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Abstract

The incidence of Candida albicans infections and the relapse episodes after antifungal treatment have increased in recent
decades. Recurrences are mainly due to the persistence of the original infecting strain that may present genetic and
genomic rearrangements during interaction with the host, reflecting strain adaptation. In this study, four isolates recovered
from a patient during recurrent candidemia episodes were genotyped by microsatellite length polymorphism (MLP) and by
multilocus sequence typing (MLST) and found to be genetic variants of the same strain. Using experimental mouse
infections, a progressive reduction in the virulence of the four isolates was observed, with the first two isolates more virulent
than the third and fourth. Additionally, in the mouse model, the first isolate resisted host control more efficiently, resulting
in higher kidney fungal burdens and necrosis as compared to the third isolate. The resolution of inflammation was delayed
in mice challenged with the first isolate and the message for IFN-c and TNF-a in the spleen was lower within the first few
hours post-infection. Original and recurrent isolates also displayed different phenotypes regarding activity of secreted
enzymes and response to stress agents. Overall, the comparative analysis indicated that the virulence decrease of these
isolates was related to a lower ability to resist to the host anticandida effector mechanisms. We showed for the first time
that C. albicans genetic variants of the same strain, sequentially isolated from an immunocompromised patient, underwent
adaptations in the human host that resulted in virulence attenuation when tested in mice.
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Introduction

Candida albicans is a common colonizer of the human

gastrointestinal, respiratory, and reproductive tracts. However, in

immunocompromised patients, this species is one of the most

important opportunistic fungal pathogens, being responsible for

both superficial and systemic infections [1,2]. Despite the

prevalence of Candida in the hospital environment and the poor

outcome of this infection, the pathways involved in clearance of

mucocutaneous and systemic infections have not been fully defined

and the majority of the clinical studies focus on epidemiology,

diagnosis and therapeutic management [3].

Molecular epidemiology studies showed that C. albicans isolates

exhibit a high level of genetic diversity. Microsatellite length

polymorphism (MLP) and multilocus sequence typing (MLST)

have been used to discriminate C. albicans strains and to detect

small genetic changes or microvariations that may be indicative of

adaptability processes [4–7]. Typing of multiple C. albicans isolates

from the same patient obtained in longitudinal studies, or in

surveillance cultures from different anatomical sites, showed a

tendency towards the maintenance of the same strain during the

infection process [6,7]. This view of a monoclonal infecting

population has recently been extended by the demonstration of

colony-to-colony variation in C. albicans primary isolations in

samples from patients with vaginal and oral infections [8].

Nevertheless, the referred study also showed that strain variability

in primary cultures from established infections is much lower than

from healthy individuals, suggesting that the infecting population

results from the selective proliferation of one or more clones that

were present in the mixed commensal population before the

establishment of the infectious process. Observations on the

genetic and phenotypic variation in C. albicans populations showed

higher rates of chromosome-level genetic variations during passage

in the mouse relatively to in vitro growth [9], and in strains

isolated from the digestive tract of healthy individuals [10]. These

genomic alterations may be involved in the generation of new

variants within the population that contribute to the adaptation

during infection.

Host defense against systemic candidiasis relies mainly on the

ingestion and elimination of C. albicans by cells of the innate immune

system, in particular macrophages, monocytes, and neutrophils

[11–15]. Activation of leukocytes by C. albicans, triggers the release
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of pro-inflammatory cytokines (Th1 and Th17 responses), such

as IFN-c, TNF-a, IL-1b, IL-6, and IL-17 that in turn activate

phagocyte effector functions to eliminate the invading yeast

[12,16–19]. In contrast, anti-inflammatory cytokines (Th2 response)

such as IL-4 and IL-10 have immunosuppressive effects. Thus, the

balance between pro- and anti-inflammatory cytokines is decisive

in determining whether the host defense system is overwhelmed

or able to eliminate the fungal pathogens [14,20–25]. Although

the status of the host immune system is the major factor balancing

the transition from commensalism to pathogenicity [26], C. albicans

expresses several virulence attributes that contribute for its successful

behavior, both as a commensal colonizer and as a pathogen [27].

One of its major virulence traits is the ability to reversibly switch

from unicellular budding cells to filamentous forms and the yeast

uses this attribute during an infection, not only to invade tissues, but

also to escape intracellular phagocyte death by inducing hyphal

growth inside the phagosome, resulting in the destruction of the

macrophage [28–30].

In the present work, we assessed the virulence of C. albicans

isolates from a patient with recurrent candidemia treated during a

period of four months with fluconazole. Typing of the isolates

determined that they were variants of the same strain and it was

observed that those genetic variants were progressively less virulent

to mice. With this study, we show for the first time that variants of

the same strain, recovered from a patient during recurrent

infections, differ considerably in terms of their capacity to produce

disease when tested in an immunocompetent host.

Results

Candida albicans isolates from a case of recurrent
candidemia are genetic variants of the same strain

C. albicans isolates used in this study were recovered from cases of

recurrent candidemia (Table 1). The four isolates analysed in more

detail were obtained from patient 1 and collected within a period of

four months. Isolate 124A was the first recovered and, despite the

patient’s treatment with fluconazole, three other isolates, 140, 140A,

and 144, were sequentially collected. All four isolates were found to

be resistant to fluconazole, presenting MIC values .64 mg/ml.

These isolates showed the same multilocus genotype by MLP,

except 140A, which presented a loss of heterozygosity (LOH) at CAI

microsatellite (Table 1). MLST analysis also showed that the isolates

were closely related, although presenting minor differences,

resulting in different diploid sequence types (DSTs). To gain a

better insight into the genetic proximity of these four isolates, a

similarity UPGMA dendrogram based on MLST data was

constructed. Strains isolated from other patients were also typed

and included in the Clustal analysis to generate a more robust tree.

This analysis showed that all isolates from patient 1 grouped closely,

within a p distance value lower than 0.02, and with a nodal support

value of 1 after 1000 bootstrap replications (Fig. 1), indicating that

the four isolates could be considered undistinguishable, or genetic

variants of the same strain.

Mouse virulence of the isolates decreased progressively
In view of the genetic similarity of the isolates, the question of

whether they also behaved identically regarding virulence towards

a healthy host was raised, and the mouse model of i.v.

disseminated candidiasis was used to assess virulence.

Survival analysis of mice inoculated with 26106 yeast cells

showed that the first isolates (124A and 140) were the most

virulent, while the last ones (140A and 144) were less virulent

(Fig. 2A). Comparing mice infected with the first isolate (124A)

with mice infected with the third (140A), or with the fourth (144),

the overall differences in survival were highly significant

(P = 0.0034 and P = 0.0002). In fact, mice infected with 124A,

140, 140A or 144 presented median survival times of 4.0, 4.5, 8.0,

and 13.5 days, respectively. Differences in virulence between

isolates 124A and 140A were confirmed using a lower inoculum

(Fig. 2B). When testing reference strain SC5314 with the same

inoculum, all mice succumbed during the first two days post-

infection, in accordance to what is described in the literature [31].

Table 1. Microsatellite genotypes and diploid sequence types (DSTs) obtained by MLP and MLST analysis of the clinical isolates
used in this study.

Patient Isolate Isolation Data Local of isolation MLP Genotypes MLST DST Clade

CAI (CAA/G)n CAVI (TAAA)n CEF3 (TTTC)n(TTC)n

1 DBC-124A 18-05-04 Catheter 18–34 12–12 137–139 1282 16

DBC-140 31-06-04 Blood 18–34 12–12 137–139 1283 16

DBC-140A 31-07-04 Bronchial secretions 34–34 12–12 137–139 1284 16

DBC-144 26-08-04 Blood 18–34 12–12 137–139 1285 16

2 DBC-154 20-09-04 Blood 26–26 7–7 135–146 1277 4

4 DBC-141 02-08-04 Blood 12–17 7–7 126–135 1278 8

5 DBC-165A 22-10-04 Pleural fluid 21–25 9–15 131–131 1279 11

6 DBC-155 21-09-04 Blood 29–29 7–11 129–143 1280 15

7 DBC-164 22-10-04 Blood 26–28 7–7 136–145 1281 4

8 DBC-7J - Vaginal 30–30 19–23 126–126 1286 5

DBC-8J - Vaginal 30–32 19–23 126–126 1287 1

DBC-9J - Vaginal 30–32 19–23 126–126 1288 1

9 DBC-22J - Vaginal 23–27 18–21 135–136 1289 S*

DBC-23J - Vaginal 23–27 21–21 135–136 1290 S*

The corresponding date and local of isolation, as well as clade assignment based on MSLT, are also shown.
- data unknown; DST – diploid sequence type; S* - singleton.
doi:10.1371/journal.pone.0010155.t001

C. albicans Isolates Virulence
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These results demonstrated that genetic variants of the same

strain, recovered from the same patient during recurrent

infections, progressively reduced their virulence when tested in

an immunocompetent host.

Decreased survival of inoculated mice is correlated with
high kidney fungal burden and necrosis

In order to understand the mechanisms underlying the

differences observed in mouse survival, the most virulent isolate

(124A) and the isolate with the most significant decrease in

virulence (140A) were further studied. A comparative analysis of

organ fungal burdens, cytokine expression and histopathology of

mice inoculated with these isolates was performed up to the

seventh day post-infection. Kidney fungal burden increased from

days one to three, decreasing significantly on the seventh day, for

mice infected with 140A (Fig 3). At day three post-infection,

kidney colony counts from mice infected with 124A were around

10-fold higher when compared to mice infected with 140A, and by

day seven this difference was even higher, to nearly 22 fold. On the

contrary, splenic and hepatic colony counts declined progressively

in all mice to nearly undetectable levels, showing no significant

differences between the two isolates (results not shown). Differ-

ences regarding organ distribution are in accordance with the

known predilection of C. albicans for kidney colonization, after

mouse systemic infection [32].

The higher mouse susceptibility to infection with isolate 124A

was also evident in H&E and PAS stained histologic sections of the

kidney (Fig. 4). At day one, and particularly at day three, kidney

sections of mice infected with 124A exhibited extensive tissue

necrosis and lack of an apparent cellular infiltration (Fig. 4A and

4C). Additionally, in the same period, PAS staining showed a

dramatic increase in fungal cell numbers in mice infected with

124A (Fig. 4C). In contrast, kidney sections of mice infected with

140A showed degraded yeast cells, and a marked inflammatory

leukocyte influx, indicating a resolving lesion (Fig. 4B and D). At

day seven post-infection, in mice infected with isolate 124A, the

fungal cells were predominantly in the hyphal form and were

apparently intact, forming a clear barrier to the progression of

inflammatory leukocytes. On the contrary, kidney histology of

mice infected with 140A showed an intermixing of fungal cells

with inflammatory leukocytes and degraded fungal cells, suggest-

ing that yeast cell proliferation was controlled (Fig. 4E and F).

These results are in accordance with kidney CFU counts obtained

previously.

To get a better insight into the nature of the immune response

of mice infected with these isolates, spleen expression of IFN-c,

TNF and IL-4 was determined by real-time RT-PCR at one,

three, and seven days post-infection (Fig. 5). Cytokine expression

showed that at day three, mice infected with the 124A isolate

presented significantly lower levels of IFN-c in comparison with

mice infected with 140A. However, by day seven post-infection

this difference inverted, and mice infected with 124A presented

significantly higher levels of IFN-c and TNF (Fig. 5A and 5B). For

expression of IL-4, no differences were found between the isolates,

except at day seven post-infection, when isolate 140A resulted in

the expression of slightly higher values (Fig. 5C).

Resolution of inflammation is delayed in mice infected
with the primary isolate

A comparative analysis of leukocyte recruitment to the

peritoneal cavity of mice infected with 124A or 140A was next

performed. Figure 6 shows that C. albicans infection stimulated

an acute leukocytosis, predominantly due to the recruitment of

Figure 2. Survival of BALB/c mice following i.v. infection with C.
albicans strain variants. Mice were infected i.v with (A) 26106 cells
of isolates 124A, 140, 140A or 144 or (B) 16106 cells of SC5314, 124A
or 140A and the condition of the mice were assessed daily for
30 days.
doi:10.1371/journal.pone.0010155.g002

Figure 1. C. albicans strain clustering. Similarities between MLST data
were analyzed in terms of p distance with MEGA version 4.0 and nodal
support values, after 1000 bootstrap replications, were calculated and are
depicted on the UPGMA dendrogram.
doi:10.1371/journal.pone.0010155.g001
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neutrophils, as previously described [33–35]. Counts of the

peritoneal exudate leukocytes showed that the number of

neutrophils increased more than 190 fold (P,0.001) in the

infection with isolate 124A, and 158 fold (P,0.001) following

infection with 140A. Using the set of resolution indices from

Bannenberg et al. [36], in the time interval between three h (Tmax)

and 20 h (T50), exudate PMNs decreased in number from

13.346106 (Ymax) to 6.76106 (R50), resulting in a resolution

interval (Ri) of 17 h (i.e., 3–20 h), in the infection with isolate

124A. For mice infected with 140A, the Ymax was much lower,

11.386106, and Tmax higher (eight hours), resulting in a resolution

index of 13 h (i.e., 8–21 h). The macrophage cell population

showed a similar kinetics in mice infected with isolates 124A and

140A (Fig. 6B). These results indicated that the two C. albicans

isolates raise similar patterns of leukocyte recruitment. However,

the resolution of inflammation is four hours delayed in mice

infected with the primary isolate, 124A.

Subsequent isolates induce reduced macrophage death
Isolates 124A and 140A were tested in vitro with a macrophage

cell line. The percentage of phagocytosis was approximately 11%

for isolate 124A and 17% for 140A, but this difference was not

statistically significant (P = 0.076). Phagocyte death, assessed by the

number of PI-positive phagocytes, showed that isolate 124A

induced death of about 50% of the macrophages after 4 h of co-

incubation (Fig. 7). On the contrary, 140A did not induce a

significant change in the percentage of macrophage death during

the same period. Differences in macrophage death induced by

both isolates were statistically significant after 2 h (P = 0.011) of co-

incubation, and continued after 3 h (P = 0.037) and 4 h

(P = 0.001).

Subsequent isolates have different phenotypic
characteristics regarding activity of secreted enzymes
and response to stress agents

Phenotypic characteristics known to contribute to C. albicans

pathogenicity, such as growth rate, response to stress and activity

of extracellular enzymes, were evaluated in the two clinical

isolates. No significant differences were observed regarding the

ability of the isolates to secrete aspartic proteases (Saps) or in their

growth rates at 26, 30 or 37uC in SD and YPD media (results not

shown). The extracellular in vitro phospholipase activity, deter-

mined as the Pz value, showed that isolate 124A presented a

higher activity than isolate 140A (Pz value of 0.5260.001 for 124A

and of 0.8660.042 for 140A, P,0.05).

The behaviour of both clinical isolates showed no significant

differences regarding growth in the presence of CaCl2, Caffeine,

MnSO4, SDS and ethanol, at all tested concentrations, as well as

on SD plates at pH 3.7, pH 5.5 or pH 8.0. Both isolates seemed to

be equally resistant to osmotic stress induced by NaCl (1M) and

sorbitol (1.2 M). However, in the presence of 20 mM acetic acid,

isolate 124A was more tolerant than isolate 140A (Fig. 8). The

response to 1.25 mM H2O2 oxidative stress of the two isolates

showed that 140A was significantly more sensitive to H2O2

induced death than isolate 124A, presenting a decrease in viability

of around 50% [124A 98% (623.3), 140A 52% (62.3), P,0.05].

Phenotypic characterisation showed that the genetic variants

behaved similarly although isolate 124A presented a higher

phospholipase activity and was more tolerant to acetic acid and

H2O2 than 140A.

Discussion

Infections due to C. albicans may result from the selective

proliferation of a single strain variant present in the commensal

population before invasive infection [7,8]. In patients with

recurrent infections, three basic scenarios were described: (i)

maintenance of that same strain, (ii) maintenance of that same

strain undergoing microevolution or microvariation, or (iii) strain

replacement [4,6,7,8]. Microvariations are relatively frequent and

may occur in response to changes within the host, reflecting strain

adaptation. Therefore, with the characterization of strains

sequentially isolated from patients with recurrent infections, it is

important to evaluate whether these adaptations have conse-

quences in host-pathogen interaction. These aspects are particu-

larly relevant when dealing with commensal organisms. It has long

been known that different C. albicans strains can exhibit varying

Figure 3. Kidney fungal burden. Groups of four mice infected i.v. with 106 C. albicans cells were killed at 1, 3 and 7 days after challenge. Organs
were homogenized in HBSS and the suspension diluted and cultured on Sabouraud dextrose agar. Results are presented as log of colony-forming
units (CFUs). Statistically significant differences between results at each hour of infection as evaluated by Student’s t test are labeled with single
asterisk (P,0.05).
doi:10.1371/journal.pone.0010155.g003
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levels of virulence when tested both in vivo and in vitro models

[37–41]. However, to the best of our knowledge, no work has

characterized the virulence of isolates, and their genetic variants,

sequentially recovered from the same patient, as described in the

present study.

In this work, four sequential isolates from a patient were

genotyped by MLST and MLP and found to be closely related.

Cluster analysis, including other strains isolated in the same period

from other patients of the hospital, confirmed that the four isolates

were very close since they were the only ones to group within a

p distance value lower than 0.02. According to Odds et al. [7]

strains that group within this p distance value could be considered

undistinguishable or variants of the same strain. Interestingly,

these isolates showed a clear progressive decrease in virulence in

an i.v. mouse model of systemic infection. Since they were variants

of the same strain, we concluded that the differences in virulence

were not due to different genetic backgrounds of the isolates but to

strain adaptation to host changes during the recurrent infections.

One might doubt that these changes occurred in such a short time,

however recent studies showed that C. albicans isolates undergo

chromosomal and genetic alterations during a single passage in the

mouse [9]. Following these results, the original isolate, 124A, and

the first recurrent isolate to present a significant decrease in

virulence (140A) were selected in order to understand the

mechanisms underlying the observed differences in virulence.

Systemic infection by C. albicans is associated with the release of

proinflamatory cytokines, including TNF and IFN-c [42,43]. In

this study cytokine quantification showed that although at day

seven post-infection the levels of IFN-c and TNF increased in mice

infected with 124A, on day three the levels of IFN-c were lower,

comparing with mice infected with 140A. Moreover, cells from

isolate 124A developed long filaments inside the kidney, while cells

from 140A appeared as fragmented hyphae intermixed with the

inflammatory cells. These observations are in agreement with

Figure 4. Kidney histology. Representative micrographs of H&E/PAS-stained paraffin sections of kidneys recovered from mice infected with 106

yeast cells at days 1 (A and B), 3 (C and D) and 7 (E and F) days post-infection with isolates 124A and 140A.The bar 2100 mM.
doi:10.1371/journal.pone.0010155.g004
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previous reports, indicating that pro-inflammatory cytokines are

important for antifungal effector functions, particularly during the

early phase of the inflammatory response [12,33,34,44,45].

The differences observed in the murine virulence study could be

due to a differential recognition of the isolates by the host cells,

resulting in an impaired inflammatory cellular response, or to an

intrinsic higher resistance of isolate 124A to phagocyte killing.

The comparative analysis of leukocyte recruitment to the

peritoneal mouse cavity of mice infected with 124A or 140A

showed that even though resolution of inflammation was delayed

in mice infected with 124A, immunocompetent mice recognized

both isolates similarly, invoking an acute neutrophilia, as

previously described [35,46,47]. Thus, we tested the hypothesis

that the differences in virulence observed in infected mice could be

mainly due to an intrinsically higher resistance to phagocyte killing

of isolate 124A. One mechanism proposed for the opportunistic C.

albicans to resist phagocyte killing is by rapidly changing to a

filamentous form, allowing the fungal cells to resist ingestion or, if

internalized, kill the phagocyte to escape to the extracellular

environment [29,30]. This higher resistance was confirmed in vitro

upon co-incubation with J774 macrophages cell line. Both isolates

were equally recognized and phagocytosed, but 124A cells induced

a much higher macrophage death than 140A cells. The

observation that 124A resisted more efficiently to the presence of

H2O2, a compound present in the hostile environment of the

phagolysosome, and presented a higher activity of secreted

phospholipases, also favored its resistance to phagocyte induced

death.

Overall, this comparative analysis demonstrated that the

virulence decrease of isolate 140A was related to its lower ability

to resist to anticandida effector mechanisms, what explains the

lower kidney CFU’s, the absence of long filaments in kidney

histology and in vitro assays, and the faster spontaneous resolution

of acute inflammation. We believe that the four isolates from this

patient are genetic variants of a strain that, upon interaction with

the host, adapted to differences in the microenvironment. It is

likely that, as the patient became immunocompromised, the host

environment became less stressful, and adaptation resulted in a

progressive decrease in virulence that was evidenced when tested

in an immunocompetent host. Several works analyzing rates of

genetic and genomic alterations and their possible consequences to

microbe fitness propose that for opportunistic pathogens, such as

C. albicans, these alterations favor the commensal state rather than

the infectious [9,48,49]. Additionally, Cheng et al. [50] isolated a

C. albicans variant with attenuated virulence after passages through

mice, which could also be considered in agreement with the

commensal theory proposed.

This study is the first to show a decrease in virulence of genetic

variants of the same strain sequentially isolated from a human

patient, suggesting that C. albicans is able to adjust to the host,

favoring commensalism rather than increase of virulence. The

ability of C. albicans to adapt to and change its virulence in

immunocompromised hosts can be a strategy of this organism to

maintain its host alive and prolong its own survival.

Materials and Methods

Yeast strains and typing
C. albicans clinical strains (14 isolates) used in this study were

collected from nine patients with recurrent infections attending the

same hospital (Table 1). The four isolates analysed in more detail

were from a patient with gastro-intestinal cancer who had been

under chemotherapy (patient 1). This patient was submitted to

surgical intervention and presented two sequential bloodstream

infections in a period of four months (Table 1). All the isolates and

the reference strain SC5314, were maintained on Sabouraud agar

plates at 4uC and cryopreserved in 30% glycerol (wt/wt) at

280uC.

Strain typing was performed by using microsatellite length

polymorphism (MLP) and multilocus sequence typing (MLST), the

more discriminatory typing methods for C. albicans. For MLP

analysis polymerase chain reaction (PCR) amplification with CAI,

CAVI, and CEF3 markers was performed as described by Sampaio

et al. [6] and by Bretagne et al. [51]. PCR products were run in an

ABI 310 Genetic Analyser (AB Applied Biosystems) and fragment

sizes were determined automatically using the GeneScan 3.7 analysis

software. MLST typing was based on sequence analysis of DNA

fragments from the six housekeeping C. albicans genes, ACC1, ADP1,

GLN4, RPN2, SYA1, and VPS13, as previously reported [52]. The

Figure 5. Real time PCR cytokine quantification. RNA was
extracted from spleen homogenates in HBSS of mice infected with
106 yeast cells of 124A (%) or 140A (&) by using the Trizol method and
mRNA levels of IFN-c (A), TNF-a (B) and IL-4 (C) quantified and
expressed as copies per HPRT gene. Statistical significance was
calculated by using Student’s t test and significant differences are
labeled with a single asterisk (P,0.05) or triple asterisks (P,0,0001).
doi:10.1371/journal.pone.0010155.g005
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diploid sequence types (DST) obtained were deposited in the C.

albicans MLST database (http://calbicans.mlst.net/).

Similarities between MLST sequence data were analyzed in

terms of p distance with MEGA version 4.0 [53], as described by

Odds et al. [7]. Nodal support, after 1000 bootstrap replications,

was also calculated and depicted in the UPGMA dendrogram.

Mice and C. albicans hematogenously disseminated

infection. Female BALB/c mice 6 to 8 weeks old were

obtained from Charles River (Barcelona, Spain) and kept under

specific pathogen-free conditions at the Animal Facility of Life and

Health Sciences Research Institute (Braga, Portugal). The present

study was conducted under the guidelines and approval of the

Research Ethics Committee of the same Institute.

To evaluate the virulence of the isolates mice were injected

intravenously (i.v.) in the lateral tail vein with 26106 cells of each

of the four isolates studied in more detail, in 0.5 ml PBS. For

preparation of inocula, cells unfrozen from the original stock were

grown in Winge medium (0.2% glucose and 0.3% of yeast extract)

at 26uC, to maintain the conidial morphology [54]. In each

experiment, all isolates were tested simultaneously and inocula

were confirmed by CFU counting of the suspensions used to infect

mice. Animal welfare was assessed twice daily during 30 days.

For assessment of organ fungal-burdens and cytokine quantifi-

cation mice were separated in groups, four mice in each cage, and

i.v. infected with a lower inoculum, 106 yeast cells. At days 1, 3,

and 7 post-infection, mice from a cage were sacrificed and their

Figure 6. Intraperitoneal inflammatory response to C. albicans strain variants. Kinetics of neutrophils (A) and macrophages (B) in the
peritoneal cavity following i.p. infection of BALB/c mice with 107 cells from strains 124A (solid line) and 140A (dashed lines). Cells were recovered by
peritoneal lavage, and counting of leukocytes was performed by flow citometry. Statistically significant differences between results at 3, 8, 24 and
48 hours of infection, as evaluated by Student’s t test, are labeled with double asterisks (P,0.001).
doi:10.1371/journal.pone.0010155.g006
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kidneys, livers, and spleens aseptically processed. Organs were

homogenized in 2 ml of Hanks Balanced Salt Solution (HBSS)

from Invitrogen, diluted, and cultured on Sabouraud agar at

37uC. The results of organ fungal burden were expressed as log

CFU/ml of homogenate. Prior to processing, spleens were divided

in half to allow simultaneous analysis of fungal colony counts and

cytokine quantification.

Cytokine quantification
RNA was isolated from the spleen homogenate obtained

previously. Briefly, 200 ml of the organ homogenate were

centrifuged at 6000 rpm at 4uC and the pellet resuspended in

0.5 ml of Trizol reagent. After 5 minutes of incubation at room

temperature 0.1 ml of chloroform was added, tubes were agitated

and incubated on ice for 15 minutes. Samples were then

centrifuged at 12000 g for 15 minutes at 4uC and the aqueous

phase recovered. RNA was precipitated from the aqueous phase

by mixing with isopropyl alcohol, and samples centrifuged at

12000 g for 10 minutes at 4uC. RNA pellet was washed once with

0.8 ml of 70% ethanol and air-dried. RNA was resuspended in

10 ml of ultra-pure water, quantified in the NanoDrop 1000 R

Spectrophotometer (NanoDrop Technologies, Inc., Wilmington,

NC), and stored at 280uC at a concentration of 200 ng/ml.

Total RNA was reverse transcribed in a thermocycler My

Cycler Thermal Cycler (Bio-Rad, Hercules, CA) by using the

Superscript Kit II and Oligo dT (Invitrogen). The cDNA was

subjected to real-time RT-PCR reactions for quantification of

mRNA levels of TNF, IFN-c, IL-4, and the housekeeping gene

mHPRT by using the LightCycler (Roche, Basel, Switzerland),

and the LightCycler FastStart DNA Master Hybridization Probes

kit. Probes and primer sequences used to amplify the cDNA, as

well as the specific annealing temperatures are described in

Botelho et al. [55].

Histology
Kidneys excised from infected mice were fixed in 10%

phosphate-buffered formalin, embedded in paraffin, sectioned,

and stained with periodic acid-Schiff (PAS) stain after hematox-

ylin-Eosin (H&E) staining, according to Kretschmar et al. [56].

Quantification of in vivo acute inflammatory response
To quantify the cellular acute inflammatory response to isolates

124A or 140A, mice were intraperitoneally (i.p.) injected with 107

C. albicans cells and killed after 3, 8, 24 and 48 h [56]. The

inflammatory infiltrate was collected by lavage with ice-cold PBS

[57]. Quantification of leukocyte sub-populations in the peritoneal

lavage fluids was performed by flow cytometric analysis (FACScan)

based on the expression of F4/80, a marker associated with the

macrophage lineage [58], and GR1, a marker associated primarily

with the granulocyte lineage [59]. The following monoclonal

antibodies (mAbs) were used in the cytometric analysis (Becton-

Dickinson, San Jose, CA) using CELLQUEST software (Becton-

Dickinson): Phycoerythrin (PE) conjugated anti-mouse F4/80

antigen (clone BM8), and FITC anti-mouse Ly-6G and Ly-6C

(Gr-1) (RB6-8C5) (BD Pharmingen). To characterize the resolu-

tion of inflammation the following quantitative indices were used:

(i) the magnitude of PMN tissue infiltration (maximal PMN, Ymax);

(ii) the time interval when numbers of PMN reach Ymax within

exudates (Tmax); (iii) the time point (T50) when PMN numbers

reduce to 50% of Ymax (R50); and (iv) the resolution interval (Ri),

the time interval from the maximum PMN point (Ymax) to the

50% reduction point (R50) [i.e.T50-Tmax] [36].

Macrophage culture and phagocytosis assays
The mouse macrophage-like cell line J774 (ATCC TIB-67) was

cultured at 37uC in 5% CO2 in Dulbecco’s Modified Eagle’s

medium (DMEM), supplemented with 10% heat-inactivated fetal

calf serum (FCS) (Valbiotech), 2 mM L-glutamine, 1 mM sodium

pyruvate, and 10 mM HEPES. Macrophages were plated at a

concentration of 56105 cells/ml into 24-well tissue culture plates

(Orange) containing a 13 mm diameter coverslip (Nunc) in each

well and incubated overnight in 5% CO2 at 37uC. C. albicans

isolates were grown overnight at 26uC in Winge medium,

Figure 7. In vitro C. albicans macrophage killing. Cells from the
macrophage cell line J774 were incubated with C. albicans isolates 124A
or 140A cells in a ratio of 1:5 (E:T) and dead macrophages identified
after incubation with 1 mg/ml of propidium iodide under the
florescence microscope. Statistically significant differences between
results at each hour of co-infection, as evaluated by Student’s t test, are
labeled with single asterisk (P,0.05).
doi:10.1371/journal.pone.0010155.g007

Figure 8. In vitro susceptibility assay. Growth of 124A and 140A yeast cells at 37uC for 48 h on YPD and YPD containing 20mM acetic acid, 0.3M
CaCl2, 1M NaCl, 10mM MnSO4, and 12mM caffeine. Drop tests were performed by spotting 10 ml of 105, to 102 cells/ml dilutions.
doi:10.1371/journal.pone.0010155.g008
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recovered by centrifugation at 5000 rpm and washed twice in

sterile phosphate buffered saline (PBS).

Phagocytosis was assessed at a 5:1 C. albicans/macrophage ratio,

and the number of internalized C. albicans cells determined in a

phase-contrast microscope (Leica DMRB) after 30 minutes of co-

incubation [60,61]. Percentage of phagocytosis was determined as

the number of internalized cells/number macrophages 6100. At

least 300 cells were counted.

Macrophage death assessment was determined by incubating

macrophages and yeast cells, as previously described, and cells

stained with 1 mg/ml propidium iodide (PI) after 1, 2, 3, and 4 h of

incubation. Images were taken in ten independent fields using a

Leica DM5000B fluorescence microscope. Percentage of dead

phagocytes was determined as the number of PI positive

macrophages/number macrophages counted 6100 [62]. At least

300 cells were counted.

Phenotypic screening and susceptibility assays
For the determination of growth rates, a pre-culture was

prepared incubating C. albicans isolates over night at 30uC in liquid

SD (0.17% of YNB, 0.5% of (NH4)2SO4, 2% of glucose) and YPD

(1% yeast extract, 2% peptone, 2% glucose) media and then a

dilution was prepared in fresh medium to start with a OD600 of

0.05. Growth rates were determined at 26uC, 30uC and 37uC by

measuring OD600 every hour until the culture reached stationary

phase.

Extracellular proteolytic activity (Saps) of the isolates was

assessed in BSA solid and liquid medium according to Monod el al.

[63]. C. albicans isolates were also screened for production of

extracellular phospholipase activity by growing them on egg yolk

agar and measuring the size of the zone of precipitation by the

method of Samaranayake et al. [64]. Phospholipase activity (Pz

value) was calculated as the ratio of the diameter of the colony and

the diameter of the colony plus that of the precipitation zone.

Since Saps and phospholipases are inducible enzymes these tests

were performed with freshly unfrozen cells from the original

stocks.

Strain sensitivity to osmotic, acidic and oxidative stress was

determined by incubating the yeast cells on SD agar plates

containing several stress conditions: 50 and 100 mg/ml SDS; 1 M

NaCl, 7% and 11% Ethanol; 1.2 M Sorbitol; 20 and 50 mM

Acetic Acid; 12 mM Caffeine; 0.3 M CaCl2; 10 mM MnSO4, 0.2

M LiCl; and also SD at pHs 3.75, 5.5 and 8. Cells grown overnight

in YPD medium were recovered by centrifugation at 5000 rpm

and washed in PBS. Drop tests were performed by spotting 10 ml

of 105 to 102 cells/ml dilutions onto the prepared plates that were

incubated at 26, 30 and 37uC, for 3 days. Susceptibility to H2O2

was assessed by incubating the yeast cells in a solution of 1.25 mM

H2O2, for 60 minutes at 30uC, and viability measured by CFU

counts on YPD D.

Statistical analysis
Unless otherwise stated, results shown are from one experiment,

representative of three independent experiments. Statistical

significance of results was determined by unpaired Student t-test

and survival data were analyzed with the log-rank test, using the

GraphPad Prism 4 Software (GraphPad Software, Inc., La Jolla,

CA, USA). Results were considered statistically significant with

P values of less than 0.05.
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