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Introduction

Major depressive disorder (MDD) is one of the most common 
and costly psychiatric disorders, which is characterized by 
pervasive feelings of sadness, anxiety, low self‑esteem, and 
social behavior abnormalities.[1,2] With this mental disorder, 
most of the MDD patients suffer more than one recurrence of 
depressive episodes with a greater chance of suicide, which 
results in a yearly increasing morbidity and a high risk of 
mortality of MDD.[3]

Recently, neuroimaging studies have documented that 
MDD is associated with widespread structural and 
functional brain change.[4,5] For example, functional and 
structural neuroimaging studies have shown abnormal 
neural activities and microstructural abnormalities in 

many local brain regions, such as the prefrontal cortex, 
orbitofrontal cortex, anterior cingulated cortex, amygdala, 
the hippocampus, parahippocampal gyrus, insula, basal 
ganglia, and the temporal, occipital regions.[6‑9] However, 
most of these studies focus on locally specific regions in 
the brain of MDD patients.[10,11] And recent advances in 
the modern neuroimaging technique of diffusion tensor 
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imaging (DTI) have allowed for noninvasive investigation 
of the orientation and integrity of white matter (WM) fiber 
bundles.[12] Based on these advances, there is an increasing 
of evidence suggesting that the mechanism underlying the 
locally functional and structural abnormalities in the brain 
of MDD patients may be associated with the reduction of 
oligodendrocytes and the decreased myelin‑related gene 
expression, which result in the widespread disruptions of 
WM integrity.[13] Considering these distributed functional 
and structural abnormalities among a variety of brain 
areas and the impaired integrity of the WM tracts between 
them, MDD is recognized as a disconnection psychiatric 
disorder.[14] So, characterization of the global architecture 
consisted of the regional brain areas and the functional or 
structural connectivity between them is crucial in the brain 
of MDD patients. It could increase our understanding of 
the pathophysiology underlying MDD from the view of 
the large‑scale organization of structural connectivity that 
underlie functional states.

Recent research has suggested that graph‑based network 
analysis is a powerful method that allow us to quantifying 
the organization of brain connectivity and characterize 
topological properties of brain networks by mapping the 
brain as a functional or structural networks consisting of 
nodes (i.e., brain regions or voxels) and edges (i.e., functional 
or structural connectivity between regions).[15‑17] MDD 
is conceptualized as a network‑level disease with the 
disruption of the topological organization of the brain 
functional and gray matter volume based networks in recent 
studies.[18‑21] These studies on the functional and structural 
brain networks based on gray matter volume or cortical 
thickness had found that the brain structural networks in 
both healthy controls (HCs) and MDD patients followed 
an efficient small‑world organization. However, some 
abnormalities of global topological properties in the brain 
networks of MDD patients were also reported, such as the 
clustering coefficient, the characteristic path length, the 
local and global efficiency. Until date, little is known about 
the differences of the organizational patterns of the brain 
WM networks between MDD patients and HCs. No study 
has directly examined the topological organization of WM 
networks of MDD patients.

In this study, we aimed to investigate topological properties 
of the brain WM structural networks in MDD patients, 
combining DTI with graph theory analysis from an 
integrative systems perspective. Here, we tested that whether 
the brain WM network of MDD patients has a small‑world 
architecture as the same with that in HCs. And then, we focus 
on other related metrics (i.e., betweenness, hubs, efficiency) 
that characterizes the differences of the pattern and efficiency 
of the information communicating and metrics that quantify 
the segregated and integrative connectivity patterns  (the 
local density of connections within regions, clustering; 
the integrative connectivity patterns between regions, path 
length) between MDD patients and HCs.

Methods

Subjects
Twenty‑seven patients with unipolar MDD (right‑handed; 
10 male and 17 female; age: 32.96 ± 8.84 years) were recruited 
for this study from part of a large cohort of depression patients 
in the Chinese population of Han nationality in the inpatient 
Department of Affiliated Brain Hospital of Nanjing Medical 
University, China. The psychiatric diagnoses of all the patients 
were made according to the Structured Clinical Interview for 
DSM Disorders. All patients were currently experiencing an 
episode of depression with the 17‑item Hamilton rating scale 
for depression total score ≥17 that was rated by an experienced 
psychiatrists on the day of image acquisition. All patients with 
other Axis I psychiatric disorders and symptoms or a history 
of electroconvulsive therapy were excluded.

Forty age‑, and sex‑matched healthy subjects (right‑handed; 
21 male and 19 female; age: 31.43 ± 7.80 years) served as 
controls were recruited by media advertisements from the 
similar geographic and demographic regions. HC subjects 
with a psychiatric illness history or any family history of 
major psychiatric diseases in their first‑degree relatives 
were excluded.

All subjects met the exclusion criteria:  (1) a history of 
alcohol or drug dependence; (2) a history of brain disorder, 
neurological disorders, or cardiovascular diseases; (3) any 
serious physical illness as assessed by personal history and 
laboratory analysis; (4) currently pregnancy or breastfeeding; 
and  (5) the inability to undergo an magnetic resonance 
imaging (MRI). The protocol was approved by the Ethics 
Committee of the Affiliated Nanjing Brain Hospital of 
Nanjing Medical University and written informed consent 
was obtained from all subjects. The demographic and clinical 
characteristics of these subjects are presented in Table 1.

Image acquisition
MRI was acquired using a 3.0‑Tesla Siemens Verio MRI  
Scanner (Siemens AG, Erlangen, Germany)  in the Affiliated 

Table 1: Demographic and clinical characteristics of 
MDD patients and healthy controls

Variables Group t/χ2 P

HC MDD
Sample size, n 40 27 – –
Age, years (mean ± SD) 31.43 ± 7.80 32.96 ± 8.84 −0.75 0.46*
Gender, n (male/female) 21/19 10/17 1.55 0.21†

Handedness, n (right/left) 40/0 27/0 – –
Number of previous 

episodes (mean ± SD)
– 1.63 ± 1.08 – –

Duration of illness, 
months (mean ± SD)

– 4.26 ± 3.51 – –

Score of 17‑item 
HAMD (mean ± SD)

– 26.22 ± 4.54 – –

*The P value was obtained by two‑sample two‑tailed t‑test; †The P value 
was obtained by Pearson Chi‑square test. The P value more than 0.05 
indicated no statistically significant difference between the two groups. 
HC: Healthy controls; MDD: Major depressive disorder patients; 
HAMD: Hamilton Depression Rating Scale; SD: Standard deviation.



Chinese Medical Journal  ¦  March 20, 2016  ¦  Volume 129  ¦  Issue 6 681

Nanjing Brain Hospital of Nanjing Medical University. During 
the scan, all subjects were instructed to relax with their eyes 
closed and not think of anything in particular but not to fall 
asleep. T1‑weighted images: Repetition time  (TR) = 1900 
ms, echo time (TE) = 2.48 ms, thickness/gap = 1.0/0 mm, 
flip angle = 9°, inversion time = 900 ms. DTI was acquired: 
TR = 6600 ms, TE = 93 ms, thickness/gap = 3/3 mm, flip 
angle = 90°, 30 diffusion directions with b = 1000 s/mm2, and an 
additional image without diffusion weighting (i.e., b = 0 s/mm2).

Data preprocessing
All diffusion images were preprocessed with the Functional 
Magnetic Resonance Imaging of the Brain Software 
Library‑FMRIB’s Diffusion Toolbox  (http://www.fmrib.
ox.ac.uk/fsl/fdt/index.html). All images were first corrected 
for distortions due to eddy current and simple head motions 
with the FSL toolbox, then estimate the diffusion tensor and 
calculate the fractional anisotropy (FA). And the baseline 
b  =  0 images of all participants were normalized to the 
T1‑weighted image using a linear transformation, and then 
registered to the standard FA template in the Montreal 
Neurological Institute (MNI) 152 standard space (MNI‑152 
space). Using the transformation matrices created in 
the above two register processing steps, the resulting 
transformation matrix from diffusion space to MNI space 
was calculated and then stored for later use.

In addition, we reconstructed WM bundles in the whole 
brain of each subject with Diffusion Toolkit (http://www.
trackvis.org) toolbox, to generate the three‑dimensional 
curves characterizing corticocortical fiber tract connectivity 
and to reconstruct WM tracts of the brain network based on 
the diffusion map of each individual. For each individual 
dataset, each streamline was propagated using the fiber 
assignment by continuous tracking algorithm.[22]

Network construction
A network can be constructed by defining nodes and estimating 
edges. The definition of nodes and edges is important in the 
brain network construction as they are the most basic elements 
of a network. In this study, the procedure that we undertook to 
define the nodes and edges in each network is similar to that 
used in previous studies[23] and described as follows. All the 
processing pipelines were presented in Figure 1.

Network node definition
To construct the brain structural networks in this study, we 
firstly employed an automated structural labeling template[24] 
to parcellate the entire brain into 90 cortical regions 
(45 for each hemisphere), each cortical or subcortical region 
representing a node of the cortical network by the graph 
theoretic approach that has been described previously.[25] 
Note that, in our case, the cerebellums were removed and 
the names of the regions of interests and their corresponding 
abbreviations are listed in Table 2.

Network edge definition
We determined the edges of the brain structural network 
by using the corticocortical fiber tract connectivity dataset 
of each individual. The fiber bundle was modeled as 

the edge between nodes i and j  (i.e.,  brain region i and 
region j) when it was considered to link these two brain 
regions with both of the fiber bundle’s endpoints adjacent 
to the two brain regions. This procedure was repeated for 
all brain regions i and j in the whole cerebral cortex. And 
then the resulting matrix  (network, or graph) would be 
constructed, which represents the undirected brain structural 
network, comprising a total of 90 nodes that are structurally 

Table 2: Cortical and sub‑cortical regions as 
anatomically defined in the AAL template and their 
corresponding abbreviations

Region name Abbreviation
Precentral gyrus PreCG
Postcentral gyrus PosCG
Rolandic operculum ROL
Superior frontal gyrus, dorsolateral SFGdor
Superior frontal gyrus, orbital SFGorb
Superior frontal gyrus, medial SFGmed
Superior frontal gyrus, medial orbital SFGmedorb
Middle frontal gyrus MFG
Middle frontal gyrus, orbital MFGorb
Inferior frontal gyrus, opercular IFGoper
Inferior frontal gyrus, triangular IFGtri
Inferior frontal gyrus, orbital IFGorb
Supplementary motor area SMA
Olfactory cortex OLF
Gyrus rectus GRE
Paracentral lobule PCL
Heschl gyrus HES
Superior temporal gyrus STG
Middle temporal gyrus MTG
Inferior temporal gyrus ITG
Superior parietal gyrus SPG
Inferior parietal, but supramarginal and angular gyri IPL
Supramarginal gyrus SMG
Angular gyrus ANG
Precuneus PCUN
Calcarine fissure and surrounding cortex CAL
Cuneus CUN
Lingual gyrus LING
Superior occipital gyrus SOG
Middle occipital gyrus MOG
Inferior occipital gyrus IOG
Fusiform gyrus FFG
Anterior cingulate and paracingulate gyri ACG
Median cingulate and paracingulate gyri DCG
Posterior cingulate gyrus PCG
Hippocampus HIP
Parahippocampal gyrus PHG
Temporal pole: superior temporal gyrus TPOstg
Temporal pole: middle temporal gyrus TPO
Amygdala AMY
Caudate nucleus CAU
Lenticular nucleus, putamen PUT
Lenticular nucleus, pallidum PAL
Thalamus THA
Insula INS
AAL: Automated anatomical labeling.
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connected and the connections between these nodes. The 
weighted network analyses were performed after the matrix 
constructed. We calculated the mean FA values of the 
connected streamlines between two regions by the average 
of FA values of all voxels on each fiber track as the weights 
of the network edges. As a result, we obtained a weighted 
structural network for each participant.

Network analysis
We calculated both global and regional metrics of the 
brain networks in Matlab using the Brain Connectivity 
Toolbox.[17]

Global network metrics
The global topological properties of network were 
characterized by the global network metrics, including 
five key small‑world parameters[26] (the average clustering 
coefficient C, the average characteristic path length L, the 
average normalized clustering coefficient γ, the average 
normalized shortest path length λ, and the small‑worldness 
σ), four network efficiency parameters[27] (the average local 
efficiency Eloc(real), the average global efficiency Eglob(real), 
the average normalized local efficiency Eloc(normal), the 
average normalized global efficiency Eglob(normal), and the 
average connection strength.[28]

Weighted clustering coefficient
Briefly, the clustering coefficient is a measure of network 
segregation. C (i) quantifies the likelihood of whether the 
neighborhoods were connected with each other or not and 
C indicates the extent of the local cliquishness and local 
efficiency of information transfer. In a weighted graph G 
with N nodes, the C (i) for node i is defined as the ratio of the 
number of existing connections between its nearest neighbors 

to the number of all possible: C i
w w w

K i K i

ij ik jk
j k G i( )
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−

∈
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, 

where wij is the weight between node i and j in the network, 
G (i) denotes the subgraph composed of the nearest neighbors 
of node i and K (i) is the number of edges in the subgraph 
G (i). Obviously, the clustering coefficient C of the graph G 
is the average of the clustering coefficient over all nodes in 

a network. Formally: C G
N
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i N
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∈
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Weighted characteristic path length
The path length between nodes i and j is defined as the 
sum of the edge lengths along this path. The characteristic 
path length between node i and j is defined the smallest 
number of edges connecting them. For weighted networks, 
the length of each edge was assigned by computing the 
reciprocal of the edge weight 1wij

. The characteristic 

path length L quantifies the ability of parallel information 
propagation or global efficiency of information transfer 
of a network, which is the most commonly used measure 
of network integration. In a weighted graph G with N 
nodes, the characteristic path length of a node is the 
average value of shortest path length from node i to all 

other nodes in the network:
L i

d i j

N
i j N( )

( , )
weighted

weighted

=
−

≠ ∈
∑

1
, 

where d i j wkmw gi jkm

( , )weighted
weighted

=
∈ ↔
∑ 1 , is the shortest path 

length between node i and j in G; gi j↔  is the shortest 
weighted distance between node i and j in the graph G that 
cross on the way nodes u and v and wuv is defined as the 
weight of the connection between node u and node v. The 
characteristic path length L of the network is the average 
of characteristic path length between all node pairs in the 
network: L G

N
L i

i N
( ) ( )weighted weighted=

∈
∑1 .

Figure 1: A flowchart of brain white matter structural network construction. (1) The T1‑weighted images were registered to the corresponding 
nondiffusion‑weighted (b = 0) images. (2) The white matter fiber bundles in the whole brain were define by using diffusion tensor imaging 
deterministic tractography. (3) The entire brain was parcellated into 90 cortical regions and each region represented a node of the cortical network 
by using the automated structural labeling template. (4) The resulting weighted matrix would be constructed by calculating the mean fractional 
anisotropy values of the connected streamlines between regions as the weights of the network edges. (5) The weighted brain white matter structural 
network was constructed for each participant with the regions of interests becoming nodes and the fibers transformed into edges in the network.
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Weighted local efficiency
In a weighted graph G with N nodes, the local efficiency 
of each node could be calculated as the global efficiency 
of the neighborhood subgraph G  (i) of the node: 

E i
a a d jk

K i

ij ik i
j k G i

loc
weighted

weighted

( )
[ ( ) ]

( )

/

( )=
{ }−

≠ ∈
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KK i( ) )−1
, where G (i) 

denotes the subgraph composed of the nearest neighbors of 
node i, di ( jk) weighted is the shortest path length between node 
j and k in G (i). And the network local efficiency Eloc of G is 
defined as the average of those of all nodes within the network, 
which represents how much the network is fault tolerant and 
shows how efficient the information is communicated within 
the neighbors of a given node when this node is removed. 
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Weighted global efficiency
The global efficiency of the graph G measures the efficiency 
of the parallel information transfer in the network. And 
the global efficiency of node i is defined as follows: 

E i
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, where d (ij) weighted is the 

shortest path length between node i and j in G. Obviously, 
the average global efficiency of the network is defined as the 
reciprocal of the average of the reciprocals of shortest path 
length between pairs of nodes within the network. Formally: 
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Weighted strength
For a weighted graph G with N nodes, we calculated the 
S (i) of node i by the sum of the edge weights wij linking to 

node i. Formally: S i w
j G

( )=
∈
∑ ij , where wij was the weight 

between node i and node j in the graph G. Obviously, the S 
of the graph G is the average of the strength across all of the 

nodes in the network. Formally: S G
N

S
i G
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∈
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Small‑world properties
To explore the small‑world topological properties of the 
networks, we compared the values of C(rand) and L(rand) of 
the network with those of 100 random networks. The random 
networks were constructed by using the random rewiring 
procedure, which preserve the same number of nodes, edges, 
and degree distribution as the real networks whereas the 
corresponding weights are redistributed.[29] And then the 
normalized clustering coefficient  =C

C
( )

( )
real

rand
 and 

the normalized characteristic path length  = L
L

( )
( )

real
rand

 

were computed  (C(real) and L(real) are the clustering 
coefficient and the characteristic path length of real 
networks, and C(rand) and L(rand) represent the means of 
corresponding indices derived from 100 matched random 

networks). Compared with random networks, small‑world 
networks have similar characteristic path length but higher 
clustering coefficient, that means a small‑world network 
not only has a higher level of local interconnectivity or 
local efficiency of information transfer but also has an 
approximately equivalent shortest path length or higher 
global efficiency of information transfer compared 

with random networks (  = >> >>C
C

( )
( )

real
rand 1 1 , 

 = L
L

( )
( )»

real
rand 1 )  (Watts and Strogatz, 1998). These 

two metrics can also be summarized into a simple quantitative 
measurement, small‑worldness σ γ

λ= ≥ 1 .[30]

Small‑world efficiency
To explore the small‑world efficiency, we also compared 
the values (Eglob and Eloc) of the networks with those of 100 
random networks, which also preserve the same number of 
nodes, edges, and degree distribution as the real networks 
whereas the corresponding weights are redistributed.[29] 
A real network would be considered to have small‑world 
e f f i c i e n c y  i f  E E

Eloc
loc

loc
normal real

rand( ) ( )
( )= >> 1  

and E E
Eglob

glob

glob
normal real

rand( ) ( )
( )»= 1   (E loc(real); 

Eglob(real) and Eloc(rand); Eglob(rand) were the average global 
efficiency Eglob and the average local efficiency Eloc of the 
brain structural networks and their 100 matched random 
networks respectively.[26] Namely, a small‑world network 
not only has a higher level of local efficiency but also has 
an approximate level of global efficiency compared with 
the random networks (i.e., very efficient both in global and 
local information transfer).[31]

Regional network metrics
The topological properties of nodes were characterized 
by the regional node measures, including the clustering 
coefficient C (i), the characteristic path length L (i), global 
efficiency Eglob(i), local efficiency Eloc(i) and two nodal 
centrality parameters: the strength S  (i) and normalized 
betweenness b (i).

Weighted betweenness centrality
In a weighted graph G with N nodes, the betweenness 
centrality B  (i) of a node i is calculated as the fraction 
of shortest paths between pairs of other nodes that pass 
through the node i, which representing that the central node 
i plays a pivotal role in control over the information transfer 
within the graph. B  (i) of a node i is centrality measures 
that capture the influence of the node i over information 
flow between other nodes in the network. In this study, 
we calculated the normalized betweenness centrality b (i) 
of a node i as b i B i

B i( ) ( )
( ( )= < >  (where < B (i)> is the 

average nodal betweenness of the network).[17] Formally: 

b i
i

i j k G
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=

≠ ≠ ∈
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

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, where σjk (i) is the number of shortest 
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path between node j and node k passing through node i, σjk 
is the number of shortest path between node j and node k.

Hubs of the weighted network
Hubs of the weighted network indicate the contribution of 
nodes to facilitate global integrative processes within the 
cerebral cortex.[32] The nodes with the largest normalized 
betweenness b  (i) or the strength S  (i) were considered 
pivotal nodes  (i.e.,  hubs) in the network. Specifically, 
nodes were identified as the hubs in the cortical network 
if their normalized betweenness b (i) or the strength S (i) 
were at least one standard deviation (SD) greater than the 
average normalized betweenness b  (i) or strength S  (i) of 
the network (i.e., b (i) > mean + SD or S (i) > mean + SD)).

Statistical analysis
Differences in global network metrics
For global network metrics (the average clustering coefficient 
C, the average characteristic path length L, the average 
local Eloc(real) and global efficiency Eglob(real), the average 
strength S ), a two‑sample two‑tailed t‑test was separately 
performed to determine the significant between‑group 
differences on each network metric. A significant threshold 
of P = 0.05 was used for testing the overall level network 
characteristics.

Differences in regional nodal metrics
For regional nodal metrics (the clustering coefficient C (i), 
the characteristic path length L (i), the local Eloc(i) and global 
efficiency Eglob(i),

 the strength S  (i) and the betweenness 
b  (i)), a two‑sample two‑tailed t‑test was also separately 
performed to determine the significant between‑group 
differences on each nodal metric. To address the problem 
of multiple comparisons in the regional nodal metrics and 
maintain an experiment‑wise error rate of 0.05, a false 
discovery rate (FDR) correction was employed to address the 
problem with the threshold of P = 0.05, where the number 
of comparisons was 90.

Results

Global network analyses
Small‑worldness
Both HCs and MDD patients showed a small‑world 
organization of the brain structural networks expressed by 
 = >>C Creal rand 1  (HC: 4.65 ± 0.44; MDD: 4.88 ± 0.56) and 

 = L Lreal rand »1  (HC: 0.84 ± 0.03; MDD: 0.83 ± 0.02). This 
pattern resulted in σ≥1 in both groups. The results suggested 
that there were small‑world characteristics of the brain 
structural networks in both groups [Figure 2a and Table 3].

Small‑world efficiency
Using small‑world efficiency analyses, we found that the 
brain structural networks of both HCs and MDD patients 
exhibited a similar global efficiency and a much higher 
local efficiency compared with the matched random 
networks (HC: Eloc(normal) = 4.74 ± 0.87, Eglob(normal) = 
0.89 ± 0.02; MDD: Eloc(normal) = 5.24 ± 0.95, Eglob(normal) = 
0.88  ±  0.02). The results also suggested that there were 

small‑world characteristics of the brain structural networks 
in both groups from the view of the efficiency of the brain 
structural network [Figure 2b and Table 3].

Alterations in global network metrics
Compared with HCs, MDD patients decreased in the 
clustering coefficient C  (P  =  0.018), the average local 
efficiency Eloc(real) (P = 0.025), the average global efficiency 
Eglob(real) (P = 0.0035) and the average strength S (P = 0.015) 
of the brain structural network [Table 4].

Regional nodal analyses
Identification of Hubs
To identify the hub regions in the network, we examined 
the normalized betweenness b  (i) and the strength S  (i) 
centrality of each cortical region in cortical networks of both 
groups. A given region in a network was defined as a hub if 
its normalized betweenness b (i) or S (i) was, at least, one 
SD greater than the average betweenness or strength of the 
network. In the HC group, 13 regions were identified as the 
hubs by the normalized betweenness b  (i) and 18 regions 
by the strength S (i). In the MDD group, 12 regions were 
identified as the hubs by the normalized betweenness b (i) and 
15 regions by the strength. And the hubs identified by both 
b (i) and S (i) in HCs were the left and right precentral gyrus, 
left and right calcarine fissure and surrounding cortex, left and 
right insula and left median cingulate and paracingulate gyri. 
The hubs identified by both b (i) and S (i) in MDD patients 
were the left and right precentral gyrus, left calcarine fissure 
and surrounding cortex, left and right insula and left median 
cingulate, paracingulate gyri [Figure 3 and Table 5].

Alterations in regional nodal characteristics
Compared with HCs, MDD patients showed decreased nodal 
global efficiency in brain regions, including the right rolandic 
operculum (P = 0.00013*), the right supramarginal gyrus 

Table 3: The results of the small‑worldness and 
small‑efficiency in healthy controls and MDD patients

Variable Group

HC MDD
The small‑worldness

The normalized clustering coefficient (γ) 4.65 ± 0.44 4.88 ± 0.56
The normalized characteristic path length (λ) 0.84 ± 0.03 0.83 ± 0.02
The small‑worldness (σ) 5.58 ± 0.63 5.93 ± 0.75

The small‑efficiency

E E
Eloc

loc

loc
(normal)= (real)

(rand)
4.74 ± 0.87 5.24 ± 0.95

E E
Eglob

glob

glob
(normal)= (real)

(rand)
0.89 ± 0.02 0.88 ± 0.02

E
E

loc

glob

(normal)
(normal)

5.32 ± 1.02 5.95 ± 1.15

Eloc(real), Eglob(real) and Eloc(rand), Eglob(rand) were the average local 
and global efficiency of the brain anatomical networks and the 100 
matched random networks respectively. Eloc(normal): The normalized 
average local efficiency; Eglob(normal): The normalized average global 
efficiency. HC: Healthy controls; MDD: Major depressive disorder 
patients.
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(P = 0.00036*), the right angular gyrus (P = 0.000064*), 
the right Heschl’s gyrus (P = 0.00018*) and the left middle 
temporal gyrus (temporal pole) (P = 0.00026*) (*indicated 
that the regions survived critical FDR threshold for multiple 

comparisons). However, the between‑group differences 
in the nodal local efficiency Eloc(i), clustering coefficient 
C  (i), characteristic path length L  (i), strength S  (i) and 
normalized betweenness b (i) did not survived critical FDR 

Figure 3: Hub regions in the brain structural networks of healthy controls and major depressive disorder patients. All the names of the brain regions 
in Figure 3 please refer to Table 2. Nodes represented brain regions, and the size of the nodes (i.e., diameter) represented the magnitude of the 
normalized betweenness b (i) or the strength S (i). (a) The hubs defined by the normalized betweenness b (i) in the brain structural networks 
of healthy controls. (b) The hubs defined by the strength S (i) in the brain structural networks of healthy controls. (c) The hubs defined by the 
normalized betweenness b (i) in the brain structural networks of major depressive disorder patients. (d) The hubs defined by the strength S (i) in 
the brain structural networks of major depressive disorder patients. Hubs in red mean those identified by both b (i) and S (i) in healthy controls 
or major depressive disorder patients.

Table 4: Abnormal overall level network metrics in healthy controls and MDD patients

Variable Group t P

HC MDD
The clustering coefficient (C ) 0.14 ± 0.02 0.13 ± 0.02 2.42 0.018
The characteristic path length (L) 1.61 ± 0.24 1.71 ± 0.24 −1.68 0.099
The average local efficiency (Eloc(real)) 0.24 ± 0.03 0.22 ± 0.03 2.29 0.025
The average global efficiency (Eglob(real)) 0.14 ± 0.01 0.13 ± 0.01 3.03 0.004
The average strength (S ) 2.41 ± 0.23 2.25 ± 0.27 2.49 0.015
The P value was obtained by two‑sample two‑tailed t‑test. The P value was obtained by two‑sample two‑tailed t‑test (significant between‑group 
differences were shown in bold font). HC: Healthy controls; MDD: Major depressive disorder.

dcba

Figure 2: The small‑worldness and small‑world efficiency of the brain structural networks of healthy controls and major depressive disorder 
patients. Eloc and Eglo respectively represent the local and global efficiency; C and L respectively represent the clustering coefficient and characteristic 
path length; net and rand respectively represent the brain network and rand network. (a) Both of healthy controls and major depressive disorder 
patients have a similar characteristic path length and a much higher clustering coefficient when compared with the matched random networks. The 
normalized characteristic path length λ ≈ 1 and the normalized clustering coefficient γ >>1. (b) Both of healthy controls and major depressive 
disorder patients have a similar global efficiency and a much higher local efficiency compared with the matched random networks.

ba



Chinese Medical Journal  ¦  March 20, 2016  ¦  Volume 129  ¦  Issue 6686

threshold for multiple comparisons between MDD patients 
and HCs [Table 6].

Discussion

This study uses graph analyses and DTI data to compare 
the topological characteristics of the brain structural 
networks in HCs and MDD patients. We constructed a set of 
undirected weighted graphs for each subject and compared 
the topological properties of brain functional networks 
between the two groups. The results reveal that the brain 
structural networks in both groups followed an efficient 
small‑world organization, which is consistent with several 
previous studies.[30,31,33,34] Nevertheless, we found disturbed 
topological properties of the brain structural network in 
MDD patients compared with those of healthy subjects.

The human brain has been described as a large and complex 
network of regions interconnected structurally by WM tracts, 
which has an economical, small‑world architecture.[26,27] 
And it is characterized by the coexistence of structurally 
segregated and integrative connectivity patterns and has 
the ability of efficiently parallel information transfer at a 
relatively low cost.[30,31] The topology of this network assure 
that the brain generates and integrates information with high 
efficiency between brain regions.[35,36] In this study, both the 
brain structural networks of HCs and MDD patients have a 
higher clustering coefficient and a shorter characteristic path 
length when compared with the matched random networks. 
Many previous morphological, functional imaging and 
DTI studies have identified small‑world topology of the 

brain networks in MDD.[20,21,37] Recent studies also show 
that the brain network of MDD has preserved small‑world 
topological properties characterized by a high level of 
segregation and global efficiency.[38] And our results were 
consistent with several previous brain functional and 
structural network studies in MDD patients.[20,39]

Specifically, we found that, in contrast to healthy HCs, the 
brain structural network of MDD patients were characterized 

Table 5: Regions identified as hubs in the networks of healthy controls and MDD patients

HC MDD

Regions Average b (i) Regions Average S (i) Regions Average b (i) Regions Average S (i)
PCUN Left 4.24 PUT Left 4.73 PCUN Left 4.27 CAU Left 4.37
PCUN Right 4.11 PCUN Left 4.57 PCUN Right 3.47 PCUN Right 4.31
CAL Left 3.14 CAU Left 4.37 OLF Left 3.12 PCUN Left 4.18
LING Right 2.91 PCUN Right 4.35 DCG Right 2.88 PUT Left 3.98
DCG Right 2.70 HIP Left 4.15 OLF Right 2.35 HIP Left 3.96
LING Left 2.62 PUT Right 4.08 INS Left 2.32 PUT Right 3.75
DCG Left 2.38 SOG Right 3.95 CAL Left 2.16 CAL Right 3.73
OLF Left 2.21 MOG Right 3.86 DCG Left 2.11 SOG Right 3.72
INS Right 2.19 MOG Left 3.84 IFGorb Right 2.04 INS Right 3.62
ACG Left 2.19 CAL Right 3.82 STG Right 1.93 CAL Left 3.55
CAL Right 2.09 INS Right 3.79 LING Left 1.90 ACG Left 3.51
OLF Right 1.98 CAL Left 3.76 INS Right 1.84 MOG Left 3.32
INS Left 1.89 PreCG Left 3.61 INS Left 3.29

PreCG Right 3.54 PosCG Right 3.29
STG Right 3.49 DCG Left 3.17
INS Left 3.48
CAU Right 3.45
DCG Left 3.44

b  (i): The normalized nodal betweenness; S  (i): The nodal strength. The regions in bold font were the hubs that identified by both b  (i) and S  (i). 
PreCG: Precentral gyrus; PosCG: Postcentral gyrus; IFGorb: Inferior frontal gyrus, orbital; OLF: Olfactory cortex; STG: Superior temporal gyrus; 
PCUN: Precuneus; CAL: Calcarine fissure and surrounding cortex; LING: Lingual gyrus; SOG: Superior occipital gyrus; MOG: Middle occipital 
gyrus; ACG: Anterior cingulate and paracingulate gyri; DCG: Median cingulate and paracingulate gyri; INS: Insula; PUT: Lenticular nucleus, putamen; 
CAU: Caudate nucleus; HIP: Hippocampus; HC: Healthy controls; MDD: Major depressive disorder.

Table 6: Abnormal nodal metrics in MDD patients as 
compared with healthy controls

Regions P

Eglob(i) Eloc(i) C (i) L (i) S (i) b (i)
Right rolandic 

operculum
0.00013* 0.023 0.27 0.19 0.016 0.52

Right supramarginal 
gyrus

0.00036* 0.051 0.30 0.044 0.081 0.60

Right angular gyrus 0.000064* 0.12 0.44 0.36 0.023 0.62
Right heschl gyrus 0.00018* 0.14 0.22 0.056 0.21 0.25
Left middle temporal 

gyrus (temporal pole)
0.00026* 0.070 0.38 0.40 0.0014 0.66

Eglob(i): The nodal global efficiency; S  (i): The nodal strength; 
C  (i): The nodal clustering coefficient; L  (i): The nodal characteristic 
path length; Eloc  (i): The nodal local efficiency; b  (i): The normalized 
nodal betweenness. Regions were considered abnormal in the MDD 
patients if their Eglob(i) exhibited significant between‑group differences 
(P<0.05, corrected, *That the regions survived critical FDR threshold 
for multiple comparisons). And the P values of other nodal measures of 
these nodes were also presented (the bold font P values mean that they 
exhibited significant between‑group differences, P<0.05, uncorrected). 
MDD: Major depressive disorder.
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by less specialized or segregated network organization, 
indexed by significantly lower average clustering coefficient 
and lower average local efficiency, which mean a trend 
to a less dense interconnection with neighbor regions.[40] 
This finding suggests that MDD patients is associated with 
reduced capacity for the regions to form cliques with other 
brain regions, which is likely to be associated with the 
generation of some symptoms of MDD patients. The path 
length and global efficiency of a node implies how close it is 
connected globally and how efficiency it transfer information 
globally to other nodes of the network, with shorter path 
lengths or higher global efficiency reflecting higher levels 
of information transfering efficiency.[31] So, our findings 
suggest that the brain structural network in MDD patients 
had decreased average global efficiency and decreased 
average strength of connectivity, implying a significant 
decrease of network connectivity of some brain areas and 
a disturbance of the normal global integration of whole 
brain networks.[39,41] This finding supports the hypothesis 
that MDD is a disorder of dysfunctional integration among 
large, distant brain regions.[14] And this finding may also 
suggest that MDD impacts the capacity of brain regions to 
efficiently integrate information across the brain network, 
which leads to a lower global efficiency of the network 
integration or a lower efficiency of the parallel information 
transfer in the brain structural network of MDD patients 
and then destructed the cognitive fitness and intelligence 
of the brain.[15,28,42] All these findings tend to suggest that 
MDD affects the global organization of the brain network 
and lead to a lesser locally and globally interconnected 
organization or a lesser strong connectivity of the overall 
level network.[31,43] Altered average clustering coefficient 
and local efficiency of the brain networks in MDD has also 
been reported. Previous DTI studies reported lower average 
clustering coefficient and lower average local efficiency in 
MDD.[44] However, some functional imaging studies reported 
that the average clustering coefficient of the brain networks 
in MDD was unchanged.[45] The results were consistent with 
some previous study that reported less strongly globally 
connected and less organized functional brain networks in 
MDD patients.[39] The findings about the average clustering 
coefficient and local efficiency of the brain networks in 
MDD were inconclusive. All of these findings need to be 
confirmed with larger samples.

Moreover, many local brain regions were profoundly 
affected, which were found in regions that have been 
implicated in dysfunction of emotion regulation and 
cognition in MDD patients. Specifically, MDD patients 
displayed a significantly decreased global efficiency of the 
right rolandic operculum, the right supramarginal gyrus, 
the right angular gyrus, the right Heschl’s gyrus and the 
left middle temporal gyrus (temporal pole). As the global 
efficiency of a node expresses how closely it is connected 
globally to other nodes in the network and a higher global 
efficiency means a higher levels of efficient access to 
information,[31] our findings suggest a reduced global 
efficiency of frontal, parietal and temporal brain regions 

in MDD patients. And as the higher global efficiency of 
the network integration or the efficiency of the parallel 
information transfer in the network has been linked to 
cognitive fitness of the brain, this finding may also suggest 
that MDD impacts the capacity of frontal, temporal and 
parietal brain regions to efficiently integrate information 
across the brain network.[41] Together, these regional 
abnormalities might suggest an altered segregated network 
organization of different brain systems and lead to reduced 
global integration of information between widespread brain 
regions, which results in a disruptive integrated network 
organization of the brain structural networks in MDD 
patients. This further supports that these brain regions are 
also key regions of the brain structural network though 
they are not identified as hubs by the metrics normalized 
betweenness centrality b  (i) and strength of connectivity 
S  (i). And future studies examining the other regional 
topological properties of brain regions in MDD patients 
and their specific impact on structural and functional brain 
global network metrics are needed. Previous studies in 
MDD have reported decreased global efficiency in the 
whole‑brain network, especially, in the frontal, parietal and 
temporal brain regions.[37,38,44] However, we did not find the 
very important brain, amygdala, which should be one of 
the major findings in previous functional imaging studies. 
We speculate that the sample size of this study is relatively 
small, while a larger sample size is needed to find more 
important brain statistically significantly.

The normalized betweenness centrality b (i) and the strength of 
connectivity S (i) are important metrics that have been adopted 
to assess the relative importance of a node and can identify the 
pivotal nodes in a network.[30,42] The hub regions are identified 
in central brain regions, which has been proven to play a 
central role receiving convergent inputs from multiple cortical 
regions and are involved in emotional processing and the 
maintenance of a conscious state of mind.[16,46] Relative to HCs, 
less hub regions were identified in MDD patients, showing 
loss of central cortex hubs and emergence of noncentral cortex 
hubs. And our findings also suggest a less strongly integrated 
structural brain network in MDD patients, with a reduced 
number and central role of key hubs. These brain regions 
have been reported to show morphological and functional 
changes in MDD patients.[43,47‑50] This further supports that 
these brain regions have a strong impact on global information 
integration of the brain structural network in MDD patients 
and that they are key regions of the brain structural network. 
And the distribution of the key hubs in brain structural network 
of MDD is consistent with our previous result.[37]

In conclusion, our results of the graph theory analysis of 
the FA‑weighted brain structural network in MDD patients 
support the concept that the brain structural network is a 
large and complex network with an optimal economical 
small‑world topological property. Although MDD patients 
showed an overall intact small‑world topology, significantly 
altered global topological organization and regional 
characteristic of the nodes in the frontal, parietal and temporal 
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areas of the brain structural network were found. Thus, the 
global network and regional node‑level aberrations identified 
in the present study provide insights into our understanding of 
altered topological organization in functional brain networks 
of MDD patients in previous studies and may have important 
neurobiological implications for the pathophysiology of 
MDD from the view of the brain network.
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