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Identification of prognostic markers by weighted gene co-expression network 
analysis in non-small cell lung cancer
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ABSTRACT
Non-small cell lung cancer (NSCLC) is one of the fatal tumors and is associated with a poor 
prognosis. Cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) 
was used to quantify the proportions of 22 types of immune cells. Weighted gene co-expression 
network analysis (WGCNA) was established from the GSE37745 data, and key modules correlating 
most with CD8+ T cell infiltration were determined. Genes that manifested a high module 
connectivity in the key module were identified as hub genes. Three bioinformatics online 
databases were used to evaluate hub gene expression levels in tumor and normal tissues. 
Finally, survival analysis was conducted for these hub genes. In this study, we chose four hub 
genes (AURKB, CDC20, TPX2 and KIF2C) based on the comprehensive bioinformatics analyses. All 
hub genes were overexpressed in tumor tissue, and high expression of AURKB, CDC20, TPX2, and 
KIF2C correlated with the poor prognosis of these patients. In vitro experiments confirmed that 
CDC20 knockdown inhibited cell proliferation and growth. The above results indicated that 
AURKB, CDC20, TPX2, and KIF2C are potential CD8+ T cell infiltration-related biomarkers and 
therapeutic targets.

ARTICLE HISTORY
Received 8 April 2021 
Revised 21 July 2021 
Accepted 22 July 2021 

KEYWORDS
Weighted gene co- 
expression network analysis; 
CIBERSORT; Non-small cell 
lung cancer

1. Introduction

Non-small cell lung cancer (NSCLC) accounts for 
85% of all lung cancers, is difficult to treat and has 
a low survival rate. There are mainly two patholo-
gical types: lung adenocarcinoma (LUAD) and 
lung squamous cell carcinoma (LUSC) [1]. 
Currently, several treatment strategies are used to 
treat lung cancer, including surgery, chemother-
apy, radiotherapy and molecular targeted therapy 
[2]. Surgery is the first treatment for early stage 
patients of NSCLC [3]. Molecule-targeted thera-
pies are rapidly being explored and developed in 
recent years [4,5]. However, subsequent studies 
have corroborated that target therapy is successful 
in LUAD, but LUSC lacks effective molecular tar-
gets [6].Therefore, exploring novel therapeutic tar-
gets for targeted therapy is required. Most patients 
are diagnosed with NSCLC at an advanced stage, 
and their 5-year survival rate is significantly lower 
than that of early-stage patients. Thus, it is essen-
tial to identify reliable prognostic markers for 
cancer treatment. Although multiple studies have 

suggested that there are many prognostic markers 
of NSCLC, the specific mechanisms have not yet 
been completely elucidated and need to be studied 
systematically [7,8].

The progression of cancer not only depends on 
the pathologic stage and molecular features of the 
tumor, but also on the immune responses of the 
host. Studies have indicated that CD8+ lympho-
cytes infiltrating the tumor are associated with 
anti-tumor immune responses. The prognostic 
indicator value of CD8+ T lymphocytes has been 
identified in various forms of solid tumor types 
such as prostate, ovarian, pancreatic, breast and 
colorectal cancers [9–13].Furthermore, CD8+ 

T lymphocytes levels have been associated with 
the effect of anti-PD-1 treatment in melanoma 
and mismatch repair deficient cancers, including 
NSCLC [14]. Several studies have suggested that 
increased CD8+ T lymphocytes can serve as a good 
prognostic indicator for NSCLC [15–17].

Bioinformatics technology has evolved rapidly, 
and many methodologies have emerged to 
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discover disease-associated genes. Weighted gene 
co-expression network analysis (WGCNA) is 
a bioinformatics method based on transcriptome 
data analysis. It has been widely used to identify 
highly synergistically altered modules and discover 
important biomarker genes and potential thera-
peutic targets according to the correlation between 
modules and phenotypes, as well as the weight of 
the module genes [18]. An increased number of 
studies have used tumor RNA sequence data to 
construct a co-expression module through 
WGCNA, and the relationship between modules 
and clinical characteristics (such as age, gender, 
stage, and pathological type) has previously been 
studied . In addition, the genes from the module of 
interest were functionally annotated, and the hub 
genes were identified based on the top connectivity 
in the module. Then, the clinical prognostic sig-
nificance of the hub gene was explored, and the 
rationality of the hub gene as a cancer biomarker 
was identified [19,20]. Cell-type identification by 
estimating relative subsets of RNA transcripts 
(CIBERSORT) is another method that can esti-
mate different cell type proportions [21]. This 
method has been used to measure the immune 
cell levels in previous studies, including prostate, 
kidney and colon cancers [22–24].

To identify tumor-infiltrating lymphocytes 
(TIL)-related biomarkers of NSCLC, in the current 
study, WGCNA was constructed and the correla-
tion between the modules and T cell infiltration 
was analyzed based on microarray data in our 
research. We selected four genes with strong cor-
relations between the key module and CD8+ T cell 
infiltration. We investigated the expression of hub 
genes using different databases and performed the 
survival analyses to evaluate their potential as 
prognostic biomarkers for NSCLC.

2. Material and methods

2.1 Data preprocessing

This study utilized data from a public database. 
The GSE37745 expression profiles of microarray 
data, including a total of 196 NSCLC samples, 
were retrieved from the Gene Expression 
Omnibus (GEO) database. The microarray data 
were quantile normalized using the package 

‘limma’ in R language 4.0.0. Next, the normalized 
genes of the 196 samples were calculated for the 
coefficient of variation (CV). The gene with CV 
greater than 0.1 was regarded as the gene with the 
largest change and was selected for WGCNA ana-
lysis. The remaining genes were considered to 
express noise and were eliminated. CIBERSORT 
is a tool based on a deconvolution algorithm that 
can estimate the abundance of different cell types 
from bulk RNA sequencing data based on refer-
ence gene expression profiles that were down-
loaded from the official website (https://cibersort. 
stanford.edu/download.php).Here, the normalized 
data of GSE37745 were analyzed using the 
CIBERSORT package and 22 immune cell signa-
tures were calculated as described in a previous 
study.

2.2 Weighted gene co-expression network 
analysis (WGCNA)

We used the R package ‘WGCNA’ to implement 
the weighted gene co-expression network [18]. 
Pearson’s correlation between genes was calculated 
and the weighted adjacency matrix was obtained 
using the following equation:

aij ¼ rβ
ij 

Here, rij represents the correlation coefficient 
between the expression values of the ith and jth 
genes, and negative values are also included. After 
the power function processing, the value with 
a large correlation is not affected or the influence 
is small, and the value with a small correlation is 
significantly reduced. Finally, the appropriate β 
value was selected to make the Scale Free 
Topology Model Fit signed R2 greater than 0.8, 
and the slope of the regression line approximately 
−1, and the average connectivity is as large as 
possible. In this analysis, a strong correlation 
between genes was emphasized and a weak corre-
lation was decreased based on the β value (β = 5). 
Next, the weighted adjacency matrix was con-
verted to a topological overlap matrix (TOM), 
and the genes were clustered according to the 
degree of TOM-based dissimilarity. Each branch 
of the cluster representing genes with a high over-
lap was clustered together. The dynamic tree cut 
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method divided the hierarchical clustering tree 
into modules and then the modules with high 
similarity were merged. Module eigengenes 
(MEs) represent gene expression in different mod-
ules. T cell infiltration levels were selected as the 
modular traits. Therefore, we evaluated the 
Pearson correlation between the MEs and the 
T cell infiltration and selected the module of 
interest.

2.3 Functional and pathways enrichment 
analysis

The gene in the key module was exported, and the 
‘org.Hs.eg.db’ package was used to switch the gene 
name to entrezID. The ‘clusterProfiler’ package 
and the ‘ggplot2’ package were used to perform 
Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses 
and visualization.

2.4 Hub genes investigation

Module-membership (MM) was evaluated as the 
connectivity between gene expression values and 
MEs, while the Gene-Significance (GS) repre-
sented the correlation between each gene and the 
T cell infiltration levels. Genes with larger GS 
values had a greater influence on traits, and 
genes with larger MM values were more correlated 
with modules. Genes in the key module with 
MM>0.8 and GS>0.3 were selected as candidate 
hub genes that were significantly related to T cell 
infiltration and were important genes in the mod-
ule. The protein–protein interaction (PPI) network 
of key module genes was built using the STRING 
database and immediately visualized in Cytoscape. 
A plugin named cytoHubba was introduced to 
screen the important nodes from the network. 
Venn diagrams were used to display the overlap 
between important nodes in the PPI network and 
candidate hub genes, which were delineated using 
the online tool Draw Venn Diagram.

2.5 Validation of hub genes expression and 
kaplan-meier analysis

The following online database was used to explore 
the expression of hub genes at the mRNA and 

protein levels and analyze their clinical signifi-
cance in NSCLC. The transcriptome profiles and 
clinical information of LUAD and LUSC were 
provided by the Cancer Genome Atlas (TCGA) 
project database. Differences in mRNA levels of 
hub genes between the tumor and normal samples 
were analyzed using R package ‘limma’ and ‘bees-
warm’. The immunohistochemistry analysis results 
of the hub genes were retrieved from the HPA 
database, which contains the protein expression 
profiles of NSCLC. ONCOMINE is an online data-
base of gene expression data for a variety of 
tumors. Microarray datasets publicly available 
from the Oncomine database were used to deter-
mine the expression patterns of the hub genes. The 
influence of different hub gene expression on the 
prognostic effect of NSCLC was evaluated using 
the Kaplan-Meier Plotter online tool (http:// 
kmplot.com/analysis/).

2.6 Cell culture and transfection

A549 cells were purchased from the Cell Bank of 
the Chinese Academy of Sciences (Shanghai, 
China) and cultured in RPMI 1640 medium with 
10% fetal bovine serum at 37°C and 5% CO2. To 
establish CDC20-knockdown cultures, oligo DNAs 
targeting CDC20 were synthesized and con-
structed into the pLenti-GFP vector. The shRNA 
sequences used were: sh-CDC20: 
CTTTGCACAGAACCAGCTAGT; nonsense 
shRNA, TTCTCCGAACGTGTCACGT 
(GeneChem, Shanghai, China).

2.7 RNA isolation and quantitative PCR

Total RNA was extracted and reverse-transcribed 
into cDNA using the Takara MiniBEST Universal 
RNA Extraction Kit and Reverse Transcription 
Kit, respectively (Takara, Katsushika, Tokyo). 
PCR reactions were performed with SYBR® 
Premix Ex Taq™ in an ABI StepOne Plus cycler 
(Applied Biosystems, California, USA). The data 
were normalized to GAPDH as an endogenous 
control. Primer sequences were as follows: 
Forward, 5′-AGCAGCAGATGAGACCCTGAGG 
−3′ and reverse, 5′- 
CAGCGGATGCCTTGGTGGATG-3′ for CDC20; 
forward, 5′-CCAGCACCAGCAGACCAGAAG-3′ 
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and reverse, 5′-CCGTCCTGAGCCGTGTCTCC 
−3′ for GAPDH.

2.8 Colony formation and CCK-8 assays

Colony-forming ability was assessed using 
a colony formation assay. Cells were seeded into 
six-well plates at 1000 cells/well and cultured for 
14 days. The plates were then stained with 0.1% 
crystal violet and colonies were quantified. 
A CCK8 Kit (Biosharp, China) was used for the 
CCK8 assays. Briefly, cells were added to 96-well 
plates at 2,000 cells per well for 0, 24, 48, or 72 h. 
The absorbance values were obtained at 450 nm 
using a BioTek microplate reader and imager soft-
ware (BioTek Instruments Inc.; USA).

2.9 Statistical analysis

Each experiment was repeated three times. 
Experimental data were statistically analyzed 
using GraphPad Prism 8.3 (GraphPad Prism 
Software, La Jolla, CA, USA) and SPSS (IBM 
SPSS 23.0, SPSS Inc) by Student’s t test, and P < 
0.05 was considered statistically significant.

3. Results

3.1 Overview of the working flow and 
expression data processing

The workflow of this study is shown (Figure 1). 
The general protocol of this study was as follows: 
the microarray data in GSE37745 were converted 
into a gene expression matrix, and 4337 genes 
were identified with CV>0.1. At the same time, 
the CIBERSORT algorithm was used to evaluate 
the infiltration level of 22 types of immune cells 
and the data of seven types of T cells were selected 
for further research. A co-expression network was 
constructed using 4337 gene expression data and 
7 T cell infiltration level data from 196 samples. 
The module of interest was selected as the key 
module for the internal calculation of the module 
and the construction of the protein interaction 
network using genes in the key module. 
Candidate hub genes were obtained by setting 
appropriate cutoff reference values for the calcula-
tion results of the module. The intersection of the 
two was considered to obtain the hub gene. 
Finally, we verified the hub genes using several 
online databases and conducted in vitro experi-
ments. Among the dataset GSE37745, there were 
106 cases of LUAD, 66 cases of LUSC, and 24 cases 
of large cell carcinoma. Genes with CV of expres-
sion levels > 0.1 were screened and a total of 4337 

GSE37745

CV>0.1  4337genes CIBERSORT TIICs

WGCNA

Key Module

cell proliferation assay

MM>0.8 GS>0.3 genes PPI central genes

Hub genes

TCGA HPA Oncomine Kaplan-Meier plotter

Figure 1. Workflow of the study design.
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genes were identified; these are displayed in 
Supplementary Table1.

3.2 Tumor-infiltrating immune cells analysis

CIBERSORT is an algorithm that transforms the 
gene expression matrix into an abundance of 
immune infiltrates. Therefore, the abundance of 
22 immune cells was obtained using the 
R package CIBERSORT with 4337 gene expression 
data of 196 samples, and p < 0.05 was set as the 
filter criterion. The levels of seven subtypes of 
T cell infiltration were chosen for subsequent 
study and are shown in Supplementary Table 2.

3.3 Construction of co-expression modules

The R package WGCNA was used to implement 
the co-expression network. The 196 samples of 
GSE37745 were clustered using the Pearson cor-
relation and average linkage methods 
(Figure 2a). For scale-free network construction, 
unary linear regression was used to obtain the 
best soft-thresholding power β = 5 (scale-free 
R2 = 0.95) (Figure 2b). Fourteen modules were 
identified after preprocessing hierarchical clus-
tering (Figure 2c). The turquoise module exhib-
ited the highest correlation with CD8 + T cells 
(Figure 2d); hence, it was selected as the key 
module and was used for further exploration.
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3.4 Functional and pathway enrichment analysis

To further reveal the biological function distribu-
tion of the key module, we performed functional 
annotation of genes in the key module. GO func-
tional analysis of the genes in the turquoise mod-
ule was performed according to three different 
functional groups (BP, CC, and MF). In the BP 
group, genes were mainly clustered in organelle 
fission, chromosome segregation and nuclear divi-
sion. In the CC term, genes were primarily 
enriched in the condensed chromosomes, spindles 
and chromosomal regions. In the MF category, 
genes were significantly enriched in ATPase activ-
ity, tubulin binding, and microtubule binding 
(Figure 3a). Pathway analysis was performed 
using KEGG database. The results indicated that 
these genes were mapped to the cell cycle, comple-
ment and coagulation cascades. (Figure 3b).

3.5 Identification of hub genes

By setting up the cut-off point (MM>0.8 and 
GS>0.3), 11 candidate hub genes were identified 
from the turquoise module, as shown in 
Supplementary Table 3. Subsequently, PPI 

networks were retrieved using the STRING data-
base and Cytoscape software. CytoHubba was used 
to predict highly connected genes in the PPI net-
work. The top 30 highly connected genes were 
selected and visualized (Figure 4a, b). Using inte-
grated bioinformatics analysis, we identified four 
genes (AURKB, CDC20, TPX2 and KIF2C) 
between the top 30 highly connected genes and 
11 candidate hub genes (Figure 4c).

3.6 Validation of the hub genes

To investigate the mRNA levels of the four identified 
genes, we downloaded the expression profiling data 
from TCGA database and found that the genes exhib-
ited higher expression levels in tumor tissue than in 
non-tumor tissue (Figure 5a). To verify the protein 
expression of the four genes, we downloaded the 
immunohistochemical images from the HPA data-
base and found that the expression of the hub gene 
was higher in tumor cells than in stromal cells 
(Figure 5b). A meta-analysis of the expression from 
the Oncomine database was undertaken to validate 
the differential expression of the four genes. The 
median rank values and p values in the meta- 
analysis of the LUAD and LUSC datasets of the four 
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genes are displayed in Figure 5c. The results showed 
that the four hub genes were upregulated in LUAD 
and LUSC, which is similar to the results of the TCGA 
database. The prognostic significance of the four hub 
genes in NSCLC was evaluated using an online web-
site. The results of the Kaplan–Meier plotter analysis 
demonstrated that elevated mRNA expression was 
significantly associated with poor overall survival in 
NSCLC (Figure 5d). The results from the above data-
base analysis proved that AURKB, CDC20, KIF2C and 
TPX2 were significantly upregulated in NSCLC, and 
the upregulated expression indicated a poor prog-
nosis. Therefore, we suggest that AURKB, CDC20, 
KIF2C and TPX2 are meaningful prognostic markers 
in NSCLC.

3.7 Knockdown of CDC20 inhibited cell 
proliferation

To further explore the function of CDC20 in 
NSCLC, CDC20 was knock down in A549 cells 
using lentivirus-mediated gene knockdown. The 

qRT-PCR results revealed that knockdown of 
CDC20 was efficient at the mRNA level in 
shCDC20 infected A549 cells compared to the 
negative control group (Figure 6a). Notably, 
CCK8 assay results of CCK8 showed that knock-
down of CDC20 inhibited A549 cell proliferation 
and growth (Figure 6b). Finally, colony-formation 
assays showed that the clonogenic ability of the 
shCDC20 group was damaged compared to that of 
the negative control group. (Figure 6c).

4. Discussion

As a classic bulk RNA deconvolution tool, 
CIBERSORT can predict the unknown cell com-
ponents of each cell type in bulk RNA based on 
the signature gene expression matrix and has been 
widely employed [21].Zheng et al. have used the 
CIBERSORT algorithm to analyze the extent of 
immune infiltration in LUAD, and utilizing 
a consensus clustering approach, screened prog-
nostic-related immune genes. Finally, they built 
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a risk prediction model based on these genes [25]. 
Zhou et al. used CIBERSORT to construct 
a diagnostic model called the diagnostic immune 
risk score, and combined it with clinical features to 
predict the prognosis of colon cancer [22].

NSCLC is one of the most aggressive cancers 
and is characterized by rapid cancer progression 
and poor prognosis. Evidence suggests that poor 
outcomes in NSCLC patients are associated with 
CD8+ T cell infiltration, and the number of CD8+ 

T cell may serve as a marker for patient prognosis 
[26]. In this study, we used tumor microarray data 
and the T cell infiltration level to build a co- 
expression network. The turquoise module, 
which was mostly associated with CD8+ T cell, 
was identified as a key module. Functional and 
pathway enrichment analyses indicated that genes 
in the key module were mainly enriched in the cell 
cycle. We precisely identified the hub genes 
(AURKB, CDC20, KIF2C, and TPX2) by measur-
ing the module membership significance and pro-
tein-protein interactions. Another dataset from 
TCGA was used to validate these four candidate 
genes. Using the Oncomine microarray database, 
we demonstrated that the expression of these 
genes is increased in cancer tissues. Finally, the 
four hub genes were evaluated using Kaplan- 
Meier analysis. A statistically significant correla-
tion was identified between the hub gene expres-
sion and the clinical outcomes. Based on the 
combined analyses, we identified four hub genes 
associated with CD8+ T cell infiltration level, and 
propose a possible mechanism contributing signif-
icantly to the malignant progression of NSCLC.

Aurora kinase B (AURKB) belongs to the ser-
ine/threonine kinase family, which is 
a ubiquitously expressed mitotic kinase [27]. 

AURKB participates in cell division by regulating 
chromatin condensation, chromosome biorienta-
tion, and cytokinesis [28].In addition to cell divi-
sion functions, attention has been paid to AURKB 
in different pathophysiological contexts. 
Upregulation of AURKB is associated with infi-
nite cell multiplication and avoidance of the 
apoptotic mechanism in multiple tumors 
[29,30]. Yu et al. confirmed that abnormal expres-
sion levels of AURKB are closely related to poor 
disease-free survival and overall survival in 
NSCLC [31].Similarly, accumulating evidence 
has shown that upregulation of AURKB is asso-
ciated with adverse grade of tumor differentia-
tion, lymph node metastasis, and genetic 
instability [32].

Cell division cycle 20 (CDC20) can interact with 
other proteins during key cell cycle processes [33]. 
It was recently reported that upregulation of 
CDC20 is significant correlated with poor prog-
nosis in lung, gastric, colorectal carcinoma, and 
prostate cancer [34,35]. It has been demonstrated 
that overexpression of CDC20 is more likely to 
bypass the spindle assembly checkpoint (SAC) 
and prematurely exit mitosis, which consequently 
leads to genomic instability [36]. More impor-
tantly, CDC20 expression in tumor initiating cells 
(TICs) enhances their tumorigenic capacity in vivo 
and plays an important role in tumor growth [37]. 
Abnormally high expression of CDC20 has also 
been implicated in the Wnt/β-catenin pathway, 
an important signaling pathway in tumor progres-
sion [38]. Collectively, CDC20 can participate in 
tumorigenesis or progression through several 
pathways via numerous and diverse mechanisms.

Kinesin family member 2 C (KIF2C) belongs to 
the kinesin superfamily and participates in 
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chromosome segregation, suggesting its oncogenic 
role in a multitude of cancers [39]. Besides, KIF2C 
participates in spindle assembly and microtubule 
disaggregation, regulating cell cycle progression 
during mitosis [40,41].As reported by Sacha et al, 
KIF2C is highly expressed in colorectal cancer and 
its expression levels are associated with the prolif-
eration capacity of cancer cells. They also noted 
that KIF2C can induce spontaneous CD41 T cell 
responses of the Th1-type, which are tightly regu-
lated by peripheral T regulatory cells [42]. 
Similarly, the progression of the cell cycle can be 
regulated by KIF2C, which might result in poor 
prognosis of lung adenocarcinoma and glio-
mas [43].

Targeting protein for Xenopus kinesin-like pro-
tein 2 (TPX2) is a microtubule-related protein that 
participates in regulating cell proliferation, spindle 
morphogenesis, apoptosis and cell division [44]. 
Moreover, cumulative data indicate that TPX2 
acts as a key oncogene in various types of cancers. 
For instance, TPX2 mediated MMP2 and MMP9 
upregulation promoted the malignant progression 
of breast cancer [45].Furthermore, TPX2 can 
reduce cell proliferation and increase cell apoptosis 
in breast cancer by regulating the PI3k/AKT/p21 
and p53 pathways [46].There is evidence that 
TPX2 is correlated with the infiltration of immune 
cells and immune checkpoint expression in hepatic 
cell cancer, suggesting an underlying immune reg-
ulatory function in the tumor immune 
response [47].

Previous studies have shown that 
CD8 +T lymphocytes have a positive prognostic 
effect in non-small cell lung cancer [15]. 
Interestingly, the hub genes selected in the 
CD8+T cell module suggested a poor clinical prog-
nosis. This is probably due to the complexity of the 
tumor immune microenvironment and the diverse 
roles played by these genes. First, genes that were 
positively related to the level of T cell infiltration 
may be involved in the inhibition of T cell function 
and induction of T cell incompetence. For example, 
Li et al. demonstrated that the abundance of CD8+ 

T cells in LUAD and LUSC was positively correlated 
with the expression levels of the common inhibitory 
molecule receptors CTLA4, PD-1, LAG3, and TIM3, 
which can inhibit the antitumor activity of CD8+ 

T cells [48]. In addition, the four hub genes have 

been reported to be associated with the occurrence 
and development of tumors. The in vitro experi-
ments conducted in this study also illustrate this 
point. In general, even if the hub genes are positively 
correlated with CD8+ T cells, they may be unfavor-
able prognostic factors for NSCLC.

5. Conclusions

In our study, hub genes related to CD8+ T cell 
infiltration were identified using the WGCNA and 
CIBERSORT algorithms. All four hub genes were 
highly expressed in tumor tissues and were involved 
in promoting tumor progression. Furthermore, 
in vitro experiments verified that CDC20 suppressed 
the proliferation of NSCLC cells. However, there are 
some limitations to our research. More importance 
must be given to hub genes and further in-depth 
investigations into the molecular mechanisms 
underlying the role of the four hub genes are 
warranted.
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