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Abstract: Environmental conditions influence specialized plant metabolism. However, many studies
aiming to understand these modulations have been conducted with model plants and/or under
controlled conditions, thus not reflecting the complex interaction between plants and environment.
To fully grasp these interactions, we investigated the specialized metabolism and genetic diversity
of a native plant in its natural environment. We chose Myrcia bella due to its medicinal interest and
occurrence in Brazilian savanna regions with diverse climate and soil conditions. An LC-HRMS-based
metabolomics approach was applied to analyze 271 samples harvested across seven regions during
the dry and rainy season. Genetic diversity was assessed in a subset of 40 samples using amplified
fragment length polymorphism. Meteorological factors including rainfall, temperature, radiation,
humidity, and soil nutrient and mineral composition were recorded in each region and correlated with
chemical variation through multivariate analysis (MVDA). Marker compounds were selected using a
statistically informed molecular network and annotated by dereplication against an in silico database
of natural products. The integrated results evidenced different chemotypes, with variation in flavonoid
and tannin content mainly linked to soil conditions. Different levels of genetic diversity and distance
of populations were found to be correlated with the identified chemotypes. These observations and
the proposed analytical workflow contribute to the global understanding of the impact of abiotic
factors and genotype on the accumulation of given metabolites and, therefore, could be valuable to
guide further medicinal exploration of native species.
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1. Introduction

Myrcia bella Cambess (Myrtaceae) is popularly known as “mercurinho”. Is an important and
common plant native to the Brazilian Savanna (Cerrado) [1]. In Brazil, populations of M. bella are
widely distributed in different regions of the Cerrado Domain. Leaves of this plant are used in
traditional medicine to treat gastrointestinal disorders and diabetes [2]. Pharmacological studies
have demonstrated the cytotoxicity [2], antimicrobial [3], and antidiabetic [4] properties of the
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hydroalcoholic extracts of its leaves. In all these studies, phenolic compounds were related to
bioactivity. Phytochemical studies of the leaves of M. bella have described several derivatives of
O-glycoside flavonols and phenolic acids [3,5,6].

Plant metabolites play important ecophysiological roles in response to the environment [7].
Biotic and abiotic factors affect the biosynthesis of a wide range of specialized metabolites [8–10].
Variation in the production of metabolites has been observed not only among different species, but
also between specimens of the same species growing under different environmental conditions.
Specific environmental factors have been identified as the main source of intra-species metabolism
variations. For example, abiotic environmental conditions such as soil nutrients and water availability
can induce the accumulation of specific compounds in different parts of plants growing in different
localities [11,12]. For medicinal exploitation purposes, it is therefore important to identify the factors
(biotic, abiotic, and seasonal) that can affect the production and accumulation of specialized metabolites
in populations of species.

Untargeted metabolite analysis (metabolomics) has been successfully used for the comprehensive
analysis of a wide range of small molecules produced by a given organism, providing functional
information in response to biotic or abiotic stress [13,14]. When performed on carefully selected
biological replicates, it can provide information about changes at the chemical level of species or
specimens related to genetic variability, abiotic stress, and/or interaction with other organisms [15].
Most comparative metabolomics studies have been carried out on model crop plants subjected to
controlled environmental conditions to demonstrate relationships between plant metabolites, genotypes,
and phenotypes [16,17] and to elucidate biological processes [18].

However, experiments involving model crops and controlled conditions only approximate the
condition of plants in their natural environment. Plants possess natural genetic variability and are
constantly submitted to concurrent environmental factors which reveal their full phenotypic plasticity.
For example, Sampaio et al. [11] used untargeted metabolomics to demonstrate the effects of abiotic
environmental factors in situ on Tithonia diversifolia (Helms.) A. Gray, (Asteraceae) using clonal
specimens. Therefore, direct monitoring of metabolic changes under natural conditions is needed to
better understand the interrelationship between the environment and the plant metabolome.

As metabolomics studies generate large and complex datasets, multivariate statistical data analysis
(MVDA) is required to extract relevant information. MVDA gives statistical values for the metabolites
and their correlation with the analyzed factors of interest. Dereplication is then performed to identify
known metabolites from spectral or structural features. Recently, molecular network (MN) analysis
integration with in silico spectral databases (ISDB) has been proposed to annotate structurally related
metabolites [19]. The generated MN is composed of clusters of nodes grouped based on the similarity
of their fragmentation patterns under identical ionization conditions. Since the development of MN
analysis, several strategies have been developed to integrate biological and chemical information,
facilitating the process of bioactive compound identification [20]. For example, Saesong et al. combined
bioactivity results and taxonomic information to identify clusters of active metabolites within extracts of
the medicinal plants of the genus Bacopa (Plantaginaceae) [21]. Olivon et al. expanded these approaches
by merging different bioassay data from hundreds of Euphorbiaceae extracts, generating a massive
multi-informative MN to guide the isolation of compounds of interest [22]. Given the importance of
MN in the discovery of bioactive compounds, many of these prior studies have naturally focused
on bioactivity-based approaches. Likewise, given that most comparative metabolomics studies have
focused on model crop plants in controlled conditions or using genetically homogeneous specimens,
there is a need for metabolomics studies of non-model plants under natural conditions to determine
the factors affecting plant metabolism and assess metabolic changes.

In order to address this issue, we selected M. bella for its importance in traditional medicine as a
model to perform metabolomics of specimens distributed in different regions of Brazilian Cerrado
and exhibiting characteristic microclimate and soil variations. The Cerrado climate is defined by two
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well-marked seasons, namely the dry season and the rainy season, which has higher temperatures [23].
Soils typically have low fertility, are acidic, and have high levels of aluminum [24].

Our goal was to investigate metabolite content and genetic fingerprints among plant populations
of M. bella growing under a wide range of environmental conditions and to determine the abiotic
environmental factors that putatively affect its specialized metabolism. Analysis of 271 samples
collected in rainy and dry seasons over a 24 month period was performed with an optimized
ultra-high performance liquid chromatography and high-resolution mass spectrometry UHPLC-HRMS
method. Metabolite profiles and environmental factors were correlated using MVDA methods. A MN
was created after HRMS2 analysis for extensive metabolite annotation in comparison with in silico
fragmentation spectral database. The metabolomics data were treated through standard MVDA and,
when such statistical results were integrated in a multi-informational molecular networks, this approach
highlighted reliable and important changes in metabolite families.

2. Results

The sampling plan implemented in this study allowed the collection of leaf samples from
271 specimens of Myrcia bella from seven different regions from the Brazilian savanna (Table 1) during
both dry and rainy seasons over 24 months (Tables S1, S2, Figure S1).

Table 1. Sampling plan of Myrcia bella specimens compared in this study. City and exact coordinates
for each sampled area of Cerrado are presented. Samples were collected twice per season, the months
and years of each harvest period are given. Only samples from Parque Nacional das Emas-Goiás were
collected once in each season. The total number of samples collected in each area in both seasons is
given. A representative specimen voucher for each population was deposited at the UNBA herbarium.

City (State) Code Coordinates Voucher
Code

Samples
Season

Dry Rainy

Bonito (MS) BT S 21◦07′15′′,
W 56◦28′55′′ 6031 32 June/2013

July/2014
March/2013
April/2015

Campo Grande (MS) CG S 20◦30′29.3′′,
W 54◦361′59.3′′ 6033 25 June/2013

July/2014
March/2013
May/2015

Jardim Botânico de Bauru (SP) JBB S 22◦20′30′′,
W 49◦ 00′30′′ 5508 55 August/2013

July/2014
May/2013
May/2015

Parque Nacional das Emas (GO) PNE S 18◦07′17′′,
W 52◦54′30′′ 6028 29 June/2014 March/2015

Pratânia (SP) PT S 22◦48′28′′,
W 48◦39′57′′ 6029 50 September/2013

July/2014
May/2013

March/2015

Selvíria (MS) S S 20◦64.4′73.6′′,
W 51◦76.4′92.4′′ 6032 33 June/2013

July/2014
March/2013
April/2015

Três Lagoas (MS) TL S 20◦46′39.5′′,
W 51◦40′25.5′’ 6030 47 June/2013

July/2014
March/2013
April/2015

Total: 271

List of abbreviations: MS = Mato Grosso do Sul; SP = São Paulo; GO = Goiás.

The workflow established for the analysis and data mining is summarized in Figure 1 and
detailed hereafter.

All samples were profiled by UHPLC-ToF-HRMS to generate metabolomics data that were
processed by MVDA to differentiate groups of specimens and identify chemotype markers. Such MS
data were correlated with meteorological and soil properties information to highlight specific
environmental factors that could possibly be involved in metabolite profile variations. In parallel, for a
selected subset of 40 representative samples, DNA AFLP marker analysis allowed the genetic diversity
and distance among populations to be evaluated.

For metabolite identification, a mix of all samples was analyzed by complementary
UHPLC-HRMS/MS and data-dependent acquisition analysis on the largest number of detected
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features. The MS2 dataset was organized using the Global Natural Products Social Network platform
(GNPS) to generate a MN of all detected features. These compounds were annotated based on their
MS2 spectra compared with experimental or in silico MS/MS databases and identified by authentic
standards. The main markers were highlighted in the MN based on their VIP values related to group
differentiation after MVDA analysis.
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metabolite fingerprinting was performed in negative ion mode to highlight phenolic compounds that 
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Figure 1. Summary of the workflow used in this study. (a) Strategy followed for sample harvesting
and environmental monitoring in different regions of the Brazilian savanna. (b) Multivariate data
analysis was used to analyze the chemical and genetic data and to correlate compounds with significant
variation (markers) to environmental factors. (c) A multi-informative molecular network was then
generated by merging metabolomics multivariate data (VIP values) in the molecular network to identify
chemotype markers. Compounds were annotated by spectral matching against in silico fragmentation
databases, following a taxonomically informed reranking process.

2.1. Data Acquisition and Processing for Multivariate Analysis

A chromatographic gradient was developed to enable the analysis of a high number of samples in
a unique batch while ensuring a satisfactory resolution and a low ion-suppression level. The metabolite
fingerprinting was performed in negative ion mode to highlight phenolic compounds that are known
to be present in Myrcia bella [5].

As an effort to eliminate bias due to potential gradual changes on the UHPLC-ToF-HRMS platform
performance, the test samples were randomized and quality control (QC) samples were injected every
20 analyses to validate the quality of the profiles obtained [25,26]. Thus, based on the QC sample
validation, the variability of retention time, mass accuracy, and area intensities in chromatograms were
within acceptable ranges and indicated the instrument stability over circa 72 h (Figure S2).

2.2. Multivariate Data Analysis

Principal component analysis (PCA) was performed using Pareto and log-transformed, and showed
better clustering of samples compared with the non-log transformed PCA (Figure S3). Nine principal
components were calculated by cross-validation, and the first two components (PCs) explained 27.3%
and 0.9% of the variation in the spectral data, respectively. The PCA prediction was validated based
on R2x (0.585) and Q2 (0.432), which were in an acceptable range for biological a PCA model [26].
An acceptable level of data quality was also indicated in this study by QC samples (Figure S3) tightly
clustered and near the plot origin. The analysis of the distribution of samples in PCA revealed a few
outliers outside of the model boundary (Hotelling’s T2 of 95%) (data not shown).
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The PCA (Figure S3) and hierarchical cluster analysis HCA dendrogram (Figure S4) results
provided good discrimination of all samples and clearly showed the presence of three main groups.
As evidenced, specimens from the populations of the Goiás and São Paulo regions, represented by
the Parque Nacional das Emas (PNE), Jardim Botânico Municipal de Bauru (JBB), and Pratânia (PT),
were clustered together and were named chemotype CI. Meanwhile, specimens from the Mato Grosso
do Sul regions were clustered in two main groups, one represented by the Bonito (BT) and Campo
Grande (CG) populations, named chemotype CII, and other formed by Selvíria (S) and Três Lagoas
(TL), named chemotype CIII. This grouping pattern was consistent with the geographical position
of the areas of sampling. However, Goiás and São Paulo populations, which were distant from each
other, shared the same chemotype. Nevertheless, PCA analysis of the soil data (Figure S5) from the
seven localities revealed that these two sites possessed similar soil properties.

Possible metabolomics variations between the rainy and dry periods were investigated, creating
separate PCA models for each population (Figure S6); however, no grouping related to dry or rainy
seasons was observed.

Altogether, the PCA and HCA results provided a good discrimination of all samples and clearly
evidenced the presence of three chemotypes of M. bella across the studied regions. Furthermore,
our results suggest that the chemical variability resulting in the three chemotypes (CI, CII, and CIII)
could be mainly linked to specific soil and meteorological conditions, and to a lesser extent to water
availability. These correlations are further investigated and discussed below.

2.3. Identification of Site-Specific Environmental Factors from Supervised Analysis Results

The two-way orthogonal PLS (O2PLS) model [27], which is used to analyze the relationships
between two different matrices (X and Y), was created to identify the environmental factors possibly
responsible for inducing chemical variations (Figure 2a).

This model allowed us to correlate the metabolomics data (302 features as X input) with meteorology
and soil factors (22 factors as Y input) coherently. The O2PLS model was then constructed using
271 observations with a good fit and predictivity (R2Ycum was 0.758 and Q2 cum was 0.713). This model
showed very little orthogonal variation explained at 9%, which could be attributed to intra-population
variation. The O2PLS analysis showed clear separation between all samples, evidencing the three
chemotypes previously observed in the PCA analysis (Figure 2a). The groupings produced are mapped
in Figure 2b.

As shown in the loading plot from the O2PLS (Figure 2c), the edaphic conditions as the
micronutrients iron (Fe) and exchangeable aluminum (Al), potential acidity (H+Al), and cation
exchange capacity (CEC), contributed negatively to the PC1, and were correlated to the Goiás (PNE)
and São Paulo (JBB and PT) regions. On the other hand, the levels of macronutrients (Mg, Ca, P,
and K) and micronutrients (Cu and Mn), besides soil properties such as the sum of bases (SB) and
organic matter (OM) level, were positively correlated to the Mato Grosso do Sul regions of BT and
CG. Other environmental conditions such as thermal amplitudes (mean, maximum, and minimum
temperatures), radiation incidence, and soil properties such as pH as well as base saturation (V), were
correlated to the S and TL (Mato Grosso do Sul) regions.

Besides humidity, rain, and boron (B), all the other factors analyzed in the study were correlated
to specific localities, which was consistent with our findings, since no difference was detected on the
metabolome of M. bella extracts between dry and rainy seasons.
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Figure 2. Multivariate data analysis of UHPLC-ToF-HRMS fingerprinting data of 271 Myrcia bella
extracts collected in seven regions of Cerrado. (a) O2PLS score plot highlighting the identified
chemotypes (CI, CII, and CIII). (b) Geographical map summarizing the location of the harvesting site.
The black lines delineate regions sharing the same chemotype. (c) O2PLS loading plot exhibiting the
correlation of the environmental factors with given metabolites (numbers in black). List of abbreviations:
Fe = soil iron; Al = soil aluminum; Mn = soil manganese; K = soil potassium; Cu = soil copper; P = soil
phosphorus; Mg = soil magnesium; Zn = soil zinc; Ca = soil calcium; SB = soil sum of basis; pH = soil
pH; V = soil bases saturation; CEC = cation exchange capacity; Temp. (mean) = mean air temperature;
Temp. (max) = maximum air temperature. BT = Bonito; CG = Campo Grande; S = Selvíria; TL = Três
Lagoas; PNE = Parque Nacional das Emas; PT = Pratânia; JBB = Jardim Botânico de Bauru. GO = Goiás;
SP = São Paulo; MS = Mato Grosso do Sul.

2.4. Molecular Networking Analysis

In order to obtain structural information of features, MS/MS spectra of the QC (pool of all extracts)
and authentic reference compounds were recorded by UHPLC-Orbitrap. The preliminary MS data
treatment yielded 1296 features with associated MS2 data in negative-ion mode. These were organized
using the GNPS platform to generate a unique molecular network (MN) using the feature-based
molecular networking workflow (FBMN) [28]. In this MN, the nodes corresponding to each feature
were grouped into 396 clusters according to their fragmentation patterns’ similarity. By comparing
the retention order and exact masses, features could be correlated between the ToF/MS fingerprints
(MVDA) and the Orbitrap profiles (MN and metabolite annotation analysis).

2.5. Metabolite Annotation

In a second step, the annotation of compounds in the MN was performed at Level 2 [29].
The acquired MS2 spectra of each node from the whole MN were searched automatically against an in
silico theoretical spectra database built from the Dictionary of Natural Products (ISDB-DNP) following a
previously described methodology [19]. Subsequently, a taxonomically informed metabolite annotation
strategy was applied [30]. For this, the initial ISDB-DNP output annotations ranked according to their
spectral similarity were re-ranked based on a score attributed to candidates for which the biological
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source was found to be Myrtaceae at the family level, Myrcia at the genus level, and/or M. bella at the
species level. Using this approach, among the 1296 features, 545 (42%) compounds were annotated in
the MN. The identities of ten annotated compounds were confirmed at Level 1 [29] by co-injection of
authentic standards isolated from M. bella [5] and MS/MS spectra comparison (Figure S7).

2.6. Integration of Multivariate Data Analysis with Molecular Networking for the Identification of
Chemotype Markers

In an attempt to assemble both MVDA from fingerprinting and feature annotations by MN,
the VIP of significant features was linked as metadata to create a statistically informed MN (Figure S8).
For this, 63 features with a VIP value > 1.0 in the O2PLS analysis were visualized through the size of the
node in the MN (Figure 3). Such features were displayed in the MN in larger size nodes. Nodes with
VIP values below 1 or without statistical data available were kept at their original size.Molecules 2019, 24, x FOR PEER REVIEW 8 of 20 
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Figure 3. Selected clusters (MN1–MN5) from the statistically informed molecular network. VIP values
greater than 1 (represented in red in the VIP plot) from the O2PLS model were integrated into the
molecular network and can be visualized through the node size. Larger nodes indicate features with
VIP values greater than 1. Dotted line boxes indicate putatively annotated compounds (ISDB-DNP in
silico annotations), and full lines indicate dereplicated compounds for which identity was confirmed by
comparing the spectroscopic data with compounds isolated from Myrcia bella. Green, orange, or purple
colors indicate the chemical classes of the compounds. Flavonoid, tannin, and carboxylic acid chemical
class clusters with representative structures are depicted.

Using this approach, we were able to highlight clusters of families of compounds related to
statistically relevant features spotted through the MVDA. This allowed us to both add statistically
relevant information to the MN, and to demonstrate spectral similarity among previously unrelated
MVDA features.

After a visual inspection of the statistically informed MN, clusters were selected based on their
node size (higher nodes indicate VIP > 1.0). This resulted in the selection of five clusters, herein
named MN1–MN5 (Figure 3). A total of 78 compounds were annotated among the selected clusters
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(Table S4). Of those, 39 compounds were identified as flavonoids, 17 as carboxylic acid derivatives,
19 as hydrolyzable tannins, and 3 as chromones.

The correlations between these compounds and the environmental factors of each geographic
region are presented in the loading plot (Figure 2c). Accordingly, the flavonoids 21, 26, 51, 53, and 58
were mainly found in plant populations collected from the Goiás (PNE) and São Paulo (JBB and PT)
regions (chemotype CI). In these regions, the soil shows higher levels of iron and aluminum, and a low
pH (pH ~ 4).

On the other hand, the flavonoids 27, 30, 36, 44, and 50, the carboxylic acid 48, and chromone 60
were related to plant specimens found in the Mato Grosso do Sul region (CG and BT) (chemotype CII).
In this region, the soil shows higher levels of copper, calcium, manganese, potassium, calcium,
magnesium, and zinc, and low potential base saturation (V). Finally, the hydrolyzable tannin 34,
the carboxylic acid 38, and chromone 45 were related to specimens collected in Mato Grosso do Sul
regions (S and TL) (chemotype CIII), with a high influence of environmental factors such as radiation,
temperature ranges (maximum and mean), and higher pH (~5).

To further explore the correlation between the level of content of these compounds in all collected
M. bella specimens and the environmental factors studied, a correlation analysis was performed
(Figure S9). Compounds with significant correlation (p < 0.001) to given environmental factors are
highlighted in the correlation matrix. This analysis confirmed that compounds 21, 26, 47, 52, 58, 65, 67,
74, 75, 76, and 77 were positively correlated with low pH and high Fe and Al levels. Compounds 17,
30, 25, 27, and 37 were positively correlated with K, Ca, Mg, Cu, and SB, and compounds 1, 14, 27, 37,
and 45 were positively correlated with higher temperature. These correlations (Figure S8) confirmed
the results discussed above (Figure 2c).

In addition, we analyzed the variable plot line displaying the level of compounds across samples
(Figure S10). Accordingly, compounds 21, 26, and 47 were found exclusively in chemotype CI,
represented by specimens from São Paulo (JBB and PT) and Goiás (PNE) regions. On the other
hand, compounds 1, 14, 37, 50, and 54 were found in higher levels in both CII and CIII chemotypes
represented by specimens from all Mato Grosso do Sul (BT, CG, S, and TL) regions. This suggests
that the three chemotypes of M. bella mainly differ in their contents of flavonoids, carboxylic acids,
and hydrolyzable tannins. Since these compounds were found exclusively or in higher levels in specific
regions, they were selected as markers to distinguish the three chemotypes.

2.7. Genetic Diversity Based on Amplified Fragment Length Polymorphism (AFLP)

The genetic diversity of a selected subset of 40 representative samples from the six localities was
assessed through amplification of restriction fragments from total digest of genomic DNA (Figure S11).
The AFLP method is a DNA fingerprinting technique suited for applications in genetic analysis
such as genetic relationship and diversity assessments [31]. In this study, the AFLP analysis was
performed using four combinations of EcoRI and MseI primers with three selective nucleotides each.
Each combination gives different patterns of amplified fragments. The primers Eco-ACC/MseI-CAT
yielded 291 alleles, Eco-ACG/MseI-CAG yielded 196 alleles, Eco-ACC/MseI-CAA yielded 316 alleles,
and Eco-ACG/MseI-CTG yielded 225 alleles. In total, 1028 loci using four combinations of EcoRI and
MseI primers with three selective nucleotides each were analyzed.

As for the observations on the PCA and HCA analysis of the AFLP data (Figure 4), two main
clusters were observed according to their localities. Specimens from São Paulo (JBB and PT) and Goiás
(PNE) were grouped together, while specimens from Mato Grosso do Sul (CG, S, and TL) formed
another group.
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Parameters of intrapopulation genetic diversity, including the percentage of polymorphic loci (P)
and genetic diversity (He), are presented in Table 2.

Table 2. Parameters of intrapopulation genetic diversity of Myrcia bella based on AFLP markers.

Locality Na P (%) He

CG 5 20.72 0.059
JBB 9 50.78 0.124
PNE 10 54.77 0.135
PT 8 45.91 0.116
S 3 11.58 0.048

TL 5 38.13 0.107

List of abbreviations: Na = sample size, P = percentage of polymorphic loci, He = gene diversity of Nei. CG = Campo
Grande; S = Selvíria; TL = Três Lagoas; PNE = Parque Nacional das Emas; PT = Pratânia; JBB = Jardim Botânico
de Bauru.

The results showed that the percentage of polymorphic bands per population (P) ranged from
11.58% to 54.77%. The populations from Parque Nacional das Emas (PNE), Goiás region, Jardim
Botânico de Bauru (JBB), and Pratânia (PT) from the São Paulo region presented higher values of
percentage of polymorphic bands, while Três Lagoas (TL), Campo Grande (CG), and Selvíria (S), from
the Mato Grosso do Sul region, presented lower values.

Intrapopulation genetic diversity (He) ranged from 0.048 to 0.135 based on AFLP analysis.
Selvíria (S), Campo Grande (CG), and Três Lagoas (TL) populations from the Mato Grosso do Sul
region presented lower values than other populations of Jardim Botânico de Bauru (JBB) and Pratânia
(PT) from the São Paulo region, and of Parque Nacional das Emas (PNE) from the Goiás region.

The genetic distance between populations [32,33] assessed using the unweighted pair group
method with arithmetic mean (UPGMA) is presented in Table 3.

The analysis revealed that specimens from Jardim Botânico de Bauru were significantly close to
Pratânia (0.026) and to Parque Nacional das Emas (0.022), and more similar to Três Lagoas (0.078),
while Selvíria was the most genetically distant from the other populations studied. No correlations
between genetic and geographical distances were found.
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Table 3. Genetic distance of Myrcia bella populations from different regions of Cerrado.

CG JBB PNE PT S TL

CG 0.000
JBB 0.040 0.000
PNE 0.033 0.022 0.000
PT 0.021 0.026 0.028 0.000
S 0.086 0.099 0.082 0.089 0.000

TL 0.022 0.035 0.028 0.025 0.078 0.000

List of abbreviations: CG = Campo Grande; S = Selvíria; TL = Três Lagoas; PNE = Parque Nacional das Emas;
PT = Pratânia; JBB = Jardim Botânico de Bauru.

3. Discussion

Based on the metabolic differences detected and the environmental factors analyzed, as well
as literature data, it was possible to interpret the main sources of chemical variations among the
populations of M. bella studied in the Cerrado Domain. Our results revealed that seasonal changes in
precipitation between dry and rainy seasons were not as significant as soil conditions, temperature
ranges, and solar radiation.

The analysis of the seven populations collected in specific regions revealed the existence of three
M. bella chemotypes (Figure 2a,b). These three chemotypes were found to exhibit strong links with the
soil properties of the location where specimens were sampled.

The M. bella specimens (three populations, JBB, PT, and PNE) collected in the Sāo Paulo and Goiás
regions were found to belong to the same chemotype (chemotype CI). These two regions have in
common high levels of soil aluminum and iron. On the other hand, the M. bella specimens collected
(four populations, BT, CG, S, and TL) in the Mato Grosso do Sul region formed two main chemotypes,
assigned as chemotype CII (CG, BT) and chemotype CIII (S and TL). In the Mato Grosso do Sul
regions of CG and BT, the soil exhibited high levels of copper, phosphorus, calcium, zinc, manganese,
magnesium, organic matter, and sum of bases, while the S and TL regions exhibited higher temperature
and pH as well as of solar radiation levels compared to all other regions.

The chemotypes evidenced (CI, CII, and CIII) and the environmental correlations found in our
study indicated that specific environmental factors act on M. bella’s metabolism. The sources of
chemical variation were different at each of the studied areas.

Plant–soil interactions have been described by van Nuland et al. [34] as an important ecological
and evolutionary process associated with changes in plant phenotype and fitness, which might
ultimately affect genetic divergence among populations, adaptive or contemporary evolution,
and diversification [35,36]. Soil gradients and biota may influence the expression and evolution
of plant phenotypes [37–39].

Environmental factors such as solar radiation and temperature ranges are well described to affect
plant metabolism [11,40,41]. Several soil properties and conditions such as pH and organic matter
and nutrient availability are able to induce effects on the biosynthesis and accumulation of given
metabolites [42,43]. Soil nutrients such as calcium, phosphorus, potassium, manganese, and copper are
essential for normal higher plant growth and can be responsible for inducing physiological responses
in different plant organs [11,43,44].

In this study, the M. bella specimens were harvested in southeastern and southern regions of the
Cerrado Domain, a large region that occupies the center of South America with different microclimates
and soil compositions [24,45]. Most of the Cerrado Domain areas, which include both forest and
savanna habitats in a mosaic-like distribution [46], are on plateaus of crystalline or sedimentary blocks
interrupted by inter-plateau depressions, forming geomorphological regions originating from major
dynamic changes during the Tertiary and Quaternary periods. Several authors have demonstrated the
strong relationship between soil type and vegetation physiognomy and composition [47–49]. The soils
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of Cerrado areas are usually acidic, well drained, deep, and characterized by a low availability of
nutrients and toxicity related to high levels of metals such as aluminum, manganese, and iron [24].

Aluminum is the main soil metal inhibiting plant growth and functions in acid soils [50–55].
At the cellular level, the strong binding affinity of aluminum with oxygen-donor ligands, such as
proteins, nucleic acids, and phospholipids, results in the inhibition of cell division, cell extension,
and transport [56].

Our study indicated that specific flavonoids were correlated with high contents of soil metals
(iron and aluminum) in the Sāo Paulo (JBB and PT) and Goiás regions (PNE). Other studies have shown
that plants can exude flavonoids such as catechin and quercetin to chelate aluminum as a mechanism
of tolerance to metal stress [42,52,57]. Carboxylic acids and flavonoids can bind to aluminum to form
non-toxic complexes, protecting cell components from oxidative damage caused by high exposure to
this metal [52,58,59].

Tannins were found in higher levels and were correlated to high supply of soil nutrients and
high contents of manganese and organic matter (OM) in the Mato Grosso do Sul (BT and CG) region.
Several studies have demonstrated the influence of manganese in the shikimic acid pathway, resulting
in the accumulation of tannins in plants [43,60]. Apart from that, some authors investigated the
impact of tannin soil exudate from plant roots on microbial diversity and activity, which are crucial
for nutrient availability dynamics from organic matter degradation [61]. Polyphenols, especially
tannins, are known to affect either positively or negatively microorganisms’ activities, which in turn
influence nitrogen mineralization and nitrification of soil organic matter by several mechanisms [61–63].
Tannins may additionally increase nutrient availability (e.g., iron, phosphorus, copper, and manganese)
by forming organic complexes, and also retain exchangeable inorganic cations (calcium, potassium,
and magnesium) by providing sorption sites in highly acidic soils [64].

In parallel to the results of the metabolomics data, the genetic analysis of the subset of samples
from six populations revealed two main genetic clusters based on their polymorphisms (Figure 4a,b,
Table 2, Table 3). The genetic distance analysis showed that M. bella specimens from São Paulo
(JBB and PT) and Goiás (PNE) (chemotype CI) had high genetic similarity and were distant from
the Mato Grosso do Sul populations. These specimens belonging to chemotypes CII and CIII were
genetically close to each other and distant to chemotype CI.

The analysis of intrapopulation genetic diversity revealed that populations from Goiás and Sāo
Paulo (chemotype CI) presented the highest genetic diversity. These specimens were collected from
conservation areas such the Jardim Botânico de Bauru (forest) and Parque Nacional das Emas (national
park). Other studies using the AFLP technique in protected areas with native species from Brazilian
savanna have found similar levels of intrapopulation genetic diversity [65–68]. Lower values of
intrapopulation genetic diversity were found for Campo Grande, Três Lagoas, and Selvíria populations
(chemotypes CII and CII) from areas under anthropic pressure. As described by Schlaepfer et al. [69],
the increased inbreeding and gene flow caused by anthropogenic fragmentation of natural areas may
reduce the genetic variation of remnant populations.

Altogether, the metabolomics and genetics results evidenced the presence of three chemotypes and
two genetic clusters among the regions studied. Populations with higher values of genetic diversity
(PNE, JBB, and PT) formed one chemotype, while low genetic diversity (CG, S, and TL) resulted in
two chemotypes.

From the genetic point of view, in areas with higher anthropic pressure, the populations, even
those with lower genetic diversity, showed greater chemical diversity, suggesting a greater investment
in chemical defense. As expected, populations in areas with lower anthropic pressure showed high
genetic diversity.

Through this study, our results clearly indicated that stressful abiotic soil properties and
temperature conditions, together with anthropogenic pressure, drive chemical and genetic variability
among populations of M. bella and define their phenotypes.
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These functional differences in terms of metabolism were found to be relatively well correlated
with the genetic analysis of populations. However, more in-depth studies with a larger number of
samples in these regions are necessary for a better understanding of the relationship between chemical
and genetic diversity in different environments.

From an ecological perspective, the results obtained in our investigation showed also a great level
of consistency with previous floristic studies [46,48], revealing that edaphic conditions have influence
not only in the metabolome at the species level, but also on vegetation type and composition at the
landscape level.

It should be mentioned that previous bioactivity studies [2–4,6] have indicated that specific
flavonoids are most likely involved in the medicinal properties of M. bella extracts. In particular,
antidiabetic [4] and antimutagenic [2] activities were correlated with the presence of flavonoids, while
antimicrobial [3] activity has been associated with the presence of hydrolyzable tannins. The existence
of three distinct chemotypes revealed in this study could play a role in the pharmacological effects of
the extract. Such results thus need to be considered for further quality control and bioactivity studies
of M. bella extracts.

From a methodological viewpoint, the integration of statistical data from MVDA with the
generated MN enabled clusters of compounds sharing both statistically significant level variations
and structural relationships to be highlighted. Furthermore, the MN annotated through ISDB-DNP
enabled the putative dereplication of secondary metabolites of M. bella and the additional putative
identification of several compounds not previously reported for this plant [6]. This combined approach
made it possible to effectively characterize three chemotypes of M. bella and identify their markers.
Our results validated the interest in using similar approaches to assess in a comprehensive way the
complex metabolic responses of plant phenotypes to genetic and environmental changes.

4. Materials and Methods

4.1. Plant Material and Sampling

Leaf samples of 271 specimens of Myrcia bella Cambess were collected in situ from seven different
localities in Brazil, in the dry and rainy seasons of 2013, 2014, and 2015 (Table 1). The leaf samples
were immediately stored after sampling in a hermetically sealed container with silica gel until they
were processed in the laboratory. A voucher specimen for each population sampled was deposited at
the herbarium (UNBA) of the University of São Paulo State “Júlio de Mesquita Filho”; UNESP, Brazil.
A voucher specimen was also deposited at the Herbarium HUFSJ of Federal University of São João
Del Rei, Minas Gerais, Brazil, under code number HUFSJ 4731, for confirmation by a Myrcia taxonomy
specialist. The access and shipment of component of genetic heritage, as issued by the National Council
for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e
Tecnológico; CNPq), was performed under authorization No. 010468/2014-51 of Genetic Heritage
Management Council (Conselho de Gestão do Patrimônio Genético—CGEN).

4.2. Soil Sampling and Meteorological Data

The soil collection was performed in each geographical location of plant harvesting following the
protocol for composite soil samples recommended by the Soil and Environmental Resources Department
of the Faculty of Agronomic Sciences (Departamento de Solos e Recursos Ambientais, UNESP-FCA).
The samples were collected randomly at depths of 10–20 cm (ten replicates of each location) and a 500 g
aliquot was separated, labeled, and sent for macro- and micronutrient analysis. Air-dried soil samples
were analyzed for total organic carbon (OM), phosphorus (P), exchangeable Al, basic cations (K, Ca,
Mg), and potential acidity (H+Al3+); cation exchange capacity (CEC) was determined based on the
sum of K, Ca, and Mg; base saturation (V%) was calculated as a percentage of CEC; sum of bases (SB)
represents Ca + Mg + K. Soil pH was determined in CaCl2 (0.01M) solution. The meteorological data of
accumulated rainfall (mm), temperature (◦C), radiation (KJ/m2), and humidity (%) from all respective
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areas of study were obtained from the available online meteorological database of the National Institute
of Meteorology (Instituto Nacional de Meteorologia; INMET) between January 2013 and March 2015.

4.3. Sample Preparation

The collected leaf samples were dried at 45 ◦C until complete dryness and then ground in a knife
mill grinder. An aliquot of 100 mg of the dried and powdered material was extracted with 5 mL of
MeOH-H2O (85:15% v/v) using a ball mill (ball diameter 2 cm, frequency 30 Hz, time 5 min) (Retsch
MM200) (Retsch, Haan, Germany). The extracts were purified by SPE (Finiesterre C18, 100 mg/1 mL)
(Teknokroma Analitica, Barcelona, Spain). After cartridge conditioning (1 mL MeOH-H2O (85:15% v/v)),
1 mL of extract was loaded and washed to remove chlorophyll and other lipophilic pigments. Finally,
an aliquot of 50 µL was diluted in 250 µL of MeOH-H2O (85:15% v/v).

4.4. UHPLC-ToF-HRMS Analysis

The chromatographic analysis was performed on a Waters Acquity ultra-performance liquid
chromatography (UPLC) system coupled with a Micromass-LCT premier time-of-flight (ToF) mass
spectrometer (Waters). The separations were performed using an Acquity UPLC BEH C18 column,
130 Å, 1.7 µm, 2.1 mm × 150 mm maintained at 60 ◦C. The mobile phase consisted of 0.1% formic acid
in water (solvent A) and acetonitrile (solvent B) at a flow rate of 0.75 mL/min; the gradient elution was
as follows: 5% B to 50% B in A in 4 min; 50–95% B in A in 3 min; 95% B in 1 min; 5 % B over 2 min.
The total running time was 10 min. Injection volume was 2 µL. Data were collected by chromatographic
software MassLynx 4.1TM (Waters). The electrospray ionization (ESI) conditions were set as follows:
capillary voltage 2.8 kV, cone voltage 40 V, MCP detector voltage 2650 V, source temperature 120 ◦C.
N2 was used as desolvation gas. The desolvation temperature was set to 250 ◦C at a flow rate of 600 L/h.
The detection was collected between 100 and 1000 m/z, scanning every 0.25 s using centroid mode.
A pool of all extracts (n = 271) was used to make quality control (samples) for instrument conditioning
and stability evaluation. Experimental samples were run in a randomized order with QC injections
after every fifteen experimental samples. The metabolite fingerprinting was performed in negative-ion
mode to highlight phenolic compounds that are known to be present in Myrcia bella [5].

4.5. UHPLC-HRMS2 Analysis

The QC samples and reference compounds were analyzed on a Waters Acquity UPLC IClass system
interfaced to a Q-Exactive Focus mass spectrometer (Thermo Scientific, Bremen, Germany), using a
heated electrospray ionization (HESI-II) source. The separations were performed using an Acquity
UPLC BEH C18 column, 130 Å, 1.7µm, 2.1 mm× 250 mm at 60 ◦C. The mobile phase was 0.1% formic acid
in water (solvent A) and acetonitrile (solvent B) at a flow rate of 0.75 mL/min; the gradient elution was as
follows: 5% B to 100% B in A in 5 min. Injection volume was 2µL. The optimized HESI-II parameters were
set as follows: source voltage, 3.5 kV; sheath gas flow rate (N2), 48 units; auxiliary gas flow rate, 11 units;
spare gas flow rate, 2.0 units; capillary temperature, 300 ◦C, S-Lens RF Level, 55. The mass analyzer was
calibrated using a mixture of caffeine, methionine–arginine–phenylalanine–alanine–acetate (MRFA),
sodium dodecyl sulfate, sodium taurocholate, and Ultramark 1621 in an acetonitrile/methanol/water
solution containing 1% formic acid by direct injection. The data-dependent MS/MS events were
performed on the three most intense ions detected in full scan MS (Top3 experiment). The MS/MS
isolation window width was 2 Da, and the normalized collision energy (NCE) was set to 20/35/50 units.
In data-dependent MS/MS experiments, full scans were acquired at a resolution of 35,000 fwhm
(at m/z 200) and MS/MS scans at 17,500 fwhm, both with a maximum injection time of 50 ms. After being
acquired in an MS/MS scan, parent ions were placed in a dynamic exclusion list for 3.0 s.

4.6. UHPLC-HRMS2 Data Processing

The UHPLC-HRMS2 raw data were converted to mzXML using the MsConverter (ProteoWizard)
software and processed using MZmine 2.10 for peak detection, peak filtering, chromatogram
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construction, chromatogram deconvolution, isotopic peak grouping, chromatogram alignment, and gap
filling. The following parameters were used for data processing: noise level at 1 × 106 for MS1 and 0 for
MS2. The ADAP chromatogram builder was selected with the following parameters: minimum group
size in number of scans of 5, minimum height of 1 × 106, and m/z tolerance of 0.001 Da (or 10 ppm);
chromatogram deconvolution was set as follows: wavelets (ADAP) was used as the algorithm for
peak recognition, m/z and RT range for MS2 scan pairing were 0.3 Da and 0.1 min, S/N threshold was
50, minimum feature height was 5 × 105, coefficient/area threshold was 90, peak duration range was
0.02–1.5 min, and the RT wavelet range was 0.02–0.05. Chromatograms were then deisotoped by
isotopic peaks a grouper algorithm with a m/z tolerance of 0.001 Da and an RT tolerance of 0.05 min.
Peak alignment was carried out using a join aligner, with m/z tolerance set at 0.001 Da, absolute RT
tolerance at 0.05 min, and weight for m/z and RT at 30. The missing peaklist after alignment was filled
by gap filling of the same RT and m/z range gap-filler module with a m/z tolerance of 0.001 Da. After gap
filling, all peaklists were done with identification of adduct search, complex search, and molecular
formula prediction. This resulted in a peaklist of 1296 features with associated data-dependent MS2
spectra. This resulting peaklist was exported as input for MN generation.

4.7. Molecular Network Analysis and Computational Annotation

The molecular network (MN) was generated using the feature-based molecular networking
workflow (FBMN) of the Global Natural Products Social Molecular Networking (GNPS) (http://
gnps.ucsd.edu/). A unique MN was then created where edges were filtered to have a cosine score
above 0.7 and more than six matched peaks. Further edges between two nodes were kept in the
network if and only if each of the nodes appeared in each other’s respective top 10 most similar
nodes. The spectra in the network were then searched against GNPS spectral libraries. All matches
kept between network spectra and library spectra were required to have a score above 0.7 and at
least six matched peaks. The spectra in the molecular network were then searched automatically
against the ISDB-DNP (In Silico Data Base-Dictionary of Natural Products) spectral library using
the workflow described in Allard et al. [19]. The parameters used to process the spectral dataset
analysis were as follows: parent mass tolerance 0.05 Da, minimum cosine score 0.1, returning top
50 candidates. Scripts for the ISDB-DNP metabolite annotation process are available at the following
address: https://github.com/oolonek/ISDB.

4.8. Taxonomically Informed Scoring

A taxonomically informed scoring script was used to re-rank the annotations returned by
ISDB-DNP [30]. The top 50 candidates were re-ranked based on taxonomic data associated with the
queried spectra (Myrtaceae > Myrcia > Myrcia bella) and the biological source of the candidate structures.
Scripts for the taxonomically informed metabolite annotation are available at the following address:
https://github.com/oolonek/taxo_scorer. The structure of the compound returned by the taxonomically
informed scoring annotation at rank 1 was visualized in the MN using the ChemViz 1.3 plugin (freely
available at http://www.cgl.ucsf.edu/cytoscape/chemViz/) directly within Cytoscape 3.7.2.

4.9. DNA Extraction and Amplified Fragment Length Polymorphism (AFLP) Analysis

Amplified fragment length polymorphism analysis was performed in a representative subset of
40 samples from six populations. These samples were selected based on sample availability and on the
quality of the DNA material extracted, seen as a unique band close to the well (indentations) at one
end of a gel electrophoresis in which each extract was deposited. Electrophoresis was also used to
estimate DNA quantities, for dilutions purposes. Only samples from the Bonito (BT) location, from
Mato Grosso do Sul state, were unavailable to perform this analysis.

An aliquot of 1 g of the leaves were harvested and stored in hermetic bags with silica gel for the
DNA extraction. The samples were stored in a freezer at -80◦C. The DNA was extracted from silica gel
dried leaf samples (30–50 mg) using the CTAB method, as described by Ferreira and Grattapaglia [70].

http://gnps.ucsd.edu/
http://gnps.ucsd.edu/
https://github.com/oolonek/ISDB
https://github.com/oolonek/taxo_scorer
http://www.cgl.ucsf.edu/cytoscape/chemViz/
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The AFLP was carried out according to the AFLPTM Plant Mapping protocol of Applied
Biosystems, with modification [71]. Total DNA cleavage reaction was performed using 2 µL of buffer
T4 DNA ligase, 0.20 µL of MseI (50 U/mL), 0.50 µL of EcoRI (10 U/mL) for 2 h at 37 ◦C, 15 min at 70 ◦C,
30 min at 20 ◦C. For binding reaction 5.5 µL of cleavage reaction product were added to 2 µL of buffer
T4 DNA ligase 5× (Invitrogen), 1 µL of 0.5 M NaCl, 0.5 µL of BSA, 1 µL of each of the adapters for MseI
and EcoRI (Applied Biosystems), and 1 µL of the enzyme T4 DNA ligase (Invitrogen). The mixture was
incubated overnight at between 15–20 ◦C. This amplification was made using 2 µL of a diluted aliquot
(1:10) of binding reaction product, 7.5 µL of core soln. mix (Applied Biosystems), and 0.5 µL of primers.
The amplification cycles started with 2 min at 72 ◦C, followed by 20 cycles, of 20 s at 94 ◦C, 30 s at
56 ◦C, and 2 min at 72 ◦C, and ended at 60 ◦C for 30 min. For selective amplification, 1.5 µL of a diluted
aliquot (1:10) of pre-selective reaction product was added to 7.5 µL of core solution mix (Applied
Biosystems) and 0.5 µL of each MseI and EcoRI primers combined. The selective amplification cycles
started with 2 min at 94 ◦C, followed 10 cycles of 20 s at 94 ◦C, 30 s at 66 ◦C with reduction of 1 ◦C/s,
and 2 min at 72◦C, followed 20 cycles of 20 s at 94 ◦C, 30 s at 56 ◦C, and 2 min at 72 ◦C, and ended at
60 ◦C for 30 min.

The analysis of the generated fragments was done using the Applied Biosystems 3730 DNA
Analyser (Applied Biosystems, Foster city, USA), following the AFLP Plant Mapping Protocol [71].
For the analysis of the fragments, 1.5 µL of the amplified product, 11 µL of formamide, and 0.5 µL of
standard fragment sizes (ROX) were mixed and heated at 95 ◦C for 5 min. The fragments detected
were analyzed by size of base pairs (bp) using Genescan 500 ROX Standard.

4.10. Genetic Data

Several primer combinations were tested for M. bella samples, and those with higher number of
fragments were selected. The final AFLP analysis was performed using four primer combinations,
Eco-ACC/MseI-CAT (291 Allele); Eco-ACG/MseI-CAG (196 Allele), Eco-ACC/MseI-CAA (316 Allele),
and Eco-ACG/MseI-CTG (225 Allele). The raw data were analyzed using the ABI Prism Genescan
analysis software [72]. Fragments of 50–500 bp were scored as present (1) or absent (0) using ABI Prism
Genotyper 2.5 Software (Applied Biosystems, Foster city, USA) [73], and then submitted to multivariate
analysis. Percentage of polymorphic bands (P), total genotypic diversity (He) [32,33], were calculated
using GenAlEx 6.3.

4.11. Multivariate Data Analysis

The UPLC-ToF-HRMS data (retention time and MS signal intensities) were processed using
MZmine 2.10 (manufacturer, city, country) for peak detection, peak filtering, chromatogram construction,
chromatogram deconvolution, isotopic peak grouping, chromatogram alignment, and gap filling.
The following parameters were used for data processing: noise level at 106, mass tolerance 0.02 (Da),
intensity threshold 250 (counts), and mass window 0.05. A peak list of 271 × 704 matrix was obtained.

The obtained peaklist was pre-treated based on the repeatability of signal intensity from the QC
samples using the coefficient of variation (CV). Ions with CV < 30% were filtered. This procedure
generated a final peaklist with 302 (42.9%) ions. This final dataset of a 302 × 271 matrix was then
imported to SIMCA-P 14.1 (Umetrics®) (Sartorius, Umeå, Sweden).

Principal component analysis (PCA) was generated with the final dataset as X input with Pareto
variance scaling. A two-way orthogonal partial least squares (O2PLS) analysis in multi-block (X and Y)
modeling was performed [27]. For the O2PLS analysis, the X input was complemented with the
meteorological and soil data as Y input. The features with discriminant potential from the O2PLS
model were selected based on their variable of importance in the projection (VIP) values. A threshold
value (VIP > 1.0) was applied.

The AFLP data were treated using the ABI Prism Genotyper 2.5 Software (Applied Biosystems,
Foster city, USA), and a matrix containing 1028 alleles scored as present (1) or absent (0) was submitted
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to PCA and HCA analysis using unit variance scaling. Hierarchical clustering analysis was performed
based on Euclidean distance.

The soil dataset matrix (17 × 7) containing mineral and nutrient compositions of each of the seven
areas was submitted to PCA and PCA-biplot analysis with unit variance scaling.

The correlation analysis and correlation p-values were conducted using the ggplot2 package in
the R Statistical Software version 4.0 [74].

4.12. Data Availability

The full HRMS2 dataset is uploaded and accessible on the GNPS server as massive data
in ftp://massive.ucsd.edu/MSV000085139/. The metabolomics raw data (UHPLC-ToF-HRMS) are
deposited in MetaboLights (http://www.ebi.ac.uk/metabolights) under the identifier code MTBLS1728.

Supplementary Materials: The following are available online, Figure S1: Meteorological data of the seven areas
of harvest recorded during the 24 month period of this study, Table S1: Micro- and macronutrient levels in the soil
of the harvested areas, Table S2: Mineral composition of the soil of the harvested areas, Figure S2: Chromatograms
of Myrcia bella quality control samples (QC) used to evaluate the UHPLC-ToF-MS instrument performance
during the metabolomics experiment over 72 h of analysis, Figure S3: PCA score plot of UHPLC-ToF-HRMS
data of all samples. (a) Data non-log-transformed, (b) Data log-transformed, Figure S4: HCA dendrogram for
UHPLC-ToF-HRMS data obtained from Myrcia bella populations from different locations, Figure S5: Multivariate
data analysis of soil data of all areas studied. (a) PCA score scatter plot based on soil nutrients and mineral data.
(b) PCA-biplot exhibiting the correlation of the soil mineral composition as well as macro- and micronutrients
within the harvested areas, Figure S6: Separate PCA score plots of each of Myrcia bella population colored by dry
(green) and rainy (blue) seasons from all areas of study, Figure S7: Comparison of the obtained MS2 spectra from
Myrcia bella extract with authentic standard spectra, Figure S8: Statistically-informed molecular networking generated
by integrating metabolomics MVDA to the MN, Table S4: Identification of compounds in Myrcia bella leaf extracts
by UHPLC-HRMS2 analysis in negative mode, Figure S9: Correlation matrix of features with meteorological and
soil data, Figure S10: Variable plot line from the MVDA of the selected compounds and their relative intensities
for each locality, Figure S11: 1,5% agarose gel electrophoresis of DNA obtained from the leaves of specimens of
Myrcia bella collected in different regions of the Cerrado.
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