperture locations

including their contents were jittered. Dotted lines indicate the locations of the apertures but were not visible (D) Experimental design. Subjects had to press a key on

the response box to start a trial. After that, a red fixation cross was shown on the center of the monitor for 1 s. The luminance is the same as the mean luminance of

the following trial to exclude the influences of luminance changing. A static image of the following trial was presented for 0.5 s to avoid transitional eye movements.

After that, the stimulus was shown for 1 s, and subjects had to report their perception by a button press. The trial ended with Gaussian noise presented for 0.5 s to

mask potential effects of previous stimuli in subsequent trials.

on the underlying grid abolishing the regularity of Experiment 1.
The diameter of each aperture was 0.2◦ of viewing-angle and 720
potential locations were used with no overlap over a stimulus area
with a 23◦diameter. A rhombus-shaped mask was applied upon
each aperture so that no terminators leading to the perception of
circular apertures would be seen (Pack et al., 2003). The vertical
and horizontal distance between the centers of adjacent apertures
was 0.5◦ and 0.28◦ of view-angle, respectively. A red fixation cross

(0.2◦ of visual-angle) was shown at the center of the stimuli. No
apertures were located within a circular area (2◦ of visual-angle

diameter) where the fixation was centered. The stimuli shared

some similarities with previously used multi-aperture stimuli but
also had some critical differences (Amano et al., 2009, 2012): (a)

within the apertures we used moving lines instead of drifting
Gabors, (b) in the regular condition aperture locations for lines
and intersections were selected according to the underlying
plaid pattern (Experiment 1), (c) the number of apertures was
systematically manipulated, and (d) the proportion of different
aperture types was used to parametrically change perception.

The total number of apertures was chosen based on three
density conditions: low, medium, and high; with 180, 340,
and 680, apertures, respectively. New random positions were
selected according to these numbers for each trial. In addition,

we parametrically manipulated the ratio between SL and LI
along 11 homogeneously spaced proportions within the range
of 0% to 100%.

Procedures
For both Experiments 1 and 2, subjects were instructed to press
a key on the response box to start a trial (see Figure 1D).
After that, a red fixation cross was shown on the center of
the monitor for 1 s. Before trial onset, background luminance
was slightly adjusted to the mean luminance depending on the
density condition to have a homogeneousmean luminance across
conditions and trials. First, a static image was presented for 0.5 s
to control for transitional eye movements. Then, the stimulus
started moving for 1 s, and subjects had to report their perception
(either coherent or transparent) during this period by pressing
one of two keys. They were instructed to do so as fast as possible
and according to their first impression. In order to avoid potential
adaptation effects, each trial was followed with a 0.5 s full field
Gaussian noise pattern withmean luminance equal to the average
of all trials. A method of constant stimuli was used and each
psychometric point came from 30 measurements for each of the
11 points along the parametric manipulation of the ratio of the
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different types of apertures for each subject. All conditions were
presented in a pseudo-randomized fashion.

At the beginning of each block, a standard nine-point eye
tracking calibration was performed. Subjects took a break after
each block. For training, subjects performed 4 blocks of 15 trials
before each experiment. They were instructed to fixate the center
of the screen and use a chin-rest to avoid head movements.

Theory and Models
Modeling transparent motion perception presents a challenge of
separating unlabeled signals which can come from one source
or from multiple sources, posing a computational problem
similar to that previously studied with vowel sounds (Sato et al.,
2007; Feldman et al., 2009). Here, we used the causal inference
framework which originates in multisensory perception and
considered the problem to be solved as an explicit two-step
hierarchical process with an initial unity vs. separation choice and
subsequent direction perception made subject to the influence
of the initial decision as a conditional estimate (Stocker and
Simoncelli, 2007; Zamboni et al., 2016). This class of models
typically has four parameters (Körding et al., 2007; Stocker and
Simoncelli, 2007): a participant bias parameter—which we did
not use in the current work for reasons explained later, two
sensory likelihood parameters corresponding to each alternative
sensory representation and a prior width parameter which
determines the extent to which the likelihoods can be shifted
along the measurement space.

An optimal Bayesian model would average over the
probability of both hypotheses (Körding et al., 2007; Sato
et al., 2007), which in this case would be, coherent dominated
by components given by H = hc and transparent dominated
by the plaid pattern given by H = hp, making a decision by
reading out from the averaged probability distribution. For a
difficult categorical perceptual decision associated with a global
percept with mutually exclusive alternatives like ambiguous
global motion, we followed previous work (Sato et al., 2007;
Stocker and Simoncelli, 2007; Zamboni et al., 2016), and used
an implementation in which the optimality of averaging was
sacrificed for a quick and self-consistent decision. In other
words, a categorical decision is made and this adjusts the shape
of the prior probabilities to influence the refined estimate of
the second stage. The visual stimulus contains a superimposed
distribution of multiple directions of components θs, from which
a sensory measurement of the perceived direction distribution
θm, is made by the visual system; an estimate contaminated by
Gaussian noise. Given the task at hand in which the alternatives,
hc (components dominate) and hp (single pattern dominates)
cannot mutually exist, we impose an assumption that ambiguity
resolution forces the system to commit to one alternative, and
its corresponding posterior distribution only, which is either
P(θ |hc) or P(θ |hp), illustrated in Figure 2 (Sato et al., 2007).

Three model variants made the following assumptions about
the prior: M1 assumed no additional hypothesis about the
direction space, i.e., a flat prior with all directions equally
likely, then estimation of maximum likelihood P(θm) and then
categorization of direction;M2 selectively applied a prior on trials
where an initial hierarchical step suggested motion integration of

the input was needed, consistent with the use of a slow speed
prior which has been shown to explain some cases of motion
perception (Weiss et al., 2002); The categorical decision in the
second step was based on the estimated maximum posterior
direction after multiplication with the excitatory prior (hp). M3
similarly computes a categorical decision from the maximum
posterior after multiplication with an inhibitory prior (hc) but
in contrast on trials which could not be selected by M2, where
component separation is suggested by early noisy computations,
which supports motion segregation. This novel configuration
implements a prior distribution centered diametrically opposite
to the average stimulus direction in the circular direction space
so that the average direction is inhibited. This is a viable
probability distribution configuration in a circular space. Note
that for simulations of configuration M2, no segregate priors
(i.e., M3) were applied on trials where integrate was chosen
and similarly, for the separate simulations under M3 prior no
integrate prior (i.e., M2) was applied to any trials. M4 is a control
condition which uses either prior (hc or hp) on each individual
trial following the initial estimate, a biologically implausible
architecture which we used to allow us to contrast conditions.

The probability of the alternative categorical hypotheses H,
is given by Equation (1) which includes all the respective
likelihoods and priors,

P (H|θm) = P(θm|H)P(H)/P(θm) (1)

Applying model averaging over the posterior distribution
(Stocker and Simoncelli, 2007) of each model results in
Equation (2):

∫

P (θs|θm) dθ = 1, (2)

P (θs|θm) = P
(

θs
∣

∣θm , H = hc
)

P
(

H = hc
∣

∣θm
)

+ P
(

θs
∣

∣θm , H = hp
)

P
(

H = hp
∣

∣θm
)

, (3)

where the composite posterior in Equation (3) is obtained by
adding both alternative posterior probabilities corresponding to
each perceptual alternative. We simplify Equation (3) which
includes the two separate posterior terms by using model
selection to propose an initial fast binary variable computation
χ (1, 2), (see simulations) corresponding to hypotheses H = hc
and H = hp, respectively, to hierarchically separate the early
discrimination and the estimation tasks (Luu and Stocker, 2018).
In each case, one alternative is selected and the remaining term is
set to a probability of zero (Stocker and Simoncelli, 2007). We
do not seek an optimal solution to Equations (3) and instead
following the lead from previous work sacrifice optimality for
consistency (Stocker and Simoncelli, 2007; Luu and Stocker,
2018). During simulations, we assign a decision value of χ = 1,
if the MLE is closer to the average (pattern direction) than the
component direction, and χ = 2 if the MLE is closer to the
transparent component direction (see Figure 4). This heuristic
crudely solves the “one vs. two” component problem and reduces
the number of free parameters used in this type of experiments
from four to three by avoiding the inclusion of a parameter for
bias. While individual differences in participant biases have been
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FIGURE 2 | Outline of Bayesian observer model. (a) The visual stimulus contains multiple directions of components θs, from which a sensory estimation was made as

θm with uncertainty. (b) LI is represented as a Gaussian probability density function (SLI) centered on the vector averaged (VA) direction (µ) in the direction space with

variance σp, while SL is similarly modeled as two Gaussian probability density functions (SSL ) centered on µ + 60◦ and µ – 60◦ respectively with same variance σc.

The likelihood P(θm |θ ) contains SLI and SSL, combining with the respective prior term P(θ |h) (c) to get the posterior distribution of P(θs |θm) (d). Prior settings are

different for M1–M4, see text for details. The prior terms P(θ |hp) and P(θ |hc ) are also both Gaussian terms centered on the VA direction which either enhance (hp) or

inhibit (hc) the pattern to support integration or segregation, respectively. (e) Decision is made based on a final direction using MAP estimation leading to categorical

perception (f).

previously found and modeled (Odegaard and Shams, 2016),
in the current work we expected there might be differences
within participants across our scene structure conditions and
so focused on the interaction between the role of sensory
representations and the strength of prior biases. Our heuristic
computation of χ similarly constrained all the participants’
categorical estimation.

The conditional inference is therefore computed on a given
trial according to either,

P (θ |θm,χ = 1) = P(θm|θ)P
(

θ
∣

∣hp
)

/P (θm) , (4)

in the coherent case where pattern motion is reported or,

P (θ |θm,χ = 2) = P(θm|θ)P
(

θ
∣

∣hc
)

/P (θm) , (5)

in the case of the transparent choice where the two components
are simultaneously perceived. In both Equations (4) and (5),
the likelihood term P(θm|θ) is identical and contains Gaussian
functions of two components and one pattern term whose width
captures the sensory noise, and these are shown together as

Equation (6).

P (θm|θ) =
AS√
2π

exp

(

−
(θ − θS)

2

2σ 2
S

)

+
AS√
2π

exp

(

−
(θ + θS)

2

2σ 2
S

)

+
AL

3
√
2π

exp

(

−
(θ)2

2σ 2
L

)

(6)

The average direction of the distribution in Equation (6) is
also the pattern direction, θL = 0. The relative scaling of
the Gaussian terms corresponding to the alternative percepts
is related by AS = 1-AL. The respective prior terms P(θ |hp)
and P(θ |hc) are both Gaussian terms centered on the average
direction θ=0 which either enhance (hp) or inhibit (hc) the
pattern to support integration or segregation, respectively.
These are given by Equations (7) and (8) and illustrated
in Figure 2.

P
(

θ
∣

∣hp
)

=
1

√
2π

exp

(

−
(θ)2

2σ 2
P

)

(7)

P
(

θ
∣

∣hc
)

= 1−
(

1
√
2π

exp

(

−
(θ)2

2σ 2
C

))

(8)
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FIGURE 3 | Estimation of bias and stability for regular (A–C) and irregular (D–F) experiments. (A,D) Cartoons of the stimuli across density conditions for the regular

(A) and irregular (D) experiments. (B,E) Fitted psychometric functions for each subject across density conditions for the regular (B) and irregular (E) experiments. The

error bar on each psychometric function is the standard error of mean estimated by bootstrapping processing by resampling 400 times. Confidence area (in gray) was

defined as where the probability of coherent or transparent perception was higher than 75%. (C,F) The direction and amplitudes of bias for each subject

corresponding to the conditions of (B) and (E), respectively.

FIGURE 4 | Statistical analysis of bias and perceptual stability. (A) Mean bias across subjects for each condition. Linear regression analysis shows a significant

correlation between bias and density for the regular but not for the irregular condition. (B) Perceptual stability index (PSI, see text) across subjects for each condition.

Significant linear correlation between PSI and density was found only for the regular but not for the irregular condition.

The prior which acts to enhance the vector average direction
of Equation (7) is consistent with a previously proposed slow
speed prior which has been demonstrated to explain illusory
perception for a range of ambiguous motion stimuli (Weiss
et al., 2002). The prior inhibiting the part of the direction
space where the average lies is a novel contribution in the
current work and is consistent with observations of motion
repulsion effects which push direction estimates away from the
averages of transparent component directions (Mahani et al.,
2005; Meso et al., 2016a). Simulated trials are used to generate
psychometric data to study the interaction of sensory motion
representations and prior distributions that is most consistent
with each participant’s performance.

Simulations
In each trial, assuming a two-step hierarchical process, an
MLE estimate based on reduced draws of direction samples of
Equation (6) (i.e., 20% of 5,000 used for the full simulation) was
used to compute χ based on the distance between the peak of
the direction distribution θMAX and the pattern/zero direction.
We note that we adopted the convention of making the vertical
direction the zero direction so that the component directions
flanked this on either side as ±60◦. Having fixed directions
rather than fully randomizing stimulus directions across space
over trials simplifies the process of computing the thresholds of
Equation (10). The initial estimation of χ varied with a logistic
type non-linear probability as the percentage of LI apertures went
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from 0 to 100. Slope depended on the likelihood parameters
and the PSE (P = 0.5) was influenced by the relative widths of
the pair of likelihoods. This step captures an implicit categorical
decision taken when the stimulus is interpreted at onset using
the formulation

θMAX = argmax(P(θm)) (9)

χ =
{

1, if − θL
2 < θMAX < θL

2
2, if |θMAX| > θL

2

(10)

With χ determined, the posterior of Equation (3) is then
simulated using the model selection estimates of Equation (4) or
(5) which eliminate the redundant term. Five-thousands draws
of direction samples are then used for each trial, binned into
a discrete probability distribution with a 0.5◦ bin resolution.
A MAP estimation computes a direction θi for each single
trial i, from which a second forced choice decision for the
simulated trial is made. Transparent or coherent is selected based
on the maximum direction (T: θS/2<|θi| or C: θS/2>|θi|) in
a similar way to Equation (10). The estimates used to make
the categorical decisions assume symmetry across the direction
space for simplicity and therefore search for one peak which
could be near the pattern direction or within either transparent
component, both left and right.

Each simulated trial had a fixed set of stimulus parameters,
θS = 60◦ and θL = 0◦. The two sensory likelihood parameters
σS and σL along with the relevant prior parameters σP or σC
[for M2 or M3] were used to generate psychometric functions
for comparison to the empirical psychometric functions for each
participant under all six conditions. The best fitting parameters
[σS, σL and σP/σC] were obtained using an iterative Kullback-
Leibler minimization to search the simulated parameter space.
Fits to the data were compared across models using Akaike
information criterion (Akaike, 1981).

RESULTS

Human psychophysics experiments were performed using
novel bi-stable line-plaid stimuli (Figures 1B,C). Subjects were
instructed to report their perception of either a coherent pattern
moving upward, or two transparent surfaces sliding over each
other in leftward and rightward oblique directions (seeMethods).
Inspired by the geometric properties of typically used moving
line-plaids (Figure 1A) (Adelson and Movshon, 1982; Pack et al.,
2003) and the architecture of the visual system with very small
receptive fields (RFs) in early visual areas, we developed this
novel stimulus by decomposing the plaid into two types of
local stimulus elements we refer to as apertures: separated lines
(SL) and line intersections (LI). In this way, the stimuli could
mimic two basic inputs that the visual system could experience
locally: 1D- or 2D-motion (green/red apertures, respectively,
in Figure 1A) based on the dimensions of the features within
the aperture. We performed two experiments with the only
difference being the positioning of apertures: in Experiment 1
(regular, R) the structure of the mimicked plaid was maintained
(Figure 1B), whereas in Experiment 2 (irregular, I) the element
apertures were spatially jittered (Figure 1C). All subjects could

consistently fixate within a circular window with radius 0.4
degrees of visual angle (Figure S1). For each subject, we first
estimated the relative bias toward one of the two possible percepts
(transparent or coherent), by calculating the difference between
the 50% coherence threshold taken from its fitted psychometric
function and the same threshold calculated from the low-
density population trend that was used as a reference (Figure 3).
Interestingly, for higher stimulus densities we observed gradual
increases in the bias and this effect was more pronounced
in Experiment 1 (Regular) in comparison to Experiment 2
(Irregular). Statistical analysis was performed using a linear
mixed effects model approach with the bias as independent
variable and density and regularity as fixed effects. Subjects
were considered as a random effect thus allowing for different
intercepts in the model (Figure 4A). Statistical significance was
evaluated after parameter estimation using an F-test for the fixed
effects with density being significant (F(22) = 11.83, P = 0.0023)
while the interaction between density and regularity remained a
trend (F(22) = 3.32, P = 0.0822). Regularity as a main effect was
not significant (F(22) = 1.11, P = 0.3) indicating that on average
the two experiments showed comparable biases.

To obtain a quantitative estimate of the stability of the two
percepts for each condition, a perceptual stability index (PSI,
Figure 4B) was calculated for each subject as follows: first, we
defined as perceptually stable the stimuli that resulted in either
coherent or transparent perception with probability over 75%
(i.e., see the shaded areas in either side of the psychometric
curve with Pcoherent < 25% or Pcoherent > 75% in Figure 3).
Then, the PSI was calculated as the fraction of fitted data-
points within the side of the confidence area corresponding to
the dominant percept, and the rest of the points (Figure 4B).
Similar linear mixed effects modeling analysis as for the bias
was then performed with the PSI as independent variable. The
results showed a significant main effect of density (F(22) = 6.38,
P= 0.0193) as well as significant interaction between density and
regularity (F(22) = 5.55, P = 0.0278). Regularity as a main effect
was not significant (F(22) = 1.88, P = 0.18).

To study the relative contribution of prior experience and
sensory representation to the processing of the ambiguous
motion direction, we modeled the underlying motion perception
task using a Bayesian causal inference framework (Sato et al.,
2007; Stocker and Simoncelli, 2007; Shams and Beierholm,
2010). To this end, we used models of increasing complexity
(no prior, a transparent prior or a coherent prior, and as
a control a model with the use of both priors). In the
simplest model architecture (M1, no prior), the maximum
likelihood was estimated and categorized depending on whether
it was closer to the coherent or transparent direction. For
models M2 and M3, a hierarchical sequential computation
was assumed and on each simulated trial an initial noisy
direction estimate χ , was used to determine whether to apply
an excitatory (M2, run as a separate independent simulation
from M3) or an inhibitory (M3, run separate from M2)
prior, each of which required a single additional Gaussian
width parameter centered on the average direction. These
would have an effect of shifting posterior probabilities to bias
perception either toward coherent (M2) or transparent (M3).
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FIGURE 5 | (A) Example model fitting results from a representative subject. Empirical and model simulated psychometric functions were plotted for each experiment

and conditions. (B) The raw AIC scores of all models (see text). Each subjects (left) and box plot (median ± s.e.m., right). (C) Linear correlation between the sensory

representation of SL aperture and the amount of bias to transparent perception. Data points were collapsed across all density conditions of

regular/irregular experiments.

Last, in a control condition, a model M4 was simulated by
using the best fitting M2/3 parameters and therefore included
separate optimal priors for separation and integration. Motion
direction was represented as a linear combination of Gaussian
probability density functions representing the LI and SL aperture
direction and variance (Figure 2; also see Methods). The
set of models, M1–M4 were tasked with a forced choice
decision on whether each simulated trial corresponded to
transparent or coherent, over a number of conditions recreating
Experiments 1 and 2.

Example model-fitting results for a representative subject are
shown in Figure 5A (results for all subjects in Figure S2). We
then performed model comparison based on the Akaike criterion
measures (AIC, Akaike, 1981) to identify the optimal model
architecture. The AIC measurements use likelihoods from the
fitting residuals to determine which model provides the best
explanation for the data, giving a lower score for better fits
but penalizing models with more parameters. M3 (transparent
prior) was found to be the most appropriate model for the
data set based on AIC scores (Figure 5B). This suggests a
general tendency within the visual system toward separating
motion components unless there is strong sensory evidence
for integration into a single object (here provided by the line
intersections (LI) apertures).

Further, we analyzed the relationship between the best model
parameters of M3 and perceptual bias from empirical data
to investigate the potential insights into sensory mechanisms
of subjective biases. We found a significant linear correlation
between the bias and the variability of sensory representation
(Gaussian likelihoods) for SL apertures (r2 = 0.272, p <

0.05, Figure 5C) only for the regular experiment suggesting
that regularity influences the effectiveness of the sensory
representation by decreasing variance. There were no similar

trends in the fitted parameters for LI sensory likelihoods and the
prior (Figure S3).

DISCUSSION

In this study, we used bi-stable motion perception as a tool to
understand processes of perceptual stabilization in the human
brain. We used a Bayesian causal inference framework (Sato
et al., 2007; Stocker and Simoncelli, 2007; Shams and Beierholm,
2010) to model the internal decision process leading to one of
the two alternative interpretations with the aim to understand
the relative role of priors and sensory evidence in the selection
process. We found, counter-intuitively, that adding more motion
information by increasing the number of apertures increased
response biases in the task. Individuals’ tendencies to either
one or the other of the percepts were amplified substantially
when we increased the density of stimulus apertures. This
led to an increased inter-subject variability, with each subject
diverging from the population trend with a magnitude and
direction that was related to their original bias (Figure 4A).
Interestingly, this effect was largely abolished in the irregular
condition when the position of elements was jittered with
respect to their original location, indicating that this form of
contextual organization created by spatial regularity played a
major role in the amplification of the bias. As a measure
of the effect of bias amplification, we computed a perceptual
stability index and found that it linearly increased for higher
element density.

To further understand the brain processes leading to this
result, we adapted hierarchical motion perception models that
posit sequential stages of brain processing including local
motion detection, global combination of these local signals
and then an interpretation of the representation to support
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categorical/qualitative decisions. This broad mechanistic view
is widely supported by evidence in the literature for both
psychophysics and physiology (Burr and Thompson, 2011;
Nishida, 2011). In the context of our work, the representation
of the local motion information can be reflected directly in the
neural responses in directionally selective areas such as MT/MST,
however, one of the classic difficulties of motion transparency
perception is how such a local representation can be transformed
into the qualitative percept (e.g., see Qian et al., 1994; Treue et al.,
2000; Meso and Zanker, 2009). To this end, and in particular
with respect to prior information encoded in the brain of each
participant, we built a battery of Bayesian models (M1–M4; see
Methods) with the task to probabilistically select one of the
two percepts on a trial-by-trial basis simulating the experiments.
These modeled the sensory representations of the 1D- and 2D-
motion input-signals as Gaussian processes each with separate
sigma likelihood parameters and, in addition, one of four
different prior probability configurations. M3 (which included a
segregation prior) provided the best model, suggesting that the
visual system selectively applies an inhibition within the direction
space to help separate components. Importantly, it should be
noted that M3 was the better model even in subjects that were
biased toward coherent percepts. We conjecture, that the brain
when faced with such tasks applies a conditional implementation
of separating priors on some critical trials (Zamboni et al.,
2016) and not an integrating one because integration might
arise naturally from overlapping signal distributions (Mahani
et al., 2005). The proposed hierarchical computation extends
recent findings in which participants performed an orientation
discrimination followed by an orientation estimation task, with
the discrimination found to influence the estimation task (Luu
and Stocker, 2018). A similar effect had been found for motion
stimuli (Zamboni et al., 2016) with a need for self-consistency
proposed as an explanation. We argue that this hierarchical two-
step computation might occur during our task, with an implicit
early categorical decision needed to resolve the ambiguity
resolution known to occur early in motion stimuli (Meso et al.,
2016a). In the implementedmodel, for simplicity, fixed directions
were explicitly associated with the categorical decisions. Similar
models could be implemented in the future in which, the
decision need not be based on the absolute directions but reached
based on the distribution of global motion directions after
pooling (i.e., a bimodal distribution would signify transparency
and a unimodal coherence). In that case, the future tested
priors could be adjusted and made independent of direction
for example by acting broadly as an attractor or repellant of
nearby directions.

Bias stands at the core of signal detection theory (SDT) when
applied to both living organisms and machines. In fact, (Green
and Swets, 1966), being the first to develop SDT approaches
in psychophysics, directly criticized previously used methods
for not being able to separate the sensitivity of subjects from
their potential biases. In addition to the principle problem
of detecting signal within noise, our brains also face the
problem of inherently ambiguous sensory inputs. Thus, to
make veridical interpretations of the outside world, the brain
needs to employ additional mechanisms such as attention and

prior experience (Knill and Richards, 1996; Desimone, 1998;
Rao et al., 2002; Beck and Kastner, 2009; Meso et al., 2016a).
One theory suggested that objects simultaneously presented in
the visual field compete and attention can bias the outcome
of this competition (Desimone and Duncan, 1995; Desimone,
1998; Beck and Kastner, 2009). Our results are consistent with
the general framework of the biased competition hypothesis;
however, attention does not seem to be the primary source of
the observed biases as there is no reason to expect attention
to vary systematically across the different density or regularity
conditions. The subjects had to continuously perform the
task of reporting their percepts in randomized trials within
blocks so attention should have remained largely constant.
Moreover, individual bias directions were independent of the
stimulus configuration (which was the same for all subjects)
precluding bottom-up stimulus driven attention effects. The
subject specific results suggested a strong influence of prior
experience or assumptions and thus we expected our modeling
results might reveal that some subjects would use a “coherence”
prior (M2) while others a “transparency” prior (M3). To
our surprise, M3 (in comparison to M2; Figure 5B) was a
better model for all our subjects, including those with biases
toward coherence. This suggests that the sensitivity of the
visual system of each participant to the two motion signals
(sensory σ ) was more important for determining bias direction
in comparison to the integration prior. We conjecture that
motion direction integration based on sensory likelihoods maybe
the default processing mode with conditional priors inhibiting
integration employed in order to help motion segmentation and
transparency perception.

Furthermore, bias in our experiments was increased with
stimulus element density. This was also an unexpected finding,
as previous studies have shown that increases in the density
of random-dot-kinematograms (RDKs) result in coherence
thresholds also decreasing (Barlow and Tripathy, 1997) or
being unaffected (Eagle and Rogers, 1997; Talcott et al.,
2000; Welchman and Harris, 2000). We note, however, that
RDK experiments are closer to the foundations of SDT (i.e.,
detecting signal within noise). We propose that in our scenario,
competition between the two motion representations may be
enhanced by density increments resulting in the observed
increase of the bias toward a preferred representation which
would act like a perceptual attractor, an area within the direction
space where probability increases at higher densities. This is
consistent with reports in previous literature where contrast-
based motion signal increases resulted in stronger 2D motion
attractors compared to 1D directions in a tri-stable ambiguous
motion stimulus (Meso et al., 2016b). In addition, research
with RDKs demonstrated that coherence thresholds in 5–6-
year olds were (a) much higher, and (b) decreased with dot
density in comparison to adults (Narasimhan and Giaschi, 2012).
In our view, this provides evidence for coherent perception
or integration as the earliest unelaborated default computation
and with perhaps the connectivity of the underlying neural
circuitry prone to changes by experience during development.
This could explain the different directions of the biases in
different subjects.
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Interestingly, the bias-amplification and the increases in the
perceptual stability index with density were largely abolished
in the irregular stimuli with jittered aperture positions. This is
consistent with previous work demonstrating the importance
of regularity (Morgan et al., 2012; Ouhnana et al., 2013)
which appears to play a role in the selection of stable neural
representations. Another interpretation is that reduction of
regularity eliminates in parallel the correspondence of the
single stimulus elements to the underlying patterns or “objects,”
interfering with their spatial integration. This is consistent with
studies that have demonstrated a precedence of global features
in visual perception (Beck and Kastner, 2005; Phillips et al.,
2015; Ding et al., 2017). Moreover, the profound influence
of position jitter on the bias indicates that the scale of the
integration cannot be completely local nor global as in that case
the regular/irregular conditions should not elicit an effect. These
results directly indicate that the motion integration mechanisms
contributing to individual biases are of “meso-scale” i.e., go
beyond single-neuron receptive fields (RFs) in V1 to scales
more typical for area V5/MT but not the very large RFs
found in size-invariant object selective areas like inferotemporal
cortex (IT).

Previous research has found strong evidence for active
perceptual stabilization mechanisms in the visual system, such
as reorganization of sensory representation during intermittent
viewing (Leopold et al., 2002); top-down modulation of beta-
band synchronization (Kloosterman et al., 2015); feedforward
inhibition (Bollimunta and Ditterich, 2012) arousal (Mather and
Sutherland, 2011; de Gee et al., 2014); and memory (Wimmer
and Shohamy, 2012). Our study suggests that bias serves as
an additional factor our brains actively use to stabilize our
perception of the world.
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