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Long noncoding RNA SNHG1 silencing accelerates hepatocyte-
like cell differentiation of bone marrow-derived mesenchymal
stem cells to alleviate cirrhosis via the microRNA-15a/SMURF1/
UVRAG axis
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Bone marrow-derived mesenchymal stem cells (BMSCs) can differentiate into hepatocyte-like cells (HLCs) to attenuate cirrhosis.
Long noncoding RNA (lncRNA) SNHG1 has been demonstrated to orchestrate BMSC differentiation, whereas its role in cirrhosis
remains elusive. Therefore, this study was performed to figure out whether lncRNA SNHG1 was involved in cirrhosis by affecting
HLC differentiation of BMSCs. Mouse BMSCs were isolated, and the BMSC differentiation into HLCs was induced by hepatocyte
growth factor (HGF). A cirrhotic mouse model was established using carbon tetrachloride and phenobarbital, followed by
intravenous injection of BMSCs with manipulated expression of lncRNA SNHG1, microRNA (miR)-15a, and SMURF1. Subsequent to
HGF induction, expression of hepatocyte-related genes, albumin secretion, and glycogen accumulation was increased in BMSCs,
suggesting the differentiation of BMSCs into HLCs. Mechanistically, lncRNA SNHG1 bound to miR-15a that targeted SMURF1, and
SMURF1 diminished ATG5 and Wnt5a expression by enhancing the ubiquitination of UVRAG. LncRNA SNHG1 or SMURF1 silencing
or miR-15a overexpression promoted differentiation of BMSCs into HLCs and repressed cirrhosis of mice by upregulating ATG5 and
Wnt5a via UVRAG. Conclusively, lncRNA SNHG1 silencing might facilitate HLC differentiation from mouse BMSCs and alleviate
cirrhosis via the miR-15a/SMURF1/UVRAG/ATG5/Wnt5a axis.
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INTRODUCTION
Cirrhosis is the ultimate pathological outcome of numerous
chronic liver diseases, of which fibrosis is the precursor [1].
Cirrhosis contributes to necroinflammation and fibrogenesis and
possesses histological features of diffuse nodular regeneration
surrounded by dense fibrotic septa and subsequent parenchymal
regression and collapse of the hepatic architecture, which
together result in marked distortion of the hepatic vascular
architecture [2]. As reported, cirrhosis is attributed to alcoholism,
nonalcoholic steatohepatitis, chronic hepatitis B virus, and
hepatitis C virus infection [3]. Currently, there exist the major
complications for cirrhosis, like renal and cardiac disturbances,
ascites, gastroesophageal varices, and hepatic encephalopathy,
which are mainly caused by portal hypertension and hyperdy-
namic circulation and their hemodynamic and metabolic influ-
ences [4]. Recently, bone marrow-derived mesenchymal stem cell
(BMSC)-based therapy has emerged as an attractive treatment
regimen for cirrhosis [5, 6]. Moreover, it has been widely
documented that hepatocyte-like cells can be directly differen-
tiated from BMSCs in vitro [7]. More importantly, hepatocyte-like
cell (HLC) transplantation can be utilized as an effective therapy

for cirrhosis [8]. Therefore, it is imperative to figure out the
mechanism underlying the alleviating effects of differentiation of
BMSCs into HLCs on cirrhosis.
As widely recognized, the involvement of long noncoding RNAs

(lncRNAs) has been identified in liver fibrosis [9]. As a host to eight
snoRNAs with 11 exons, lncRNA small nucleolar RNA host gene 1
(SNHG1) is located at 11q12.3 region of the chromosome, which is
expressed in various types of tumors [10]. Moreover, SNHG1 has
been documented to be implicated in liver disease, like liver
cancer [11]. Besides, existing evidence has suggested the
repressive role of SNHG1 upregulation in BMSC differentiation
[12]. Intriguingly, it has been manifested that SNHG1 bound to
microRNA (miR)-15a to protect against cardiomyocyte hypertro-
phy [13]. miR-15a loss can promote lung fibroblast activation to
facilitate lung fibrosis in mice [13]. Also, miR-15a inhibition is able
to cause promotion of hepatitis B virus-related hepatocellular
carcinoma (HCC) [14]. Furthermore, it was predicted by bioinfor-
matics analysis that there existed binding sites of miR-15a to 3'-
untranslated region (UTR) of Smad ubiquitin regulatory factor 1
(SMURF1). SMURF1 downregulation triggered attenuation of renal
interstitial fibrosis in kidney transplantation [15]. In addition,
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SMURF1 was capable of accelerating progression of liver cancer
[16]. Notably, a prior work indicated that SMURF1 ubiquitinated
UV radiation resistance-associated gene (UVRAG) to induce
autophagosome maturation in hepatocellular carcinoma [17].
Intriguingly, UVRAG and autophagy-related gene (ATG) 5 are
widely recognized key autophagy genes [18]. ATG5 was previously
documented to assume a critical role in a positive feedback loop
between Wnt signaling and autophagy in melanoma [19]. Wnt5a
could potentiate HLC differentiation from human MSCs to
improve liver function [20].
Given the aforementioned reports, we hypothesized that

lncRNA SNHG1 might affect HLC differentiation from BMSCs
through UVRAG by modulating miR-15a-targeted SMURF1. There-
fore, our work was designed to figure out impacts of lncRNA
SNHG1 on cirrhosis by orchestrating HLC differentiation of BMSCs
via miR-15a/SMURF1/UVRAG/ATG5/Wnt5a axis.

RESULTS
BMSCs were induced by hepatocyte growth factor (HGF) to
differentiate into HLCs
Initially, we isolated BMSCs from mice and observed the cellular
morphology microscopically. Microscopic observation displayed
that the cells were distributed in a monolayer and arranged
radially (Fig. 1A). Flow cytometry revealed high expression of
CD105, while almost no expression of CD34 and CD45 was

observed in the cell population (Fig. 1B). The aforesaid results
confirmed that the extracted cells were BMSCs.
Subsequently, the expression of hepatocyte-related markers

(albumin [ALB], cytokeratin 18 [CK18], transthyretin [TTR], and
alpha-fetoprotein [AFP]) in the BMSCs exposed to HGF was
determined by reverse transcription quantitative polymerase
chain reaction (RT-qPCR), with the hepatocyte cell line NCTC
1469 as a positive control. We found that BMSCs without HGF
induction barely expressed ALB, CK18, TTR, and AFP, whereas
these genes were expressed in both NCTC 1469 hepatocytes and
HGF-challenged BMSCs (Fig. 1C–F). As reflected by enzyme-
linked immunosorbent assay (ELISA), BMSCs supplemented with
HGF had enhanced ALB secretion, whereas BMSCs without HGF
barely secreted ALB, suggesting that they did not differentiate
toward hepatocytes (Fig. 1G). Periodic acid-schiff (PAS) staining
indicated that a larger amount of glycogen could be detected in
hepatocytes and HGF-induced BMSCs, while BMSCs without HGF
addition were negative for PAS staining (Fig. 1H). Additionally,
the expression of the BMSC marker CD105 and hepatocyte
markers AFP and ALB were analyzed using immunofluorescence
staining. NCTC 1469 hepatocytes were observed to be CD105-
negative yet AFP and ALB-positive; the presence of CD105 and
the absence of AFP and ALB were identified in untreated
BMSCs, whereas HGF-exposed BMSCs presented with markedly
reduced CD105 expression yet increased AFP and ALB expres-
sion (Fig. 1I).

Fig. 1 BMSCs are identified and induced to differentiate to HLCs by HGF. A Microscopic observation of cell morphology of BMSCs. B Flow
cytometry analysis for CD105, CD34, and CD45 expression to identify BMSCs. C RT-qPCR to detect the expression of ALB in NCTC 1469
hepatocytes, HGF-treated BMSC, and untreated BMSCs. D RT-qPCR to detect the expression of CK18 in NCTC 1469 hepatocytes, HGF-treated
BMSC, and untreated BMSCs. E RT-qPCR to detect the expression of TTR in NCTC 1469 hepatocytes, HGF-treated BMSC, and untreated BMSCs.
F RT-qPCR to detect the expression of AFP in NCTC 1469 hepatocytes, HGF-treated BMSC, and untreated BMSCs. G ELISA to determine the
content of ALB in the culture supernatant of NCTC 1469 hepatocytes, HGF-treated BMSC, and untreated BMSCs. H Glycogen content in NCTC
1469 hepatocytes, HGF-treated BMSC, and untreated BMSCs measured by PAS staining. I The expression of the BMSC marker CD105 and
hepatocyte markers AFP and ALB in NCTC 1469 hepatocytes, HGF-treated BMSC, and untreated BMSCs, as detected with immunofluorescence
staining (CD105/AFP/ALB in green, DAPI-stained nuclei in blue). *p < 0.05 vs. NCTC 1469 cells; #p < 0.05 vs. untreated BMSCs. The cell
experiments were repeated three times.
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Collectively, BMSCs were successfully extracted and could
differentiate towards HLCs by induction of HGF.

Silencing lncRNA SNHG1 accelerated HLC differentiation of
mouse BMSCs
In order to investigate the effect of lncRNA SNHG1 on BMSCs,
lncRNA SNHG1 was specifically silenced in BMSCs and the silencing
efficiency was verified by RT-qPCR. The results documented that all
three silencing sequences, especially sh-SNHG1#1, significantly
reduced lncRNA SNHG1 expression (Fig. 2A). Therefore, the
subsequent experimentation was implemented with sh-SNHG1#1.
Moreover, lncRNA SNHG1 silencing resulted in significant increases
in expression hepatocyte-related markers (Fig. 2B–E), ALB secretion
(Fig. 2F), and glycogen content in the cells (Fig. 2G) at both 7 and
14 days. Conclusively, HLC differentiation of mouse BMSCs could
be facilitated by silencing lncRNA SNHG1.

Suppression of lncRNA SNHG1 in BMSCs alleviated cirrhosis in
mice
The cirrhosis model was induced in mice to assess the role of
lncRNA SNHG1 in treatment of BMSCs for cirrhosis. By
simultaneously phenobarbital feeding and intraperitoneal injec-
tion of carbon tetrachloride for 4 weeks, we successfully
developed a mouse cirrhosis model (Fig. 3A). The gross view
displayed that compared with the liver of normal mice, the liver
of cirrhotic mice was grayish-white, larger in size, and rough in
surface (Fig. 3B), suggesting fibrosis formation. Furthermore,
hematoxylin and eosin (HE) staining suggested necrosis of
hepatocytes as well as regeneration of pseudolobules and
Masson’s staining depicted obviously increased content of
collagen fibers in the liver of cirrhotic mice relative to that of
control mice, all of which indicated the successful establishment
of cirrhosis. In addition, we observed little therapeutic effect on
cirrhosis of tail vein injection of untreated BMSCs, whereas
obvious alleviation of cirrhosis was witnessed after injection of
HGF-induced BMSCs, while this effect was enhanced by silencing
of lncRNA SNHG1 in the cells (Fig. 3B). The above findings were
quantitatively confirmed by collagen fiber scoring (Supplemen-
tary Table 1). Taken together, BMSCs induced by HGF could

effectively attenuate cirrhosis, and this effect could be further
strengthened by silencing lncRNA SNHG1.

LncRNA SNHG1 repressed HLC differentiation of BMSCs by
regulating miR-15a/SMURF1 axis
Then, we studied the downstream mechanism of lncRNA SNHG1
in cirrhosis. LncRNA SNHG1 has been suggested to modulate miR-
15a that may confer a promoting role in BMSC differentiation
[13, 21]. SMURF1 has also been implicated BMSC differentiation
[22], and was predicted to be a miR-15a target gene in our
bioinformatics analysis. Thus, we speculated that lncRNA SNHG1
may mediate the potential miR-15a/SMURF1 cascade in HLC
differentiation of BMSCs.
HGF-treated BMSCs were transfected with miR-15a mimic or

oe-SMURF1, followed by validation of the overexpression
efficiency by RT-qPCR (Fig. 4A, B). As revealed in Fig. 4C–G,
miR-15a mimic elevated hepatocyte-related gene expression, the
secretion of ALB, and the accumulation of glycogen in BMSCs,
whereas overexpression of SMURF1 led to the opposite results.
Thus, miR-15a triggered yet SMURF1 attenuated HLC differentia-
tion of BMSCs.
Further, the lncRNA SNHG1 binding sites on miR-15a and

the miR-15a binding sites on SMURF1 3'UTR region were
predicted (Fig. 5A, B) and the binding affinity among them was
validated through dual-luciferase reporter assay (Fig. 5C, D). As
indicated by RT-qPCR and Western blot analysis, lncRNA
SNHG1 silencing led to the increased miR-15a expression and
decreased SMURF1 expression (Fig. 5E, F), and that miR-15a
mimic resulted in decline of SMURF1 expression (Fig. 5G, H). In
summary, lncRNA SNHG1 may act as a miR-15a sponge to
diminish miR-15a expression, and miR-15a may target and
negatively regulate SMURF1.
We next examined whether the lncRNA SNHG1/miR-15a/

SMURF1 axis was involved in regulating HLC differentiation of
BMSCs. First, silencing lncRNA SNHG1 in BMSCs resulted in
notably augmented HLC differentiation degree of BMSCs,
as reflected by increases in HLC marker expression, ALB
secretion, and glycogen content, all of which were negated
by additional treatment with miR-15a inhibitor (Fig. 6A–C).
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Fig. 2 Silencing lncRNA SNHG1 promotes BMSCs to differentiate to HLCs. A Validation of lncRNA SNHG1 silencing efficiency by RT-qPCR.
B RT-qPCR detection of the changes of ALB levels at day 0, 7, 14 after silencing of lncRNA SNHG1. C RT-qPCR detection of the changes of CK18
levels at day 0, 7, 14 after silencing of lncRNA SNHG1. D RT-qPCR detection of the changes of TTR levels after 0, 7, 14 days after silencing of
lncRNA SNHG1. E RT-qPCR detection of the changes of AFP levels at day 0, 7, 14 after silencing of lncRNA SNHG1. F ELISA to detect the ALB
content in the culture supernatant of BMSCs at day 0, 7, and 14 after silencing of lncRNA SNHG1. G Glycogen content in BMSCs at day 0, 7, and
14 after silencing of lncRNA SNHG1 determined by PAS staining. *p < 0.05 vs. BMSCs transfected with sh-NC. The cell experiments were
repeated three times.
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Meanwhile, miR-15a mimic enhanced HLC differentiation of
BMSCs, whereas simultaneous overexpression of SMURF1
abrogated this effect (Fig. 6D–F).

In conclusion, lncRNA SNHG1 restricted HLC differentiation of
mouse BMSCs through sponging miR-15a and thus upregulating
SMURF1 expression.
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Fig. 4 miR-15a and SMURF1 mediate HLC differentiation of BMSCs. A RT-qPCR validation of miR-15a mimic transfection efficiency in HGF-
treated BMSCs. B RT-qPCR validation of oe-SMURF1 overexpression efficiency in HGF-treated BMSCs. C Changes in the levels of hepatocyte-
related genes after overexpression of miR-15a for 14 days determined by RT-qPCR. D Changes in the levels of hepatocyte-related genes after
overexpression of SMURF1 for 14 days measured by RT-qPCR, E RT-qPCR to assess the ALB content in the culture supernatant of BMSCs after
overexpressing miR-15a for 14 days. F RT-qPCR to evaluate the secretion of ALB of BMSCs after overexpressing SMURF1 for 14 days;
G Glycogen content in BMSCs after overexpressing miR-15a or SMURF1 for 14 days detected by PAS staining. *p < 0.05 vs. BMSCs transfected
with oe-NC or NC mimic. The cell experiments were repeated three times.
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LncRNA SNHG1 silencing mediates the miR-15a/SMURF1 axis
to alleviate cirrhosis in mice
Next, our focus was shifted to the role of the lncRNA SNHG1/miR-
15a/SMURF1 axis in cirrhosis in mice. HGF-induced BMSCs with
manipulated SNHG1/miR-15a/SMURF1 expression, after 7-d cul-
ture in vitro, were injected into mice to observe their effects on
cirrhosis in mice.
The expression of lncRNA SNHG1, miR-15a, and SMURF1 was

first determined with qRT-PCR in dissected mouse livers. Relative
to Control mice, cirrhotic mice presented with upregulated
SNHG1 and SMURF1 yet downregulated miR-15a; injection of sh-
SNHG1-treated, HGF-induced BMSCs led to reduced SNHG1 and
SMURF1 expression and elevated miR-15a expression in livers of
cirrhotic mice, and, in contrast, injection of cells simultaneously
silenced SNHG1 and miR-15a resulted in reduced miR-15a
expression and enhanced SMURF1 expression, and had no
additional influence on the SNHG1 expression (Supplementary
Fig. 1A). In parallel, unaffected SNHG1 expression, upregulated
miR-15a expression, and downregulated SMURF1 expression
were observed in livers of cirrhotic mice injected with HGF-
stimulated BMSCs overexpressing miR-15a; compared to that,
simultaneous overexpression of SMURF1 in the cells elevated
only SMURF1 expression and had no effects on the others
(Supplementary Fig. 1B).
Silencing lncRNA SNHG1 alone in BMSCs remarkably

ameliorated cirrhosis in mice, whereas its combination with
miR-15a inhibition reversed such therapeutic effect (Fig. 7A,
Supplementary Table 2). Consistently, miR-15a mimic treat-
ment in BMSCs noticeably restrained cirrhosis in mice,
whilst simultaneous overexpression of SMURF1 nullified
the effect of miR-15a restoration alone (Fig. 7B, Supplementary
Table 3).

These results suggested that lncRNA SNHG1 protected
against cirrhosis in mice through the lncRNA SNHG1/miR-15a/
SMURF1 axis.

SMURF1 promotes ubiquitination of UVRAG and inactivates
ATG5/Wnt5a to inhibit HLC differentiation of mouse BMSCs
and facilitate cirrhosis in mice
Finally, the downstream mechanism of SMURF1 in cirrhosis was
explored. In response to SMURF1 restoration in BMSCs, UVRAG
mRNA expression showed no obvious changes whereas a
reduction was noted in UVRAG protein expression; accompanied
by reduced mRNA and protein expression of ATG5 and Wnt5a
(Fig. 8A, B). Since SMURF1 is a ubiquitin ligase, the binding between
SMURF1 and UVRAG was determined with Co-immunoprecipitation
(Co-IP), which demonstrated that there was binding between
SMURF1 and UVRAG (Fig. 8C). Furthermore, the ubiquitin-binding
of UVRAG was measured after co-transfection of SMURF1 and
UVRAG, and the results manifested that overexpression of SMURF1
promoted the ubiquitination of UVRAG, thus mediated its
degradation (Fig. 8D). In order to clarify the axis mediatory
relationship among UVRAG/ATG5/Wnt5a, the autophagy activator
rapamycin or recombinant Wnt5a was applied when UVRAG was
silenced. The results documented that ATG5 and Wnt5a expression
was markedly decreased after UVRAG silencing, which was
annulled by treatment with rapamycin or recombinant Wnt5a,
and there was a positive feedback mechanism between ATG5 and
Wnt5a (Fig. 8E). Moreover, UVRAG silencing reduced hepatocyte-
related gene expression, ALB secretion, and glycogen content in
the BMSCs, whereas rapamycin or recombinant Wnt5a counter-
acted this effect (Fig. 8F–H).
To further identify whether SMURF1 assumed a role in affecting

HLC differentiation from BMSCs through the UVRAG/ATG5/Wnt5a

Fig. 5 LncRNA SNHG1 binds to miR-15a to upregulate SMURF1. A Prediction of lncRNA SNHG1 binding sites with miR-15a and wild-type/
mutant plasmid sequences. B Prediction of miR-15a binding sites in SMURF1 3'UTR and wild-type/mutant plasmid sequences. C Dual-
luciferase assay to measure the binding of lncRNA SNHG1 to miR-15a. D Dual-luciferase assay to detect the binding of SMURF1 3'UTR to miR-
15a. E The regulatory effect of lncRNA SNHG1 on SMURF1 and miR-15a determined by RT-qPCR. F The regulatory effect of lncRNA SNHG1 on
SMURF1 and miR-15a detected by Western blot analysis. G RT-qPCR to assess the regulation of SMURF1 by miR-15a. H The regulation of
SMURF1 by miR-15a detected by Western blot analysis. *p < 0.05 vs. BMSCs transfected with sh-NC or NC mimic. The cell experiments were
repeated three times.
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axis, in vitro and in vivo experiments were conducted. Oe-UVRAG,
rapamycin, or recombinant Wnt5a was utilized in BMSCs while
overexpressing SMURF1. Overexpression of SMURF1 curtailed
hepatocyte-related gene expression, ALB secretion, and glycogen
content in BMSCs, which was negated by oe-UVRAG, rapamycin,
or recombinant Wnt5a (Fig. 9A–C). Further, we testified the
findings in the cirrhosis mouse model and obtained similar results
as in vitro experiments: injection of SMURF1 overexpression HGF-
induced BMSCs aggravated the degree of cirrhosis in mice, which
was abolished by oe-UVRAG, rapamycin, or recombinant Wnt5a
(Supplementary Table 4).
To sum up, SMURF1 repressed HLC differentiation of BMSCs and

cirrhosis of mice via UVRAG/ATG5/Wnt5a axis.

DISCUSSION
Cirrhosis is a diffuse hepatic process with the features of fibrosis
and structurally abnormal nodules, which represents the ultimate
histological change of numerous chronic liver diseases [23]. As
reported, lncRNAs has been implicated in liver fibrosis, which can
be utilized as biomarkers of liver fibrosis [24]. However, there
exists limited evidence in regard to the role of lncRNAs in cirrhosis.
Therefore, our work was designed to probe whether lncRNA
SNHG1 influenced cirrhosis and the potential mechanism, and
thus illustrated that silencing of lncRNA SNHG1 might promote
HLC differentiation of BMSCs to protect against cirrhosis by
activating UVRAG/ATG5/Wnt5a axis via downregulation of miR-
15a-targeted SMURF1.
Our work identified that lncRNA SNHG1 downregulation

accelerated HLC differentiation of BMSCs by upregulating ALB,
CK18, TTR, and AFP and increasing glycogen content. It has been
documented that ALB is one of the hepatocyte markers [25], and

that HLCs possess some functional hepatic activity because these
cells secrete urea, alpha-1-antitrypsin, and ALB [26]. Besides, TTR,
AFP, and CK18 are widely recognized as hepatocyte-specific genes
[27, 28]. Moreover, a prior work indicated that ALB and CK18
expression and glycogen content were elevated after human
BMSCs were induced to differentiate HLCs by HGF [29]. Partially
consistent with our results, the existing studies illustrated that
lncRNA SNHG1 overexpression was capable of reducing BMSC
differentiation [12, 30]. Therefore, we could conclude that lncRNA
SNHG1 might repress HLC differentiation of BMSCs.
Moreover, in our work, injection of HGF-induced BMSCs,

especially HGF-induced BMSCs silencing lncRNA SNHG1, dimin-
ished liver fibrosis to repress cirrhosis in vivo. Liver fibrosis has
been recognized as a major lesion of the liver that results in
cirrhosis at the end stage [31]. Currently, decreasing fibrosis is one
of the standards for the treatment of cirrhosis [32]. Moreover,
BMSCs may differentiate into organ parenchymal cells to treat
cirrhosis [33]. Specifically, it was revealed in a prior work that the
differentiation of BMSCs into HLCs was able to alleviate cirrhosis
[34]. More importantly, BMSCs have emerged as a therapy for liver
fibrosis [35]. It was noted in the study of Ma et al. that fibrotic area
was obviously reduced by BMSCs treatment in model animals with
CCl4-induced liver fibrosis [32]. Besides, a prior work elucidated
that ectopically expressed lncRNA SNHG1 could accelerate the
progression of liver cancer, for which cirrhosis is a significant risk
factor [36]. Therefore, lncRNA SNHG1 silencing might be involved
in the protective role of BMSCs against cirrhosis.
As reported, lncRNA SNHG1 bound to miR-15a to orchestrate

cardiomyocytes hypertrophy [13]. Consistently, our work found
that lncRNA SNHG1 repressed HLC differentiation of BMSCs
in vitro and augmented liver fibrosis in mice with cirrhosis by
binding to miR-15a. miR-15a has been noted to show high
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Fig. 6 LncRNA SNHG1 silencing orchestrates the miR-15a/SMURF1 axis to induce HLC differentiation of mouse BMSCs. A RT-qPCR to
detect hepatocyte-related gene expression in differentiated BMSCs after silencing of lncRNA SNHG1 or/and inhibition of miR-15a for 14 days.
B ELISA to detect ALB content in culture supernatant of BMSCs after silencing of lncRNA SNHG1 or/and inhibition of miR-15a for 14 days.
C The glycogen accumulation in BMSCs after silencing of lncRNA SNHG1 or/and inhibition of miR-15a for 14 days determined by PAS staining.
D RT-qPCR to assess hepatocyte-related gene expression in differentiated BMSCs after overexpressing miR-15a or/and overexpressing
SMURF1 for 14 days. E ELISA to assess ALB content in culture supernatant of BMSCs after overexpressing miR-15a or/and overexpressing
SMURF1 for 14 days. F Glycogen accumulation in BMSCs after overexpression of miR-15a or/and overexpression of SMURF1 for 14 days
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expression during hepatogenic differentiation of MSCs induced
by HGF [21], suggesting that miR-15a overexpression might
accelerate HLC differentiation from BMSCs. In addition, miR-15a
was observed to be associated with the mediation of liver fibrosis
in a gerbil model of fatty liver fibrosis treated with exenatide [21].
Moreover, our data revealed that miR-15a targeted SMURF1,
which enhanced ubiquitination of UVRAG, to promote BMSCs to
differentiate to HLC in vitro and repress liver fibrosis in mice with
cirrhosis. Partially concordant with our results, SMURF1 repressed
BMSC proliferation and differentiation [37]. A previous study
illustrated that SMURF1 upregulation caused an increase of high
glucose (HG)-induced renal fibrosis in glomerular mesangial cells
and diabetic mice kidneys [38]. Furthermore, SMURF1 resulted in
ubiquitination of UVRAG in HCC cells [17]. Another critical finding
in our study was that overexpressed UVRAG promoted ATG5/
Wnt5a activation to decrease HLC differentiation of BMSCs, thus
alleviating cirrhosis. It is well-known that UVRAG and ATG5 are
both autophagy-related genes [39]. ATG5 was able to manipulate
a positive feedback loop between Wnt5a and autophagy in
melanoma cells [19]. In addition, ATG5 expression was elevated
after liver fibrosis was alleviated [40]. Moreover, a prior study
elaborated that Wnt5a could promote HLC differentiation of
MSCs [41].
In summary, our findings supported the repressive effect

of lncRNA SNHG1 silencing in cirrhosis. Briefly, lncRNA
SNHG1 silencing was observed to downregulate SMURF1 by
upregulating miR-15a, diminishing ubiquitination of UVRAG to
activate ATG5/Wnt5a axis, which accelerated HLC differentia-
tion from BMSCs and repressed liver fibrosis to inhibit cirrhosis
(Fig. 10). This finding adds to our understanding of the complex
mechanism of lncRNA SNHG1/miR-15a/SMURF1/UVRAG/ATG5/
Wnt5a axis in cirrhosis progression and provides a potential

new therapeutic target for cirrhosis prevention. However,
studies should be performed to warrant further exploration in
the clinical setting.

METHODS
Protocols
In this study, mouse cirrhosis models were treated with BMSCs derived
from lncRNA SNHG1-silenced mice. By measuring the HLC differentiation
of mouse MSCs in model mice, the expression of hepatocyte-related
genes in liver tissues (ALB, CK18, TTR, and AFP), the secretion of serum
albumin, glycogen synthesis, and the number of hepatic pseudolobules
and collagen fibers, we evaluated the therapeutic effect of mouse BMSCs
on cirrhosis.

Isolation and incubation of BMSCs
Femurs were collected from BALB/c mice and rinsed with α-MEM medium
supplemented with 10% fetal bovine serum (FBS, ICN Biochemicals, Costa
Mesa, CA, USA), 100 U/mL penicillin G, and 100 μg/mL streptomycin (Nacalai
Tesque, Kyoto, Japan) for several times, after which bone marrow was
harvested and centrifuged at 1500 rpm for 5min. Pelleted cells were plated,
and 4 h after cell attachment to the surface, the supernatant (containing
non-adherent cells) was discarded. Cells were supplemented with fresh α-
MEM medium for 3 days incubation, and then trypsinized to obtained purer
BMSCs. Then, BMSCs were passaged and seeded at 10,000–12,000 cells/cm2,
and BMSCs at 4th passage were adopted for following use.
Mouse normal hepatocytes NCTC 1469 (Wuhan Procell Life Science &

Technology, Wuhan, Hubei, China) were cultured using Dulbecco’s
Modified Eagle Medium with 10% FBS. Both BMSCs and NCTC 1469 cells
were incubated in a 37 °C and 5% CO2 incubator.
In addition, the specific drugs added in some experiments were:

hepatocyte growth factor (HGF; 20 μg/mL, Sigma-Aldrich, St Louis, MO,
USA), rapamycin (1 μM, MCE, USA), and recombinant Wnt5a (0.2 μg/mL,
Abcam, Cambridge, UK).
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Identification of BMSCs immunophenotype by flow cytometry
Flow cytometry was performed to detect the expression of BMSC surface
antigen markers o CD105 (an MSC marker), CD34 (to exclude primary
hematopoietic and endothelial cells), and CD45 (to exclude leukocytes).
BMSCs were trypsinized and incubated with the following antibodies for
30min: anti-CD105 (MCA1557F; Bio-Rad, Hercules, CA, USA), anti-CD34
(MBS438077; MyBioSource, San Diego, CA, USA), and anti-CD45 (ab10558;
Abcam). A FAC Scan flow cytometer (Becton Dickinson, Heidelberg,
Germany) was employed, and flow cytometric data were analyzed with the
FlowJo software (Tree Star Inc., Ashland, OR, USA).

Immunofluorescence staining
BMSCs were seeded in 24-well plates, and the BMSC marker CD105 and
hepatocyte markers AFP and ALB were analyzed with immunofluores-
cence staining. Briefly, cells were fixed with 4% PFA for 30 min, washed,
and blocked with 1% BSA for 30 min, followed by incubation with
primary antibodies against CD105 (ab221675, 1:2000, Abcam, UK), ALB
(ab222923, 1:2000, Abcam) and AFP (ab213328, 1:2000, Abcam)
overnight. Afterward, the cells were incubated with fluorescence-
conjugated secondary antibodies for 2 h and subsequently with DAPI
(OriGene Technologies, Rockville, MD, USA) for 20 min. Stained
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Fig. 8 SMURF1 promotes ubiquitination of UVRAG and regulates ATG5/Wnt5a to suppress HLC differentiation of mouse BMSCs. A RT-
qPCR to determine the expression of UVRAG, ATG5, and Wnt5a after overexpressing SMURF1. B The expression of UVRAG, ATG5, and Wnt5a
after overexpression of SMURF1 detected by Western blot analysis. C The binding between SMURF1 and UVRAG assessed by Co-IP analysis.
D The effect of SMURF1 on the ubiquitination of UVRAG measured by Co-IP analysis. E The effect of concomitant treatment of rapamycin or
recombinant Wnt5a and sh-UVRAG on the expression of ATG5, Wnt5a assessed by Western blot analysis. F RT-qPCR to determine the
expression of hepatocyte-related genes in BMSCs after 14 days of simultaneous treatment of rapamycin or recombinant Wnt5a and sh-UVRAG.
G ELISA assay to detect the ALB content in culture supernatant of BMSCs after 14 days of concomitant treatment of rapamycin or recombinant
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The cell experiments were repeated three times.
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cells were then observed with a fluorescence microscope (Olympus,
Hamburg, Germany).

Cell transfection
Logarithmically growing BMSCs were trypsinized and seeded in 6-well
plates at an appropriate cell density for reaching 70% confluence on the
following day of transfection. Cell transfection was implemented as per
the manuals of Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA)
with the medium being replaced with a fresh medium 6–8 h after
transfection. The subsequent experiments were performed after con-
tinuing to culture cells for 24–48 h.
BMSCs were transfected with short hairpin RNA (sh)-negative control

(NC) or sh-SNHG1 (#1, #2, and #3) to investigate the effect of lncRNA
SNHG1 on HLC differentiation of BMSCs and expression of downstream
related factors. BMSCs were transfected with overexpression (oe)-NC, oe-
SMURF1, NC mimic, or miR-15a mimic to study the impact of miR-15a and
SMURF1 on HLC differentiation of BMSCs. To observe the influence of
lncRNA SNHG1/miR-15a/SMURF1 axis on HLC differentiation of BMSCs,
BMSCs were transfected with sh-NC, sh-SNHG1, NC mimic, miR-15a mimic,
inhibitor NC, miR-15a inhibitor, oe-NC, or oe-SMURF1. To assess the effect
of SMURF1 on UVRAG/ATG5/Wnt5a axis, BMSCs were transfected with oe-
NC, oe-SMURF1, oe-UVRAG, sh-NC, sh-UVRAG, or oe-Ubiquitination (Ub).
Overexpression plasmids were constructed using pCDNA3.1 vector, and

the silencing plasmids were constructed using pLKO.1 vector (both from
GenePharma, Shanghai, China).
Cells transfected with the silencing plasmids were selected with 1 μg/mL

puromycin (MCE), and cells transfected with overexpression plasmids were
screened using 1 μg/mL neomycin (MCE).

RT-qPCR
Subsequent to the isolation of total RNA of cells and tissues using TRIzol
(Invitrogen), a miRcute Plus miRNA First-Strand cDNA Synthesis Kit
(TIANGEN, Beijing, China) was applied to reversely transcribed RNA of
miR-15a, and a Prime ScriptTM RT Kit (Takara, Tokyo, Japan) to reversely
transcribed RNA of other genes. RT-qPCR was implemented using a
TransStart Tip Green qPCR SuperMix (TransGen Biotech, Beijing, China)
with U6 (for miR-15a) and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH, for other genes) as normalizers. The relative gene expression
was evaluated using the 2−ΔΔCT method. The primers are listed in
Supplementary Table 5.

ELISA
The cell culture supernatant was harvested and centrifuged at 3000 rpm for
10min to remove particles and polymers. The enzyme-linked reaction was
conducted using an ALB ELISA Assay Kit (DUMA, Shanghai, China) and the
content of ALB in the cell supernatant was quantified by a microplate reader.
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PAS staining
Cells were stained using a Glycogen Staining Kit (G1360, Solarbio, Beijing,
China). Glycogen accumulation was monitored microscopically.

Establishment of cirrhosis mouse model
BALB/c mice (Vital River Laboratories, Beijing, China) aged 6–8 weeks were
housed in a specific pathogen-free area at 18–22 °C with 40–70% humidity
and fed with regular diet with free access to food. After a week of
acclimatization, mice in good health were injected intraperitoneally with
carbon tetrachloride (CCl4) at a dose of 1 mL/kg body weight twice a week
for 4 weeks. Phenobarbital was added into drinking water at a concentra-
tion of 0.25 g/L to enhance liver injury and establish a mouse model of
cirrhosis. During the modeling period, the status, survival, and weight of
mice were recorded every day. Four weeks after the administration, the
liver of mice was attained to observe the nodular condition of the liver
surface or to undergo HE staining and Masson’s collagen fiber staining to
evaluate the success of the modeling.

Intravenous injection of BMSCs for treatment of cirrhosis in
mice
Logarithmically growing BMSCs were trypsinized and the cell density was
adjusted into 1 × 104 cells/μL. The 100 μL cell suspension was supplemen-
ted with 4 μg plasmids to transfect cells. After the efficiency was verified,
amplification and screening were carried out in vitro. After more than
30 days of culture, cirrhotic mice were treated by tail vein injection of
BMSCs (200 μL and 1 × 106 cells/time) once a week for 4 weeks (synchro-
nous with 4 weeks of modeling). Four weeks after the end of treatment,
the liver of mice was obtained to assess the therapeutic effect (gross view,
HE staining, and Masson’s collagen fiber staining). During the treatment,
the status, survival, and weight of the mice were recorded every day.

HE staining
After the mice were euthanized, the liver tissue was harvested to observe
the nodules on the surface of the liver by naked eyes and photographed.
After 10% formaldehyde fixation, the liver was paraffin-embedded, sliced,
and stained successively with hematoxylin and eosin according to the
protocols of a HE staining kit (G1120, Solarbio). After neutral resin
mounting, the formation of pseudolobules in liver slices was observed
under a microscope.

Masson’s collagen fiber staining
Following euthanasia of the mice, the nodules on the surface of liver were
observed by naked eyes. Subsequent to 10% formaldehyde fixation, the
liver was paraffin-embedded and sectioned for Masson’s (G1340, Solarbio)
collagen fiber staining. After sealing with neutral resin, liver fibrosis was
observed under the microscope.

Western blot analysis
The cultured cells were harvested by trypsin digestion and lysed with
enhanced Radio-Immunoprecipitation assay cell lysis buffer encompassing
protease inhibitor (BOSTER, Wuhan, Hubei, China). The protein concentra-
tion was estimated by a bicinchoninic acid protein quantitative Kit
(BOSTER). The proteins were separated by sodium dodecyl sulfate
polyacrylamide gel electrophoresis and electroblotted to a polyvinylidene
fluoride membrane that was sealed at room temperature for 2 h with 5%
bovine serum albumin to block nonspecific binding. Overnight probing
was implemented with primary antibodies (1:1000, Cell Signaling
Technology, Beverly, MA, USA) to SMURF1 (#2714), GAPDH (#5174), UVRAG
(#13115), ATG5 (#12994), Wnt5a (#2392), and Ub (#5174) at 4 °C, followed
by 1 h reprobing with horseradish peroxidase-tagged goat anti-rabbit IgG
(ab205719, 1:2000, Abcam) at room temperature. Then the membrane was
incubated for 1 min with electrogenerated chemiluminescence (ECL)
working solution (EMD Millipore Corp., Billerica, MA, USA). Subsequent to
discarding of excess ECL reagent, the membrane was sealed with plastic
wrap, and exposed with X-ray film in the dark box for 5–10min before
development and fixation. The image J software was adopted for gray
value quantitative analysis of protein bands with GAPDH as a normalizer.

Co-IP
Binding between UVRAG and SMURF1 was assessed: the medium was
discarded, and cells were washed with phosphate buffer saline (PBS) two
times with the removal of PBS. The 1 mL IP lysis buffer containing

protease inhibitors (BOSTER) was supplemented to cells and left on ice
for 15 min. Following 10 min cell centrifugation at 12,000 rpm, the
supernatant was collected into a new centrifuge tube. Cell lysates, anti-
UVRAG antibody/anti-SMURF1 antibody, and 25 μL protein A sepharose
were mixed completely before overnight incubation at 4 °C on a vertical
shaker. Magnetic beads were centrifuged at 1000 rpm and 4 °C for 5 min
with the supernatant discarded and washed three times with IP lysis
buffer. Magnetic beads were supplemented to the same volume of 2 ×
SDS loading buffer, gently mixed, and heated at 95 °C for 10 min. The
supernatant was attained for Western blot analysis to detect the
expression of SMURF1 and UVRAG, and 10% of the supernatant
simultaneously for Input detection.
Detection of the ubiquitination level of UVRAG: the medium was

discarded, and cells were washed with phosphate buffer saline (PBS) two
times with the removal of PBS. The 1mL IP lysis buffer containing protease
inhibitors (BOSTER) was supplemented to cells and left on ice for 15min.
Following 10min cell centrifugation at 12000 rpm, the supernatant was
collected into a new centrifuge tube. Cell lysates, anti-UVRAG antibody,
and 25 μL protein A sepharose were mixed completely before overnight
incubation at 4 °C on a vertical shaker. Magnetic beads were centrifuged at
1000 rpm and 4 °C for 5 min with the supernatant discarded, and washed
three times with IP lysis buffer. Magnetic beads were supplemented to the
same volume of 2 × SDS loading buffer, gently mixed, and heated at 95 °C
for 10min. The supernatant was attained for Western blot analysis to
detect the ubiquitination level of UVRAG, and 10% of the supernatant
simultaneously for Input detection.

Dual-luciferase reporter assay
The binding sites and sequences of miR-15a to lncRNA SNHG1 and SMURF1
were predicted by Target Scan, a target prediction website. LncRNA SNHG1
wild-type sequence (lncRNA SNHG1-W), lncRNA SNHG1 mutant sequence
(lncRNA SNHG1-M), SMURF1 3' untranslated region (UTR) wild-type
sequence (SMURF1 3'UTR-W), and SMURF1 3'UTR mutant sequence
(SMURF1 3'UTR-M) were constructed with the sequence of 200 bp upstream
and downstream of this site. The above sequences (GenePharma) were
recombined with the dual-luciferase reporter system pmir GLO vector. The
recombinant vectors were identified by PCR and gene sequencing to
demonstrate successful recombinant vector construction. miR-15a mimic or
mimic NC (GenePharma) were transfected with the above sequences into
293 T cells (purchased from American Type Culture Collection [Rockville,
MD, USA] and incubated in DMEM medium supplemented with 10% FBS
and 1% antibiotics at 37 °C, 5% CO2) and, 48 h later, luciferase activity was
measured using the dual-luciferase Kit (Promega, Madison, WI, USA) and
calculated by the ratio of firefly luciferase/Renilla luciferase.

Statistical analysis
SPSS 22.0 was employed for statistical analysis. The measurement results
were summarized as mean ± standard deviation. The tests conformed to
normal distribution and homogeneity of variance. Unpaired t-test was
adopted for comparison between the two groups. One-way analysis of
variance (ANOVA) or repeated measurement ANOVA was implemented for
comparison among multiple groups. p < 0.05 was considered to be
statistically obvious difference

DATA AND MATERIAL AVAILABILITY
The datasets generated/analyzed during the current study are available from the
corresponding author upon reasonable request.
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