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Abstract Next-generation sequencing (NGS) technologies generate thousands to millions of genetic

variants per sample. Identification of potential disease-causal variants is labor intensive as it relies

on filtering using various annotation metrics and consideration of multiple pathogenicity prediction

scores. We have developed VPOT (variant prioritization ordering tool), a python-based command

line tool that allows researchers to create a single fully customizable pathogenicity ranking score

from any number of annotation values, each with a user-defined weighting. The use of VPOT

can be informative when analyzing entire cohorts, as variants in a cohort can be prioritized. VPOT

also provides additional functions to allow variant filtering based on a candidate gene list or by

affected status in a family pedigree. VPOT outperforms similar tools in terms of efficacy, flexibility,

scalability, and computational performance. VPOT is freely available for public use at GitHub

(https://github.com/VCCRI/VPOT/). Documentation for installation along with a user tutorial, a

default parameter file, and test data are provided.
Introduction

With the increasing use of next-generation sequencing (NGS)
methods, researchers are now faced with many genetic vari-
ants, from hundreds of thousands to millions, to evaluate.

Software such as ANNOVAR and VEP [1,2] use databases
that provide functional consequences, pathogenicity predic-
tions, and population frequencies to annotate genetic variants.
nces and
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There are many pathogenicity-prediction algorithms avail-
able, such as CADD, PolyPhen-2, SIFT, and MutationTaster2
[3–6], but there is no single algorithm that has been universally

accepted as the best. Genetic variants predicted to be deleteri-
ous by multiple methods are likely to be of greater interest in
disease studies [7]. In practice, multiple pathogenicity predic-

tion scores are utilized to increase the likelihood of identifying
a disease-causing variant. Thus, to determine if a variant is
likely to be disease-causal, all prediction scores are often con-

sidered together in addition to variant filtering based on other
annotation metrics (such as variant frequency in control data-
bases). This makes the prioritization of genetic variants a
labor-intensive and cumbersome task.

To facilitate this process, several variant prioritization tools
have been developed. However, they are either web-based
(such as Variant Ranker [8]), making the analysis of whole-

genome data difficult, or they do not provide an aggregated
score across all annotation values (such as VaRank [9]). We
have developed variant prioritization ordering tool (VPOT),

a python-based command line program that creates a single
aggregated pathogenicity ranking score from any number of
annotation values via customizable weighting. Using this

score, VPOT ranks variants, allowing researchers to prioritize
Figure 1 Variant prioritization ordering tool (VPOT) workflowA

Step 1: prioritization of variants. VPOT is run with annotated VCFs or

of the variant priority ordered list (VPOL). The VPOL can be filter
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large cross cohort evaluation across samples (merge). VPOT, variant
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autosomal recessive; CH, compound heterozygous.
variants based on all annotation data and pathogenicity-
prediction outcomes.

Methods

The VPOT workflow consists of two main steps: variant prior-

itization and post-processing of the variant priority ordered list
(Figure 1, Figures S1 and S2).

Prioritization of variants

Creation of the prioritization parameter file (PPF)

Using ANNOVAR-annotated VCFs or tab-separated-values

files (TSV, which can be annotated by any software) as input
the VPOT priority function creates a prioritization parameter
file (PPF) based on all the annotation elements found. The

PPF will determine if the annotation fields are characters or
numeric. It will list the range of values found within that field
to aid customization by the user. By modifying the PPF, the

user can select which annotation fields to use in the prioritiza-
tion process and the weighting to apply to a specific range of
values for each annotation field. Additionally, the PPF allows
TSV files and a PPF to create the VPOL. B. Step 2: post-processing

ed based on user needs such as against a gene list for candidate

rol variants reporting or for inheritance models (DN/AD/AR/CH)

and the choice of the samples filtering option (samplef). A quick

POL files can be combined to produce a single VPOL to allow for

prioritization ordering tool; VCF, variant call format; TSV, tab-

riority ordered list; DN, de novo; AD, autosomal dominant; AR,
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users to filter variants on fields attributes; for example, a pop-
ulation frequency threshold can be defined for Exome Aggre-
gation Consortium (ExAC)/Genome Aggregation Database

(gnomAD) [10]. A PPF only needs to be set up once as it
can be applied repeatedly to prioritize variants in different
samples if the annotation fields used within the PPF are avail-

able. While utilization of new prediction annotations would
require modification of the PPF, VPOT will still run success-
fully without PPF modification, but it would utilize only the

annotations indicated in the PPF.
VPOT is designed to allow the user to customize their pri-

oritization process based on annotations relevant to the disease
of study. However, we also provide a default PPF with a list of

recommended annotations based on our experience with one
complex disease, congenital heart disease [11,12]. The default
PPF eliminates variants with a minor allele frequency higher

than 0.1% with respect to control databases (ExAC, gnomAD,
and 1000 Genomes Project), low quality variants (with cover-
age less than 8 times or 25% allelic balance), and synonymous

variants. The weighting criteria for each in silico predictor used
in the default PPF are set to identify pathogenic variants based
on pathogenicity threshold recommended by the individual

algorithms or informed by the literature (e.g., CADD,
PolyPhen-2, MutationTaster2, LRT, MCAP, GERP++,
MetaSVM [13–16]). The default PPF also weighs the most dis-
ruptive variants such as stop-gain, frameshift indels, and splic-

ing variants highly.

Creation of the variant priority ordered list (VPOL)

Annotated VCFs/TSV files and a PPF are passed as input to
VPOT to perform the prioritization function on all variants.
Using the PPF-customized weights, each variant is scored by
aggregating all the user-defined values. This is done by calcu-

lating the sum of all encoded weights for each variant. A nor-
malized score is also calculated by dividing by the maximum
score found across all variants. All variants by default are

returned and ordered in the output, which we call the variant
priority ordered list (VPOL). Variants with low score (e.g.,
synonymous variants) can be removed at this stage by provid-

ing a cutoff within the PPF so that only variants with scores
greater or equal to the cutoff are included in the VPOL.

For each variant, VPOT performs quality control checks on
each sample’s genotype based on coverage (number of reads at

variant position) and allele balance (percentage of alternate
allele reads at variant position). The user, via the PPF, can cus-
tomize the quality control check thresholds. If the sample

genotype call fails these quality control checks, then it is
marked in the VPOL. For each variant line in the VPOL each
sample’s genotype is denoted as, ‘‘0’’ for reference, ‘‘1” for

heterozygous, ‘‘2” for homozygous alternate, or ‘‘.” for quality
control failure. This prioritization step can be easily performed
in parallel across many samples or repeated for new samples

by using the same PPF as part of the input.

Post-processing of the VPOL

VPOT provides several post-prioritization options to explore

the VPOL (Figure 1). A summary statistics option (stats) gen-
erates a quick and simple variant report for the supplied VPOL
highlighting the number of scored variants, and a list of genes

that score in the top 75th percentile (default) of variants found
for each sample in the VPOL. VPOT allows researchers to
apply a user-defined candidate gene list to filter any VPOL
using the gene filtering option (genef).

VPOT can filter variants in the VPOL based on inheritance
or absence from controls via the use of the sample filtering
option (samplef). This option utilizes a ped (pedigree) format

file. The sample filtering option can filter variants based on
their case-control status by extracting variants that exist in
case samples and not in control samples of a large cohort.

The VPOT samplef option can also filter variants based on dif-
ferent Mendelian inheritance models. A complete family trio,
defined by the presence of parents and proband, is required
for this option. The de novo (DN) model identifies variants that

only exist in the proband and not in any of the parents. The
autosomal dominant (AD) model identifies variants that exist
in both the proband and affected parent but not in the unaf-

fected parent. The autosomal recessive (AR) model identifies
variants that are homozygous for the alternative allele in the
proband and heterozygous in both parents. The compound

heterozygous (CH) model provides a filter that returns
heterozygous variants in genes that have both proband-
paternal and proband-maternal specific variants.

For large cohort studies, it is recommended to run multiple
VPOT processes for small subsets of samples in parallel to
reduce computational time. To facilitate the ability to view
all the samples in a single VPOL file, VPOT has a merge option

(merge) to consolidate multiple numbers of VPOL files back to
one VPOL.

Results

Application of VPOT to disease cohorts

We used VPOT to identify potentially pathogenic gene vari-
ants in a family with a proband that had multiple congenital

malformations (family B in Shi, et al. [17]). The family was
subjected to whole-genome sequencing (WGS) and over 7.7
million variants identified. Following filtering and prioritiza-

tion by VPOT using the default PPF the number of candidate
variants decreased to 587. Based on the family pedigree which
shows that the parents were consanguineous, we used VPOT’s

inheritance model filtering (within samplef option) to refine the
number of candidate variants based on an autosomal recessive
inheritance model (AR) (Figure 2). After application of inher-

itance model filtering, 14 variants remained with a HAAO
homozygous variant ranked first, consistent with the reported
genetic cause in this family (Table 1 and Table S1) [17]. The
identification of the HAAO variant demonstrates the ability

of VPOT to facilitate monogenic disease variant discovery in
a systematic way.

VPOT has been successfully used to prioritize variants in a

congenital heart disease (CHD) cohort of 30 families that were
whole-exome sequenced [11], with the disease-causing variants
in the three solved families ranked within the top 2% of all

variants found. In another cohort of 97 CHD families that
underwent WGS [12], clinically actionable variants were iden-
tified in 28 families, and VPOT ranked the majority of these
variants within the top 1% of all variants found. Only two

variants were not ranked within the top 1% of variants due
to large disagreement in pathogenicity prediction between dif-
ferent methods. We have provided the PPF file used for the
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Figure 2 HAAO CHD family pedigree

Family B from [17] is a consanguineous family, with proband

sample B.1 having CHD and other extra-cardiac phenotypes and

all other siblings being unaffected. Samples within the shaded

region of the pedigree have undergone whole genome sequencing.

CHD, congenital heart disease.
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prioritization of variants in these studies as a default PPF for
the study of complex diseases like CHD.

Comparison with existing variant prioritization tools

VPOT’s approach to variant prioritization is to aggregate
pathogenicity predictor scores since no single pathogenicity

predictor score has been shown to predict pathogenic muta-
tions reliably. Other packages have utilized this same
approach, and we identified two for evaluation comparison

that are most similar to VPOT, Variant Ranker [8] – a web-
based tool, and VaRank [9] – a command line program. Both
Table 1 Top ten variants for family B following autosomal recessive i

Priority score Gene DNA variant
Exonic

function
gnomAD

67 HAAO c.558G> A Stop-gain 4.07E�0

57 CNOT2 c.1621_1622insAAAAA FS-I NA

30 SLC52A2 c.916G> A NS-SNV 5.14E�0

27 MAPK15 c.419C > T NS-SNV 0.000384

24 CLTB c.457A >G NS-SNV 0.000134

23 SMYD5 c.625C > A NS-SNV NA

23 GAD1 c.184C > T NS-SNV 9.02E�0

21 DAB2IP c.2186 T > A NS-SNV 6.23E�0

18 PSME4 c.2074C > A NS-SNV NA

18 WNT10A c.685C > G NS-SNV NA

Note: Detail of top ten variants for Family B [17]. VPOT prioritization w

github.com/VCCRI/VPOT/). LRT values – D (deleterious, when LRT value

automatic, when probability value from Bayes classifier used is >0.5 and v

(disease-causing, when probability value from Bayes classifier used is >0.

Bayes posterior probability of damaging’s estimate of false positive rate is �
damaging’s estimate of false positive rate is �20%). MetaSVM values – D

scoring details with all predictors’ values. FS-I, Frameshift-insertion; NS-

gnomAD, genome aggregation database; LRT, likelihood ratio test; C

evolutionary rate profiling.
Variant Ranker and VaRank create a ranking value for vari-
ants based on a set of user-defined scores for pathogenicity
predictors like VPOT.

We compared the overall features and functionality
between the tools (Table 2). Both VPOT and VaRank have
no restriction on the input file size, which is important for

the analysis of variants resulting from whole genome sequenc-
ing. Annotation is controlled by the user for both VPOT and
VaRank, although it is a separate process for VPOT and part

of the tool for VaRank. This provides greater flexibility for the
user to adopt newer releases of the human reference genome,
and novel pathogenicity predictors, such as for splicing and
non-coding genetic variants. For Variant Ranker, the variant

annotation process is embedded within its workflow and can-
not be modified by the user. All three tools rank variants based
on the scores of multiple pathogenicity prediction methods.

However the number of predictors vary, with the lowest seen
in VaRank that uses only three fixed pathogenicity prediction
tools (phastCons [18], SIFT, and PolyPhen-2), then Variant

Ranker that uses seven fixed tools (PolyPhen-2, SIFT, LRT,
MutationTaster2, MutationAssessor, RadialSVM, and
FATHMM [16,19,20]), and finally VPOT where the number

is limited only by the predictors included in the annotation.
Accounting for differences in the genetic architectures of dif-
ferent diseases, VPOT allows expert users to apply their spe-
cialized knowledge of disease to stratify results from in silico

predictors. The user can select higher weighting for specific
predictors to enhance the accuracy for the disease or study
design in question. VPOT also allows fine-tuning of variant

ranking as the user can define any number of scoring intervals
for an annotation category. This allows the user to define dif-
ferent pathogenicity thresholds instead of a binary non-

damaging/damaging scenario. Finally, both VPOT and VaR-
ank are local machine tools, so there is no security concern
with sensitive study data being stored in the cloud.

We evaluated VPOT, VaRank, and Variant Ranker by pri-
oritizing variants from an exome sequencing dataset on idio-
pathic hemolytic anemia (MIM:266200) [21] used previously
nheritance model filtering (Samplef – AR)

LRT
Mutation

Taster2

PolyPhen-2

HVAR
CADD MetaSVM GERP++

6 D Adc NA 39 NA 5.26

NA NA NA NA NA NA

5 D Dc Dp 28.3 Dm 4.69

D Dc Dp 32 T 4.02

D Dc P 21.9 T 4.16

D Dc Dp 28.4 T 3.76

5 N Dc P 26.4 Dm 4.66

5 N Dc Dp 18.1 T 4.69

D Dc P 20.3 T 4.42

D Dc P 25.5 T 3.57

as performed using the default PPF supplied within GitHub (https://

= 0.000), N (neutral). MutationTaster2 values – Adc (disease-causing

ariant is marked as probable-pathogenic or pathogenic in ClinVar), Dc

5). PolyPhen-2 HVAR values – Dp (probably damaging, when naı̈ve

10%), P (possibly damaging, when naı̈ve Bayes posterior probability of

m (deleterious, when value >0), T (tolerated). See Table S1 for full

SNV, non-synonymous single nucleotide variant; NA, not applicable;

ADD, combined annotation dependent depletion; GERP, genomic

https://github.com/VCCRI/VPOT/
https://github.com/VCCRI/VPOT/


Table 2 Feature comparison of VPOT with similar variant prioritization tools

Feature VPOT VaRank (v1.4.2) Variant Ranker

Process location Local Local Web

Input format VCF (gz)/TXT (multiple files) VCF (gz) (multiple files) VCF/TXT (single file)

File size limit No limit No limit 500 MB

Annotation ANNOVAR (freeware),

performed by user prior to using tool

Alamut (commercial tool)/SnpEff

(freeware), performed by tool

ANNOVAR (freeware),

performed by tool

Reference genome No restriction No restriction Hg19

Annotation resources that

can be applied to VCF

User-defined User-defined Defined by tool

Pathogenicity prediction tools

supported

Based on user-defined annotations

(no limit)

phastCons, SIFT, PolyPhen-2 PolyPhen-2, SIFT, LRT,

MutationTaster, MutationAssessor,

RadialSVM, FATHMM

Disease/inheritance model DN/AD/AR/CH DN/AD/AR/CH AD/AR/XR

Quality control check Total coverage depth, allele balance NA Total coverage depth, variant

allele coverage depth, allele balance

Score weighting range User-defined User-defined 0–1

Number of scoring intervals for each

annotation category

User-defined NA Defined by tool

Output format TXT – Local TSV – Local TXT – Web

Note: DN, De novo; AD, autosomal dominant; AR, autosomal recessive; CH, compound heterozygous; XR, X-linked-recessive.
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Figure 3 Comparison of computational performance of VPOT

with similar variant prioritization tools

Prioritization computational time measurements for VPOT,

VaRank, Variant Ranker against number of variants. Processing

time limitation (48 h) was exceeded by VaRank when attempting

�2 million variants. File size limitation exceeded for Variant

Ranker when attempting >2 million variants. More information

on the settings and parameters used is provided in Table S2.
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by Variant Ranker to demonstrate its effectiveness [8]. Follow-
ing as close as possible the default variant scoring criteria of
Variant Ranker, VPOT also ranked the most likely causative

gene PKLR in the fourth position like Variant Ranker. We
were not able to replicate the same scoring parameters as Vari-
ant Ranker using VaRank due to the limited number of

pathogenicity predictors scoring options. With VaRank, using
its default scoring parameters the PKLR variant was ranked in
199th position with an annotation impact value of ‘‘Moder-

ate”. Both VaRank and Variant Ranker provide CADD Phred
score annotation but do not include it in their final ranking.
CADD score is a commonly used pathogenicity predictor,
and a minimum score of 20 has been used as a lower threshold

for variants considered to be possibly pathogenic [14]. Utiliz-
ing the flexibility of VPOT we added CADD into our annota-
tion and PPF with a weighting for CADD Phred score above

20. Under these new ranking criteria, the PKLR variant was
ranked first by VPOT. This demonstrates the benefit of
VPOT’s customizability to allow the users to refine and tune

the variant prioritization process.
Finally, we compared the computational performance of

the three tools when ranking files with different number of

variants (Figure 3 and Table S2). The processing time for
VPOT and VaRank includes the annotation of the input
VCF (to emulate the Variant Ranker processing which
includes its annotation). VPOT was consistently faster than

both VaRank and Variant Ranker, and as the number of vari-
ants increased the time difference between VPOT and the
others were magnified. Additionally, VPOT was the only tool

able to complete variant prioritization task for samples con-
taining up to four million variants. In comparing the amount
of central processing unit memory usage for the local machine

tools, VPOT required a significantly smaller amount of mem-
ory to perform the prioritization tasks compared to VaRank.
Conclusion

VPOT provides a convenient way to prioritize genetic variants

in disease sequencing studies. It is fully customizable, allowing
researchers to filter on any annotation metrics and set weights
for pathogenicity predictions that reflect their specific disease-
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variant hypothesis in question. The use of VPOT can be espe-
cially informative when analyzing sequencing cohorts contain-
ing many families, as the prioritization of variants can allow

researchers to identify most likely disease-causal candidate
variants quickly across all families.

VPOT is highly scalable for large genome analysis. Whole-

genome sequencing generates very large variant files, and there
are now increasing requirements for prioritization of non-
coding variants that make up �98% of the genome. As larger

sequencing studies are performed, VPOT will further prove to
be an extremely valuable tool.

Availability

VPOT is freely available for public use at GitHub (https://
github.com/VCCRI/VPOT/). Documentation for installation

along with a user tutorial, default parameter file, and test data
are provided. Additional datasets analyzed in the current study
are available upon request from the corresponding author.
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