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Abstract 

Immune responses in the liver are related to the de v elopment and progression of liv er f ailure, and precise prediction of their behavior is impor- 
tant. Decon v olution is a methodology for estimating the immune cell proportions from the transcriptome, and it is mainly applied to blood-derived 
samples and tumor tissues. Ho w e v er, the influence of tissue-specific modeling on the estimation results has rarely been in v estigated. Here, 
we constructed a system to evaluate the performance of the deconvolution method on liver transcriptome data. We prepared seven mouse 
liver injury models using small-molecule compounds and established a benchmark dataset with corresponding liver bulk RNA-Seq and immune 
cell proportions. RNA-Seq expression for nine leukocyte subsets and four liver-associated cell types were obtained from the Gene Expression 
Omnibus to provide a ref erence. W e found that the combination of reference cell sets affects the estimation results of reference-based decon- 
volution methods and established a liver-specific deconvolution by optimizing the reference cell set for each cell to be estimated. We applied 
this model to independent datasets and sho w ed that liv er-specific modeling is highly e xtrapolatable. We e xpect that this approach will enable 
sophisticated estimation from rich tissue data accumulated in public databases and to obtain information on aggregated immune cell trafficking. 
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Introduction 

The deconvolution method extracts immune cell information,
such as the proportion of immune cells in the sample from the
bulk transcriptome data. The bulk transcriptome has a long
history, starting with microarrays around 2000, and much
data have been accumulated in public databases and are easily
available ( 1 ) . Therefore, combining the deconvolution method
with these legacy data is expected to enable us to obtain aggre-
gated knowledge on the behavior of various immune cells, so-
called immune cell trafficking, under various conditions. Ac-
quiring such comprehensive insights is challenging with flow
cytometry data, which lacks a well-structured database. While
repositories for scRNA-seq data have emerged, their quantity
remains limited in comparison to bulk RNA-Seq. Addition-
ally, the expenses associated with utilizing public databases,
including reprocessing costs, remain notable ( 2 ) . 

Typical deconvolution methods are reference-based meth-
ods that use the unique gene expression levels of immune cells
as prior information ( 3–5 ) . When these methods are applied
to tissue data accumulated as legacy data, how accurate is the
estimation? Whereas evaluation datasets exist for blood, and
their performance has been evaluated ( 3 ,6–8 ) , is there any tis-
sue dependence when applying these methods to tissues with
other parenchymal cells? Such a possibility has been high-
lighted by Chen and Wu. ( 9 ) . However, because no evaluation
dataset exists, there was no clear answer. 

In the present study, we analyzed mouse liver tissues to ver-
ify the accuracy of the reference-based deconvolution method
in tissues. Immune cell trafficking, especially that of neu-
trophils, is important in the development and progression of
liver failure, and studies using various liver injury models have
reported the role of immune cells in the migration of neu-
trophils ( 10–14 ) . However, the studies have been limited to
individual models of specific disorders, and there is no aggre-
gated knowledge of the commonalities and differences in the
contribution rate and the order of elicitation of each cell type.

Therefore, we evaluated the accuracy of the deconvolution
method by establishing an evaluation dataset covering various
immune cell behaviors using compound-induced liver injury
models, in which there is relatively little confounding among
the models. 

The present study has three contributions to the under-
standing of immune responses in tissues using deconvolution,
as follows. 

(1) Using several liver injury models induced by each of
seven small-molecule compounds with known hepatotoxic-
ity, we constructed a dataset to evaluate the deconvolution
method covering various immune responses. 

(2) In the reference-based deconvolution method, we
showed that selecting cell types that constitute the reference
is important. 

(3) By using a liver-specific optimized model, we found be-
haviors of immune cells that could not be found by conven-
tional methods. 

Materials and methods 

Animals 

Five-week-old and nine-week-old male C57BL / 6JJcl mice
were purchased from CLEA ( Tokyo, Japan ) and kept under
standard conditions with a 12-h day / night cycle and access
to food and water ad libitum. The studies reported in this ar-
ticle were performed in accordance with the guidelines pro- 
vided by the Institutional Animal Care Committee ( Graduate 
School of Pharmaceutical Sciences, the University of Tokyo,
Tokyo, Japan; protocol number, P4-21 ) . 

Drug-induced liver injury models 

Six-week-old mice acclimatized for one week were used for 
the experiments. Seven compounds, alpha-naphthyl isothio- 
cyanate ( ANIT, I0190, TCI, Japan ) , acetaminophen ( APAP,
H0190, TCI ) , CCl 4 ( CCl4, 039-01276, Fujifilm Wako, Japan ) ,
concanavalin A ( ConA, 09446-94, Nacalai Tesque, Japan ) ,
galactosamine ( GAL, G0007, TCI ) , 4,4 

′ -methylene dianiline 
( MDA, M0220, TCI ) , and thioacetamide ( TAA, T0187, TCI ) ,
were administered after 12 h of fasting. Depending on the 
compound to be administered, the vehicle was selected from 

0.5% methylcellulose solution ( 133-17815, Fujifilm Wako ) ,
saline, and corn oil ( 032-17016, Fujifilm Wako ) . The admin- 
istration route and concentration of each compound are listed 

in Supplementary Table S1 . As a control group, 0.5% methyl- 
cellulose solution was used for oral administration, and saline 
was used for tail vein and intraperitoneal administration. The 
dose was 10 μl / kg for all groups. We euthanized animals 24 

h after administration, and perfused liver samples and blood 

were harvested ( Liver and blood sample collection section).
For the obtained liver, a portion of the outer left lateral lobe 
of the liver was subjected to RNA isolation ( RNA-Seq anal- 
ysis section), and the remaining tissue was subjected to flow 

cytometry analysis ( Flow cytometry analysis section). 

Time-dependent model of APAP-induced liver 
injury 

Bird et al. performed RNA-Seq analysis on mouse liver tis- 
sue samples at different time points after APAP administration 

( 15 ), and we followed this protocol. 
Ten-week-old mice acclimatized for one week were fasted 

for 10 h from 7 am to 5 pm. APAP was dissolved in sterile 
phosphate-buffered saline (PBS) warmed to 42 

◦C and admin- 
istered at 350 mg / kg by a single i.p. injection of 20 μl / g. An-
imals were sacrificed 12, 24, and 48 h after APAP adminis- 
tration, and perfused liver samples and blood were collected 

( Liver and blood sample collection section). The harvested 

liver sample was subjected to flow cytometry analysis ( Flow 

c ytometry anal ysis section). 

Liver and blood sample collection 

Briefly, a superior vena cava was clipped using a clamp, and 

the blood was collected through an inferior vena cava into 

a 1.5-ml tube containing 1 μl heparin (Yoshindo, Toyama,
Japan). The collected blood sample was centrifuged (800 × g ,
4 

◦C for 15 min) for serum separation. Serum alanine amino- 
transferase (ALT), aspartate aminotransferase (AST), and 

total bilirubin (TBIL) were measured using a Dri-Chem 

NX500sV (Fujifilm Corporation). After cutting the portal 
vein, the first perfusion was performed by injecting 10 ml of 
5 mM HEPES (H4034, Sigma-Aldrich, USA) / 5 mM EDTA 

(345–01865, Fujifilm Corporation) Hanks’ Balanced Salt So- 
lution (17461-05, Nacalai Tesque) through the inferior vena 
cava. Then, the second perfusion was performed by using 10 

ml of 5 mM HEPES Hanks’ balanced salt solution. Before har- 
vesting the tissue, 2 ml of dissociation enzyme solution of gen- 
tleMACS (Miltenyi Biotec, Germany) was filled in the liver 
from an inferior vena cava by clipping the cut portal vein. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad111#supplementary-data
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NA-seq analysis 

otal RNA was prepared using Isogen II (311-07361, Nip-
on Gene, Japan) and purified using an RNeasy Plus Mini Kit
74136, Qiagen, Netherlands) with gDNA elimination by an
Nase-Free DNase Set (79254, Qiagen), following the man-
facturer’s protocols. RNA-Seq libraries were prepared with
 TruSeq Stranded mRNA Sample Preparation kit (Illumina,
SA). The libraries were sequenced for single-end reading us-

ng a NovaSeq 6000 (Illumina). 
Quality control of all reads was performed using PRIN-

EQ++ (version 1.2.4) with the indicated parameters
trim_left = 5, trim_tail_right = 5, trim_qual_right = 30,
s_max_n = 20, min_len = 30) ( 16 ). The expression of
ranscripts was quantified using Salmon (version 1.6.0) and
encode.vM28.transcripts obtained from GENCODE with
he indicated parameters (validation Mappings, gcBias, se-
Bias) and decoy-aware index created using Salmon and
RCm39.primary_assembly.genome obtained from GEN-
ODE ( 17 ,18 ). Transcripts per kilobase million (TPM) data
ere obtained using tximport, which is implemented in the

oftware package Bioconductor with R (version 4.1.3) from
uant.sh files created by Salmon. 

low cytometry analysis 

he liver sample was dissociated using gentleMACS, ac-
ording to the manufacturer’s instructions. Except where
oted, PBS containing 2% fetal bovine serum was used as
wash buffer’ thereafter. The washed samples were centrifuged
50 × g , 4 

◦C for 3 min) to eliminate hepatocytes and were sub-
ected to ACK lysis buffer. ACK buffer was prepared by adding
024 mg of NH 4 Cl (A2037, TCI), 10 mg of NHCO 3 (166–
3275, Fujifilm Wako), and 3.772 mg of EDTA 2Na ·2H 2 O
6381-92-6, Dojindo Laboratories, Japan) into 1 l of pure wa-
er. The samples were washed with wash buffer three times,
nd then the samples were subjected to flow cytometry analy-
is. Flow cytometric analysis was performed with FACSAria III
BD Biosciences, USA), and data were analyzed with FlowJo
oftware (Treestar). Details are provided in the Supplementary
ote. 

econvolution approach 

lastic Net 
onsider a measured bulk gene expression matrix Y ∈ R 

N ×M 

or N genes across M samples, each containing K different
ell types. The goal of deconvolution is to estimate cell type-
pecific expression X ∈ R 

N ×K and cell type proportion matrix
 ∈ R 

K ×M and can be written as: 

Y ≈ X P . (1)

Elastic Net ( 19 ) is a regularized regression model with com-
ined L1 and L2 penalties. We can estimate the cell type pro-
ortion matrix 

ˆ P via: 

ˆ P = arg min 
P 

{‖ Y − X P ‖ 2 2 + λ

M ∑ 

j=1 

[
1 
2 

( 1 − α) P 2 j + α
∣∣P j ∣∣

]
} , (2)

here λ and α are hyperparameters, and we set λ = 1 and
= 0 . 05 as default parameters. 

ulk tissue gene expression matrix 

he TPM-normalized liver expression profile is the analysis
arget. The transcript IDs were converted to MGI gene sym-
bols using files available from Biomart ( 20 ), and median val-
ues were selected for duplicate gene names. The data were
processed in the following order: log transformation, elimina-
tion of low-expressing genes, batch normalization, and quan-
tile normalization. Among the genes in this normalized ex-
pression matrix, we focused on N marker genes, which are
described below, and defined them as Y ∈ R 

N ×M . These pre-
processing steps can be reproduced in our repository ( https:
// github.com/ mizuno-group/ LiverDeconv ). 

Cell type-specific expression matrix (reference) 

Bulk RNA-Seq-derived reference 
First, we downloaded raw RNA-Seq expression datasets for
nine leukocyte subsets and four liver-related cell types from
the Gene Expression Omnibus (GEO). Hierarchical cluster-
ing with the Pearson correlation coefficient was performed
on TPM-normalized profiles, and samples forming the main
cluster were manually selected. Note that data are available
at our GitHub repository ( https:// github.com/ mizuno-group/
LiverDeconv ). Then, we converted transcript IDs to MGI
gene symbols, and median values were selected for duplicate
gene names. The data were processed in the following order:
log transformation, elimination of low-expressing genes, and
quantile normalization. Only genes in common with the bulk
tissue gene expression matrix were retained. 

Single cell RNA-Seq-derived reference 
Single-cell RNA-Seq data of liver cells in a mouse model of
acute liver failure was accessible on ArrayExpress under ac-
cession E-MTAB-8263 ( 21 ). Processed data was downloaded,
resulting in the acquisition of five leukocyte subsets and five
cell types relevant to the liver. These cell types align with those
encompassed in the bulk RNA-Seq-derived reference. 

Detection of differentially expressed genes (DEGs) 
Gene expression profiles specific to each of the K cell types
constituting the reference were selected as differentially ex-
pressed genes. We retained up to 50 genes as markers, ex-
hibiting an absolute fold change surpassing 1.5 for the second
cell type with the highest expression. Subsequently, N genes
sourced from the aforementioned K -cell markers were encom-
passed in the analysis, leading to the definition of the cell
type-specific expression matrix X ∈ R 

N ×K . For the bulk RNA-
Seq-derived reference, a total of 503 DEGs spanning 13 cell
types were identified, while the scRNA-Seq-derived reference
yielded 184 DEGs across 10 cell types ( Supplementary Files S1
and S2 ). The code for this detection is integrated into our
proposed pipeline and is accessible in our GitHub repository
( https:// github.com/ mizuno-group/ LiverDeconv ). 

Evaluation 

The estimated cell type proportion matrix 

ˆ P ∈ R 

K ×M was ob-
tained by running deconvolution and converted to a sample-
wide z score for each cell of interest. Similarly, the ground
truth cell type proportion matrix obtained by flow cytome-
try was converted to a sample-wide z score, and its Pearson
correlation with 

ˆ P was evaluated. Note that the estimated 

ˆ P is
not necessarily greater than 0 because it is not constrained to
be nonnegative. 

https://github.com/mizuno-group/LiverDeconv
https://github.com/mizuno-group/LiverDeconv
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad111#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad111#supplementary-data
https://github.com/mizuno-group/LiverDeconv
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Optimization of the combination of reference cell 
types for immune cell trafficking 

Selection of samples showing fluctuation 

We used our established evaluation dataset to optimize the
best combination of reference cell types for estimating the traf-
ficking of the immune cell of interest. In the optimization, neu-
trophils, monocytes, eosinophils, and NK cells were selected
for trafficking compared with the control group, and samples
showing fluctuations in cell proportions were evaluated. The
amount of change for each sample was plotted, and samples
outside the quartile range were considered to have a large fluc-
tuation in immune cells and were used in the optimization.
Note that samples that fall below Q1 − 1 . 5 × IQR or above
Q3 + 1 . 5 × IQR were considered outliers and removed from
optimization. Here, IQR is the interquartile range, and Q1 and
Q3 are the lower and upper quartiles, respectively. 

Optimized reference selection 

Reference-based deconvolution can estimate the proportion
of cells in the reference. Therefore, in the analysis of immune
cell trafficking, the target cell must be included in the refer-
ence, and if K types of cells are candidates for the reference,
there are a total of 

∑ K−1 
k =1 

∑ k 
i =1 kC i combinations. For each im-

mune cell of interest, deconvolution was performed on all cell
combinations comprising the reference for samples showing
fluctuation. Pearson correlations between sample-wide trans-
formed z scores were calculated for the deconvolution out-
put and the measured values using flow cytometry. Among
the Pearson correlation scores performed on all obtained ref-
erences, the 10 highest references were considered to be the
optimized reference. 

Evaluation of extrapolation to external data 

(GSE1 1 1828) 

Bird et al. performed RNA-Seq analysis on mouse liver sam-
ples following acetaminophen-induced liver injury. Transcrip-
tion profiles were generated at 12, 24, 36, 48 and 72 h after
injury and were publicly available as GSE111828. Using the
optimized combination of cell types in the reference, we es-
timated the changes in immune cell trafficking at each time
point. Furthermore, we evaluated the estimation performance
by reproducing the experiment under the same conditions and
obtaining the ground truth of the changes in the immune cell
ratio by flow cytometry ( Time-dependent model of APAP-
induced liver injury section). 

Pseudo-bulk dataset from scRNA-Seq 

We engineered an artificial pseudo-bulk amalgamation by ran-
domly extracting individual cells quantified through scRNA-
Seq and aggregating them to constitute a total of 1000 cells.
To ensure representation, we stipulated the inclusion of hep-
atocytes among the 10 cell types present. Subsequently, we
designated the proportion assigned to each cell type. Notably,
hepatocytes were allocated proportions ranging from 0.7 to
0.8, while a sum-to-one constraint was enforced across all cell
types. This process was reiterated, resulting in the formulation
of a pseudo-bulk dataset encompassing 1000 samples. 

Availability of source code and requirements 

Project name: LiverDeconv 
Project home page: https:// github.com/ mizuno-group/ 
LiverDeconv 

Programming languages: Python 3.8 

Other requirements: combat, numpy, matplotlib, pandas,
scipy, sklearn, statsmodels 

Operating systems: Linux, Windows 
License: MIT 

Results 

Establishment of the evaluation dataset using 

drug-induced liver injury models 

No evaluation dataset corresponds to the liver sample tran- 
scriptome and immune cell type proportions. To construct a 
liver-specific deconvolution model, we first prepared an eval- 
uation dataset that reflects the immune response in liver tis- 
sue. In general, the evaluation dataset should be as diverse 
as possible regarding input–output relationships and free of 
confounding factors other than inputs and outputs. We pre- 
pared a diverse and low confounding dataset using pertur- 
bation by various small molecules. Liver injury models with 

small molecular compounds are expected to contribute to the 
establishment of a highly diverse dataset, with little confound- 
ing by procedures such as surgery. Based on a literature sur- 
vey, we selected seven compounds, alpha-naphthyl isothio- 
cyanate (ANIT), acetaminophen (APAP), CCl4 (CCl4), con- 
canavalin A (ConA), galactosamine (GAL), 4,4 

′ -methylene di- 
aniline (MDA), and thioacetamide (TAA), that are frequently 
used to induce liver injury ( 22–28 ). 

The administration of each compound-induced liver injury,
and tissues were collected 24 h after administration. Flow cy- 
tometry, RNA-Seq analysis, and blood biochemistry tests were 
performed on the obtained tissues, and an evaluation dataset 
was established in which these measurements corresponded to 

each sample (Figure 1 A). 

RNA-Seq analysis of the evaluation dataset 

Liver transcriptome data were obtained by RNA-Seq. We per- 
formed PCA on the processed data and showed that each 

treatment group formed a cluster (Figure 1 B). The average 
expression levels of the genes in each treatment group were 
calculated and visualized in a heatmap, which detected differ- 
entially expressed genes (DEGs) among the treatment groups 
(Figure 1 C). These results indicate that each of the seven com- 
pounds used to induce liver injury had specific effects on the 
tissue and that gene expression profiles were separated among 
the treatment groups. Thus, our established evaluation dataset 
using drug-induced liver injury models is expected to reflect 
the diverse immune responses in the liver (Figure S1). 

Flow cytometry analysis on the evaluation dataset 

We analyzed the flow cytometry data with FlowJo soft- 
ware. In the present study, we obtained ground truth 

data on the proportion of nine subsets representative of 
the liver, αβT cells (CD45 

+ / CD3 

+ / gdTCR 

–), γδT cells 
(CD45 

+ / CD3 

+ / gdTCR 

+ ), natural killer T (NKT) cells,
natural killer (NK) cells (CD45 

+ / CD3 

+ / NK1.1 

+ ), mono- 
cytes (CD45 

+ / CD11b 

+ / Siglec-F 

–/ Ly6G 

–/ Tim4 

–/ Ly6C 

+ ),
neutrophils (CD45 

+ / CD11b 

+ / Siglec-F 

–/ Ly6G 

+ / Tim4 

–),
Kupffer cells (CD45 

+ / CD11b 

+ / Siglec- 
F 

–/ Ly6G 

+ / Tim4 

+ / Ly6C 

–/ F4 / 80 

+ ), eosinophils 
(CD45 

+ / CD11b 

+ / Siglec-F 

+ ), and monocyte- 

https://github.com/mizuno-group/LiverDeconv


NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 1 5 

Figure 1. Measurement of transcriptome and immune cell proportions using drug-induced liver injury mouse models. ( A ) We selected seven 
compounds with known hepatotoxicity and administered them to mice to induce liver injury. After 24 h of administration, liver was harvested for flow 

cytometry and RNA-Seq analysis, and blood was collected to measure the liver injury markers. ( B ) PCA plotting of the obtained RNA-Seq data shows 
clusters formed by each compound administration. ( C ) Heatmap showing median gene expression level ( z score) of up to 50 differentially expressed 
genes in each administration group. ( D ) Violin plots showing the proportion of the nine immune cell subtypes to the CD45 + cell population in each liver 
injury sample was measured by flow cytometry. The red dashed line indicates the control samples without perturbation. ( E ) Scatterplot shows the 
Pearson correlation between alanine aminotransferase (ALT) values and immune response. The population of eosinophils after APAP administration 
correlated negatively with the ALT values, and NK cells after ConA administration correlated positively with the ALT values. 
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erived macrophages (CD45 

+ / CD11b 

+ / Siglec-
 

–/ Ly6G 

–/ Tim4 

–/ Ly6C 

–), in compound-induced liver injury
amples (Figure S2, Supplementary Note). Each immune cell
an be evaluated for increase or decrease compared with
ntreated control samples. We observed some characteristic

mmune cell trafficking for each compound administration
Figure 1 D). For instance, ConA administration led to an
ncrease in monocytes, while TAA administration resulted in
 decrease in NK cells. Furthermore, in response to APAP ad-
inistration, there was significant variability in the immune

esponse across individuals, with certain samples exhibiting
levated levels of neutrophils and monocytes. These results
ere consistent with existing findings ( 29–32 ). To our knowl-

dge, this is the first report of an increase in eosinophils after
GAL administration, and the responses of various immune
cells after MDA administration were captured using flow
cytometry. 

Notably, in the present analysis, each sample was tied to the
value of liver injury markers so that we could associate the de-
gree of damage with the behavior of immune cells (Figure S3).
There were large individual differences in liver injury in the
APAP and ConA treatment groups, which could be stratified
by the accumulation of immune cells. Specifically, the traffick-
ing of eosinophils after APAP administration varied widely,
but there was a tendency for eosinophils not to accumulate
in the severely injured samples with high alanine aminotrans-
ferase (ALT) and aspartate aminotransferase (AST) levels.
Furthermore, ALT and AST values at ConA administration
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correlated with the proportion of NK cells and neutrophils
(Figures 1 E and S4). In the present study, the established eval-
uation dataset was used to evaluate and optimize the decon-
volution method, but we would also like to emphasize that
it provides novel insights useful for understanding the mech-
anisms underlying the induction of liver injury and immune
cell trafficking by each compound administered. 

Evaluation of the impact of the reference cell sets 

on estimation performance 

The immune cell proportions were estimated by deconvolu-
tion using Elastic Net on the established evaluation dataset.
In the present study, we obtained cell-specific gene expression
profiles for up to 13 types of cells derived from immune cells
and liver cells and made them available as references (Table
1 ). The correlation and multicollinearity of the gene expres-
sion profiles of these 13 cell types are shown in Figure S5. 

We prepared three representative reference cell sets. The
first is a set of six cell types called LM6 (neutrophils, mono-
cytes, B, CD8, CD4 and NK), which are frequently used in
estimating the proportion of immune cells in blood using the
deconvolution method ( 33 ,34 ); the second is LM9, to which
we added immune cells that are not frequently used but are
important in the liver (e.g. eosinophils, basophils, and Kupffer
cells); and the third is LM13, to which we added four cell types
related to the liver. Using these references, we evaluated the es-
timation performance on the evaluation dataset (Figure 2 A–
C). 

To estimate neutrophils, LM6 showed superior perfor-
mance, and LM13 showed poor performance. In contrast, to
estimate NK cells, LM6 performed poorly, but LM13 per-
formed well. The reference cell type dependence was also con-
firmed for other representative algorithms other than Elastic
Net (Figure S6). Additionally, these findings were replicated
in the analysis utilizing scRNA-Seq data obtained from a sin-
gle experiment as a reference (Figures S7a–c). These findings
indicate that the estimation accuracy of each cell depends on
the combination of cell sets placed in the reference and that
there is no reference with consistently good estimation perfor-
mance (Figure 2 D and Figure S7c). Conversely, assessments
with artificial pseudo-bulk datasets simulating the liver con-
sistently demonstrated elevated estimation performance for
LM6, LM9, and LM13 (Figure S8). These outcomes imply
that the influence of the reference cell set is a manifestation of
the nonlinear attributes inherent in real-world data. It is note-
worthy that analyses employing pseudo-bulk datasets, con-
structed under rigorous linearity-preserving constraints, might
lead to an overestimation of deconvolution methods. Conse-
quently, we selected Elastic Net, which exhibited superior per-
formance with all 13 cell types, and fine-tuned this approach
for subsequent analyses (Figure 2 E). 

Optimization of the combination of reference cell 
types 

In general, deconvolution is the methodology used to estimate
the composition of cells. However, when describing individ-
ual tissue conditions, such as elucidating disease mechanisms
or stratification, it is important to focus on a specific cell type
and estimate how the cell fluctuates compared with the control
group in terms of trafficking. In the case of trafficking, build-
ing a model for each cell is possible because it is specified for
a control group. Therefore, we optimized the model for each
target cell and evaluated the characteristics of the reference 
cell sets. 

When estimating the trafficking of a focused cell, all combi- 
nations of 12 cell types other than the focused cell are candi- 
dates for the cell set to be placed as a reference. For the cell to 

be analyzed, differentially expressed genes (DEGs) were gen- 
erated as a reference for all combinations, and the estimation 

performance of the Elastic Net was evaluated. In this evalua- 
tion, the samples in the dataset were those in which the target 
cells of the trafficking analysis showed fluctuation compared 

with the control group by flow cytometry. 
First, the influence of all combinations of cells in the refer- 

ence was evaluated using the correlation coefficient between 

the deconvolution-estimated value and the actual value mea- 
sured by flow cytometry for neutrophils, monocytes, NK cells,
and eosinophils (Figure 3 A). The correlations between the 
estimated and measured values when the top 10 and bot- 
tom 10 combinations were calculated, and differences in es- 
timation in performance, were observed depending on the 
choice of reference cell sets (Figures 3 B, C and S9). Further- 
more, the optimized top 10 estimates outperformed the perfor- 
mance of existing methods such as FARDEEP, EPIC, CIBER- 
SORTx, and DCQ ( 4 ,35–37 ), which were performed with 

LM13 as reference (Figure S10). All cell name combinations 
including top 10 and bottom 10 used here are summarized in 

Supplementary File S3 . 
Next, we evaluated the impact of the presence of a spe- 

cific cell type in the reference cell set on the estimation per- 
formance of the cells under analysis. Specifically, when esti- 
mating neutrophil trafficking, combinations containing Kupf- 
fer cells tended to be enriched at the top with a high correla- 
tion coefficient, whereas combinations containing hepatocytes 
were enriched at the bottom with a low correlation coefficient 
(Figures 3 D and S11a). Remarkably, the contribution of Kupf- 
fer cells and hepatocytes in the estimation of neutrophils was 
similar in the analysis using scRNA-Seq based reference (Fig- 
ure S11b). The combination of cells to be placed in the ref- 
erence has good and bad affinity, and this also existed in the 
estimation of other cells (Figure 3 E). Therefore, we selected 

neutrophils, monocytes, NK cells, and eosinophils as the tar- 
get cells for estimation due to computational cost issues and 

examined combinations of reference cells to establish a liver- 
specific optimized deconvolution model (Figures S12–S15). 

The efficacy of the acquired reference cell set was appraised 

employing a pseudo-bulk dataset. Notably, in the estimation 

of neutrophils and NK cells, the utilization of the top 10 refer- 
ence combinations exhibited superior estimation performance 
compared to the bottom 10 (see Figure S16). Conversely, it is 
important to note that the pseudo-bulk dataset retained lin- 
earity, resulting in marginal enhancements with the reference 
combination. These findings imply a potential disparity be- 
tween the model optimized with real-world data and the arti- 
ficial pseudo-dataset. 

Application to external public data 

Evaluating extrapolation to aggregate immune cell findings 
from legacy data based on this model is essential. We then 

applied our optimized models based on reference cell combi- 
nations to external data for a more realistic task and eval- 
uated their extrapolation and robustness. Bird et al. pub- 
lished transcriptome data at different time points after APAP 

administration (GSE111828) ( 15 ). Because no immune cell 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad111#supplementary-data
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Table 1. Summary of sample information used to construct a reference consisting of up to 13 cell types 

Cell / dataset PubMed ID Platforms Selected samples Original samples Criteria 

B cells − − 11 − −
GSE84878 28538178 Illumina HiSeq 2000 7 7 WT 

GSE61425 25288398 Illumina HiSeq 2000 4 4 WT 

CD4 + T cells − − 13 − −
GSE119852 31253760 Illumina HiSeq 4000 4 4 Blood control 
GSE152757 32839313 Illumina NovaSeq 6000 9 9 
CD8 + T cells − − 14 − −
GSE151936 32814898 Illumina NextSeq 500 12 15 Spleen 
GSE70813 27102484 Illumina HiSeq 2500 2 4 Spleen 
NK cells − − 8 − −
GSE114827 30127438 Illumina NextSeq 500 3 3 Liver WT 

GSE103901 29056343 Illumina HiSeq 2500 5 5 Spleen 
Neutrophils − − 10 − −
GSE142432 33098771 Illumina HiSeq 2500 6 6 Blood, Spleen 
GSE116177 30395284 Illumina HiSeq 2500 4 4 Peripheal Blood 
Eosinophils − − 7 − −
GSE55385 25765318 Illumina HiSeq 2000 4 4 
GSE145985 − Illumina NovaSeq 6000 3 3 
Basophils − − 3 − −
GSE132122 33547048 Illumina NextSeq 500 3 3 
Monocytes − − 6 − −
GSE130257 31444235 Illumina NextSeq 500 2 2 Blood 
GSE116177 30395284 Illumina HiSeq 2500 4 4 Peripheal Blood, 

Bone Marrow 

Kupffer cells − − 12 − −
GSE152211 34469774 Illumina NovaSeq 6000 6 6 
GSE138778 32562600 Illumina NovaSeq 6000 6 6 Chow diet 
Hepatocytes − − 10 − −
GSE104415 29618815 Illumina NextSeq 500 6 6 
GSE132368 32001510 Illumina NextSeq 500 4 4 DMSO 0 h 
Cholangiocytes − − 3 − −
GSE156894 − NextSeq 550 3 3 
Stellate cells − − 6 − −
GSE135789 31561945 Illumina NextSeq 500 3 4 
GSE120281 34277612 Illumina HiSeq 3000 3 3 
LSEC − − 10 − −
GSE120281 34277612 Illumina HiSeq 3000 3 3 
GSE120282 34277612 Illumina HiSeq 3000 3 3 Control 
GSE135789 31561945 Illumina NextSeq 500 4 4 WT 

i  

l  

t  

o
 

1  

t  

t  

u  

a  

f  

t  

b  

f  

N  

c  

p  

o  

a  

d  

t  

p  

w  

n  

T  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nformation accompanies this dataset, we applied deconvo-
ution using Elastic Net to each time point and evaluated
he differences in performance with and without liver-specific
ptimization. 
We compared the number of cell types constituting the top

0 and bottom 10 references to estimate the performance of
he four cell types investigated for all reference cell combina-
ions: neutrophils, monocytes, NK cells, and eosinophils (Fig-
re 4 A). In preparing the references according to whether they
re optimized, we attempted to eliminate the confounding ef-
ect of the number of cell types placed in the references on es-
imation performance. The threshold was set as the least num-
er of cell types among the top 10 reference cell combinations
ound in the optimization process using the evaluation dataset.
onoptimized combinations were selected for the bottom 10

ombinations that retained cell types above the threshold. We
erformed deconvolution on GSE111828 with and without
ptimization, and the estimated values were also compared as
 baseline when all 13 cell types were used. The results showed
ifferences in the estimated percentage of immune cells at each
ime point after APAP administration (Figure 4 B). For exam-
le, the optimized model estimated an increase in eosinophils
ith a peak at 48 h after APAP administration, whereas the
onoptimized model had the opposite estimate of a decrease.
he neutrophil estimates at 48 h postdose also showed oppo-
site behaviors of increase and decrease, respectively, with and
without optimization. 

Next, we evaluated the differences in the GSE111828 im-
mune cell proportion estimates at each time point with and
without the optimization described above to determine which
reflected true immune cell behavior. We performed a repro-
duction study of APAP administration following the report of
Bird et al. and measured immune cell proportions by flow cy-
tometry to evaluate the extrapolation of the optimized model
(Figure 5 A). 

For lymphocytes, six subtypes were selected as immune cells
to be measured using flow cytometry: CD4+ T cells (CD4),
CD8+ T cells (CD8), gamma-delta T cells ( γδT), B cells, nat-
ural killer T (NKT) cells, and natural killer (NK) cells. For
bone marrow-derived cells, measured immune cell proportion
data were obtained for five subsets: monocytes, neutrophils,
eosinophils, Kupffer cells, and monocyte-derived macrophage
(MonoMac). Gating in flow cytometry of lymphocytes and
bone marrow-derived cells is described in Figure S17. Each
immune cell proportion at 12, 24 and 48 h after APAP ad-
ministration was obtained and showed characteristic changes
(Figure 5 B). 

The correspondence between the estimated values and the
actual values measured by flow cytometry for neutrophils,
monocytes, NK cells, and eosinophils at each time point of
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Figure 2. Conducting a reference-based decon v olution method on the dataset for evaluation. The scatterplot shows the Pearson correlation between 
flo w cytometry v alues and decon v olution estimates using Elastic Net when ( A ) LM6, ( B ) LM9 and ( C ) LM13 are used as reference. ( D ) B ar plots sho wing 
the summary of the impact of the reference cell set on estimation performance. Eosinophils are not included in LM6 and cannot be estimated when 6 
cell types are used as reference. ( E ) Bar plots showing the estimation performance of the representative methods when using all 13 cell types. 

 

 

 

 

 

 

 

 

GSE111828 was evaluated (Figure 5 C). Flow cytometry mea-
surements showed an increase in eosinophils and a decrease in
neutrophils at 48 h after APAP administration. These results
were consistent with those estimated using the optimized ref-
erence, and establishing a tissue-specific deconvolution model
enabled precise prediction. Furthermore, the findings are con-
sistent with recent reports ( 38 ). These results indicate that the
combination of references optimized in this study is not merely
overfitting to the prepared evaluation dataset but is highly ex- 
trapolative (Table 1 ). 

Cell-specific gene expression profiles for nine leukocyte sub- 
sets and four liver-related cell types were downloaded from 

the Gene Expression Omnibus (GEO). Hierarchical cluster- 
ing with the Pearson correlation coefficient was performed on 

TPM-normalized profiles, and samples forming the main clus- 
ter were manually selected. 
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Figure 3. Optimization of reference cell type combinations. ( A ) Histogram showing the distribution of Pearson correlations when evaluating the 
performance of all possible cell type combinations as references. ( B ) Bar plots showing the difference between the top and bottom 10 Pearson 
correlations. The red line indicates the baseline when all 13 cell types are considered as reference. ( C ) Scatterplots showing the estimated and 
measured values with and without optimization. ( D ) Enrichment plot for the presence of Kupffer cells and hepatocytes in the reference for the 
estimation of neutrophils. The colored band represents the degree of correlation when estimated using each reference (green for a high correlation and 
purple for a low correlation). The bottom vertical black lines represent the location of the reference which include the Kupffer cells or hepatocytes. ( E ) 
Heatmap showing enrichment score when each cell is included in the estimation of the target cell. 
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Figure 4. Application to external public liver tissue transcriptome data (GSE1 1 1828). ( A ) Bar plots showing difference of the number of cell types in top 
10 and bottom 10 references in the estimation performance with the evaluation dataset. Blue bars and orange bars represent top 10 and bottom 10, 
respectively. ( B ) Estimated values when deconvolution was performed with and without liver tissue-specific optimization for each time point after APAP 
administration published in GSE1 1 1828. The violin plots at each time point represents the estimated values using top 10 (optimized) and bottom 10 
(nonoptimized) references after eliminating confounding of the number of cells constituting the reference. The green line indicates the baseline when all 
13 cell types are considered as reference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

We established an evaluation dataset using various mouse
liver injury models with corresponding transcriptome and im-
mune proportions to evaluate the impact of modeling tissue-
specific deconvolution. The small compounds used in the
present study to induce diverse liver injuries contain unrec-
ognized effects and provide novel findings that contribute to
the understanding of immune cell trafficking. For example,
4,4 

′ -methylene dianiline (MDA) and galactosamine (GAL) are
mainly used for analysis as hepatotoxic substances in rats
( 39 ,40 ), and there are few examples of comprehensive mea-
surement of immune cell trafficking using flow cytometry in
mice. In particular, the increase in eosinophils in liver tissue af-
ter GAL administration in this study is, to our knowledge, the
 

first report providing new insights into the role of eosinophils 
in acute liver injury. Xu et al. reported that eosinophils play a 
protective role in acute liver injury induced by acetaminophen 

(APAP), CCL4 and ConA by accumulating at the site of in- 
jury ( 38 ). In the present study, we observed an increase in 

eosinophils after CCL4 and ConA administration, supporting 
the results of Long Xu et al. and suggesting a similar protec- 
tive role for GAL administration. The present study also re- 
vealed a tendency for eosinophils not to be induced in severely 
injured samples with high levels of alanine aminotransferase 
(ALT) after APAP administration. There is no stratification of 
eosinophil trafficking according to the degree of liver injury 
after APAP administration, and it is possible that the molecu- 
lar mechanisms of hepatic protective function responsible for 
eosinophil trafficking may be disrupted during severe injury.
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Figure 5. Reproduction of the APAP administration study and evaluating the effectiveness of the optimized model. ( A ) APAP was administered by single 
i.p. injection. Mice were euthanized 12, 24 and 48 h after APAP administration, and perfused liver samples were collected and subjected to flow 

cytometry analysis. ( B ) Violin plots showing the change in each immune cell proportion at each time point. The red line indicates the immune cell 
proportion of normal liver (0 h after administration). ( C ) Evaluation of the correspondence between the estimated values with and without liver-specific 
optimization and the measured values by flow cytometry. The blue and orange plot points indicate the mean estimated values by optimized and 
nonoptimized models, respectively. The green line indicates the baseline when all 13 cell types are considered as reference. Gray bar plots show the 
immune cell proportion measured by flow cytometry in this reproduction study. Error bars indicate the standard deviation. 
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These characteristic observations on eosinophils would con-
tribute to the elucidation of a common molecular mechanism
in the hepato-protective function of eosinophils in a variety
of liver dysfunctions with different toxic action points and
mechanisms. 

In the optimization process of the reference cell sets using
the established evaluation dataset, there was a correspondence
between the biological meaning and the combinations. Kupf-
fer cells are frequently included in combinations suitable for
neutrophil estimation. This may be due to the multicollinear-
ity of the deconvolution model. Although the Elastic Net em-
ployed in the deconvolution model of this study can handle
multicollinearity with the L2 penalty to some degree ( 19 ), the
effect itself is present. CD4+ T cells and CD8+ T cells showed
similar gene expression profiles and were highly multicollinear
(Figure S5). Therefore, even if one is not included in the refer-
ence, the effect on the estimation performance of other cells,
such as neutrophils, is small. In contrast, cell types with rel-
atively low multicollinearity profiles, such as Kupffer cells,
are considered to have a large effect on the estimated value
depending on whether they are included in the reference or
not. One reason why the inclusion or exclusion of Kupffer
cells in the estimation of neutrophils and monocytes has a
large impact on performance may be that all these cells are
subtypes of myeloid cells. When performing reference-based
deconvolution, it is important to consider variable combina-
tions for variables derived from similar cell types with low
multicollinearity. 

The APAP administration study was conducted using the
same design as that reported by Bird et al., and changes in
immune cell proportions were measured by flow cytometry
( 15 ). Neutrophils and monocytes peaked at 12 and 24 h af-
ter administration, respectively, whereas eosinophils showed a
monotonous increase until the 48-h point. These results sug-
gest that immune cells, such as neutrophils, monocytes, and
eosinophils, may migrate to inflammatory sites differently af-
ter APAP administration. When estimating cell-specific im-
mune trafficking using deconvolution, the optimized model
showed outstanding estimation performance for eosinophils
and neutrophils. These results strongly support the impor-
tance of tissue-specific and cell-specific deconvolution model-
ing and indicate that optimization within this study is highly
extrapolative. Recent improvements in transcriptome analysis
technology have made mouse liver data abundantly available
in public databases. Although there are very few examples of
observing the transition of the ratio of immune cells in the
liver along a time axis, time-series transcriptome data do ex-
ist, as in the study by Bird et al. Applying the model optimized
in the present study to these vast amounts of data is expected
to enable us to obtain aggregated knowledge on immune cell
trafficking in the liver. 

The present study has several potential limitations. We took
the liver as an example of a tissue and showed the optimiza-
tion of tissue-specific deconvolution and its usefulness. The
liver is a single organ with various disorders and is suitable in
that it is possible to construct models with less confounding
using small molecular compounds ( 41 ). In addition, liver in-
jury is a fundamental pathology of cirrhosis and subsequent
liver cancer and the biggest cause of drug development dis-
continuation and market withdrawal, so understanding the
behavior of immune cells has a large social impact ( 42 ,43 ).
On the other hand, when performing deconvolution for tissues
other than the liver, it is necessary to prepare disorder models 
that reflect various immune cell trafficking to the target tis- 
sue and to construct an optimized model using the evaluation 

dataset. Additionally, for human clinical tissue samples, it is 
expected to be difficult to establish an evaluation dataset using 
compound perturbations, and the pipeline in the present study 
cannot simply be applied. Therefore, it is important to apply 
deconvolution methods other than reference-based methods 
that require tissue-specific optimization. 

Conclusions 

In recent years, tissue transcriptome data have been abun- 
dantly accumulated in databases, and acquiring novel 
biological insights from these legacy data is an important 
and challenging task. Deconvolution methods that extract 
immune cell information from tissue transcriptome data 
are attractive options. Here, we established an evaluation 

dataset of the corresponding transcriptome and immune cell 
proportions in various mouse liver injury models using small 
compounds for liver-specific modeling. Using this dataset,
we provided a methodology to optimize the combination of 
reference cell types for each cell to be estimated. The opti- 
mized model was applied to external data, suggesting that 
the model more accurately captures the time-series changes 
in each immune cell after APAP administration and is highly 
extrapolatable. The results presented here emphasize the im- 
portance of tissue-specific modeling when applying reference- 
based deconvolution methods to tissue transcriptome 
data. 

Data availability 

Code, models, and data used in this article are 
available on GitHub page ( https://github.com/ 
mizuno-group/LiverDeconv ) and Zenodo (DOI: 
10.5281 / zenodo.10373306). A total of 57 RNA-Seq data 
samples from various mouse liver injury models obtained 

in this study have been deposited with accession code 
GSE237801 in NCBI Gene Expression Omnibus. Processed 

RNA-Seq data and flow cytometry measurements for assess- 
ment are available in our GitHub repository, designed for 
convenient utilization. 

Supplementary data 

Supplementary Data are available at NARGAB Online. 

A c kno wledg ements 

We greatly appreciate Dr Bird’s advice on the protocol used 

to model APAP-induced liver injury in GSE111828. We thank 

all those who contributed to the construction of the following 
datasets employed in the present study, such as LM6, 9 and 13.

Author contributions: I.A.: Data curation, Formal analy- 
sis, Methodology, Software, Investigation, Writing – Original 
draft, Visualization; T.M.: Conceptualization, Resources, Su- 
pervision, Project administration, Writing – Original draft,
Writing – Review and editing, Funding acquisition; K.M.: 
Data curation, Investigation; Y.S.: Methodology, Investiga- 
tion; H.K.: Writing – Review. 

https://github.com/mizuno-group/LiverDeconv
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad111#supplementary-data


NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 1 13 

F

J  

[  

t  

S

C

N

R

 

 

1

1

1

1

1

1

 

 

 

 

 

unding 

SPS KAKENHI Grant-in-Aid for Scientific Research (C)
21K06663] and JSPS KAKENHI [16H06279 (PAGS)] from
he Japan Society for the Promotion of Science, and Takeda
cience Foundation. 

onflict of interest statement 

one declared. 

eferences 

1. Lachmann, A. , Torre, D. , Keenan, A.B. , Jagodnik, K.M. , Lee, H.J. , 
Wang, L. , Silverstein, M.C. and Ma’ayan, A. (2018) Massive mining 
of publicly available RNA-seq data from human and mouse. Nat. 
Commun., 9 , 1366.

2. Lähnemann, D. , Köster, J. , Szczurek, E. , McCarthy, D.J. , Hicks, S.C. , 
Robinson, M.D. , Vallejos, C.A. , Campbell, K.R. , Beerenwinkel, N. , 
Mahfouz, A. , et al. (2020) Eleven grand challenges in single-cell 
data science. Genome Biol. , 21 , 31. 

3. Newman, A.M. , Liu, C.L. , Green, M.R. , Gentles, A.J. , Feng, W. , Xu, Y. ,
Hoang, C.D. , Diehn, M. and Alizadeh, A.A. (2015) Robust 
enumeration of cell subsets from tissue expression profiles. Nat. 
Methods , 12 , 453–457.

4. Altboum, Z. , Steuerman, Y. , David, E. , Barnett-Itzhaki, Z. , 
Valadarsky, L. , Keren-Shaul, H. , Meningher, T. , Mendelson, E. , 
Mandelboim, M. , Gat-V iks, I. , et al. (2014) Digital cell 
quantification identifies global immune cell dynamics during 
influenza infection. Mol. Syst. Biol., 10 , 720.

5. Monaco, G. , Lee, B. , Xu, W. , Mustafah, S. , Hwang, Y .Y . , Carré, C. , 
Burdin, N. , V isan, L. , Ceccarelli, M. , Poidinger, M. , et al. (2019) 
RNA-Seq signatures normalized by mRNA abundance allow 

absolute deconvolution of human immune cell types. Cell Rep., 26 ,
1627–1640.

6. Finotello, F. , Mayer, C. , Plattner, C. , Laschober, G. , Rieder, D. , 
Hackl, H. , Krogsdam, A. , Loncova, Z. , Posch, W. , Wilflingseder, D. , 
et al. (2019) Molecular and pharmacological modulators of the 
tumor immune contexture revealed by deconvolution of RNA-seq 
data. Genome Med , 11 , 34.

7. Linsley, P.S. , Speake, C. , Whalen, E. and Chaussabel, D. (2014) Copy 
number loss of the interferon gene cluster in melanomas is linked 
to reduced T cell infiltrate and poor patient prognosis. PLoS One , 
9 , e109760.

8. Jin, H. and Liu, Z. (2021) A benchmark for RNA-seq 
deconvolution analysis under dynamic testing environments. 
Genome Biol., 22 , 102.

9. Chen, Z. and Wu, A. (2021) Progress and challenge for 
computational quantification of tissue immune cells. Brief. 
Bioinform., 22 , bbaa385.

0. Liu, K. , Wang, F.-S. and Xu, R. (2021) Neutrophils in liver diseases: 
pathogenesis and therapeutic targets. Cell. Mol. Immunol., 18 , 
38–44.

1. Guo, H. , Chen, S. , Xie, M. , Zhou, C. and Zheng, M. (2021) The 
complex roles of neutrophils in APAP-induced liver injury. Cell 
Prolif., 54 , e13040.

2. Saijou, E. , Enomoto, Y. , Matsuda, M. , Yuet-Y in Kok, C. , Akira, S. , 
Tanaka, M. and Miyajima, A. (2018) Neutrophils alleviate fibrosis 
in the CCl4-induced mouse chronic liver injury model. Hepatol. 
Commun., 2 , 703–717.

3. Hatada, S. , Ohta, T. , Shiratsuchi, Y. , Hatano, M. and Kobayashi, Y. 
(2005) A novel accessory role of neutrophils in concanavalin 
A-induced hepatitis. Cell. Immunol., 233 , 23–29.

4. Liu, X. , Yu, T. , Hu, Y. , Zhang, L. , Zheng, J. and Wei, X. (2021) The 
molecular mechanism of acute liver injury and inflammatory 
response induced by Concanavalin A. Mol. Biomed., 2 , 24.

5. Bird, T.G. , Müller, M. , Boulter, L. , V incent, D.F. , Ridgway, R.A. , 
Lopez-Guadamillas, E. , Lu, W .-Y . , Jamieson, T. , Govaere, O. , 
Campbell, A.D. , et al. (2018) TGF β inhibition restores a 
regenerative response in acute liver injury by suppressing paracrine
senescence. Sci. Transl. Med., 10 , eaan1230.

16. Vito Adrian Cantu,J. and Sadural,R.E. (2019) PRINSEQ++, a 
multi-threaded tool for fast and efficient quality control and 
preprocessing of sequencing datasets. PeerJ. doi: 
https:// doi.org/ 10.7287/ peerj.preprints.27553 , 27 February 2019, 
preprint: not peer reviewed.

17. Patro, R. , Duggal, G. , Love, M.I. , Irizarry, R.A. and Kingsford, C. 
(2017) Salmon provides fast and bias-aware quantification of 
transcript expression. Nat. Methods , 14 , 417–419.

18. Frankish, A. , Diekhans, M. , Ferreira, A.-M. , Johnson, R. , Jungreis, I. , 
Loveland, J. , Mudge, J.M. , Sisu, C. , Wright, J. , Armstrong, J. , et al. 
(2019) GENCODE reference annotation for the human and 
mouse genomes. Nucleic Acids Res. , 47 , D766–D773. 

19. Zou, H. and Hastie, T. (2005) Regularization and Variable Selection
via the Elastic Net. J. R. Stat. Soc. Ser. B (Statist. Methodol.) , 67 , 
301–320.

20. Durinck, S. , Spellman, P.T. , Birney, E. and Huber, W. (2009) Mapping
identifiers for the integration of genomic datasets with the 
R / Bioconductor package biomaRt. Nat. Protoc., 4 , 1184–1191.

21. Kolodziejczyk, A.A. , Federici, S. , Zmora, N. , Mohapatra, G. , 
Dori-Bachash, M. , Hornstein, S. , Leshem, A. , Reuveni, D. , 
Zigmond, E. , Tobar, A. , et al. (2020) Acute liver failure is regulated 
by MYC- and microbiome-dependent programs. Nat. Med., 26 , 
1899–1911.

22. Tanaka, Y. , Aleksunes, L.M. , Cui, Y.J. and Klaassen, C.D. (2009) 
ANIT-Induced Intrahepatic Cholestasis Alters Hepatobiliary 
Transporter Expression via Nrf2-Dependent and Independent 
Signaling. Toxicol. Sci., 108 , 247–257.

23. Yang, X. , Greenhaw, J. , Shi, Q. , Roberts, D.W. , Hinson, J.A. , 
Muskhelishvili, L. , Davis, K. and Salminen, W .F . (2013) Mouse Liver
Protein Sulfhydryl Depletion after Acetaminophen Exposure. J. 
Pharmacol. Exp. Ther., 344 , 286–294.

24. Scholten, D. , Trebicka, J. , Liedtke, C. and Weiskirchen, R. (2015) The
carbon tetrachloride model in mice. Lab. Anim., 49 , 4–11.

25. Heymann, F. , Hamesch, K. , Weiskirchen, R. and Tacke, F. (2015) The 
concanavalin A model of acute hepatitis in mice. Lab. Anim., 49 , 
12–20.

26. Nakama,T. (2001) Etoposide prevents apoptosis in mouse liver 
with ?-galactosamine / lipopolysaccharide-induced fulminant 
hepatic failure resulting in reduction of lethality. Hepatology , 33 , 
1441–1450.

27. Kwon, S.-B. , Park, J.-S. , Y i, J.-Y. , Hwang, J.-W. , Kim, M. , Lee, M.-O. , 
Lee, B.-H. , Kim, H.-L. , Kim, J.H. , Chung, H. , et al. (2008) Time- and 
dose-based gene expression profiles produced by a 
bile-duct–damaging chemical, 4,4 ′ -methylene daniline, in mouse 
liver in an acute phase. Toxicol. Pathol., 36 , 660–673.

28. Stasi, R. , Chia, L.W. , Kalkur, P. , Lowe, R. and Shannon, M.S. (2009) 
Pathobiology and Treatment of Hepatitis Virus-Related 
Thrombocytopenia. Mediterr. J. Hematol. Infect. Dis., 1 , 
e2009023.

29. Wang, X. , Sun, R. , Wei, H. and T ian, Z. (2013) High-mobility group 
box 1 (HMGB1)-toll-like receptor (TLR)4-interleukin 
(IL)-23-IL-17A axis in drug-induced damage-associated lethal 
hepatitis: interaction of γδT cells with macrophages. Hepatology , 
57 , 373–384.

30. Noh, J.-R. , Kim, J.-H. , Na, S.-Y. , Lee, I.B. , Seo, Y.J. , Choi, J.H. , Seo, Y. , 
Lee, T.G. , Choi, H.-S. , Kim, Y.-H. , et al. (2020) Hepatocyte CREBH 

deficiency aggravates inflammatory liver injury following 
chemokine-dependent neutrophil infiltration through upregulation 
of NF- κB p65 in mice. Arch. Toxicol., 94 , 509–522.

31. Ghanim, M. , Amer, J. , Salhab, A. and Jaradat, N. (2022) Ecballium 

elaterium improved stimulatory effects of tissue-resident NK cells 
and ameliorated liver fibrosis in a thioacetamide mice model. 
Biomed. Pharmacother., 150 , 112942.

32. Graubardt, N. , Vugman, M. , Mouhadeb, O. , Caliari, G. , 
Pasmanik-Chor, M. , Reuveni, D. , Zigmond, E. , Brazowski, E. , 
David, E. , Chappell-Maor, L. , et al. (2017) Ly6Chi monocytes and 
their macrophage descendants regulate neutrophil function and 

https://doi.org/10.7287/peerj.preprints.27553


14 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 1 

 

clearance in acetaminophen-induced liver injury. Front. Immunol., 
8 , 626.

33. Chen, B. , Khodadoust, M.S. , Liu, C.L. , Newman, A.M. and 
Alizadeh,A.A. (2018) Profiling tumor infiltrating immune cells 
with CIBER SOR T. Methods Mol. Biol., 1711 , 243–259.

34. Le, T. , Aronow, R.A. , Kirshtein, A. and Shahriyari, L. (2021) A 

review of digital cytometry methods: estimating the relative 
abundance of cell types in a bulk of cells. Brief. Bioinform., 22 , 
bbaa219.

35. Hao, Y. , Yan, M. , Heath, B.R. , Lei, Y.L. and Xie, Y. (2019) Fast and 
robust deconvolution of tumor infiltrating lymphocyte from 

expression profiles using least trimmed squares. PLOS Comput. 
Biol., 15 , e1006976.

36. Racle, J. and Gfeller, D. (2020) EPIC: a tool to estimate the 
proportions of different cell types from bulk gene expression data. 
pp. 233–248.

37. Newman, A.M. , Steen, C.B. , Liu, C.L. , Gentles, A.J. , Chaudhuri, A.A. , 
Scherer, F. , Khodadoust, M.S. , Esfahani, M.S. , Luca, B.A. , Steiner, D. , 
et al. (2019) Determining cell type abundance and expression from
bulk tissues with digital cytometry. Nat. Biotechnol., 37 , 773–782.
Received: July 4, 2023. Revised: October 31, 2023. Editorial Decision: December 11, 2023. Accepted
© The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinf
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non
(http: // creativecommons.org / licenses / by-nc / 4.0 / ), which permits non-commercial re-use, distributio
commercial re-use, please contact journals.permissions@oup.com 
38. Xu, L. , Yang, Y. , Wen, Y. , Jeong, J.-M. , Emontzpohl, C. , Atkins, C.L. , 
Sun, Z. , Poulsen, K.L. , Hall, D.R. , Steve Bynon, J. , et al. (2022) 
Hepatic recruitment of eosinophils and their protective function 
during acute liver injury. J. Hepatol., 77 , 344–352.

39. Kanz, M.F. , Gunasena, G.H. , Kaphalia, L. , Hammond, D.K. and 
Syed,Y.A. (1998) A minimally toxic dose of methylene dianiline 
injures biliary epithelial cells in rats. Toxicol. Appl. Pharmacol., 
150 , 414–426.

40. Kemelo, M.K. , Wojnarova, L. , Kutinova Canava, N. and Farhhali, H. 
(2014) D-Galactosamine / lipopolysaccharide-induced 
hepatotoxicity downregulates sirtuin 1 in rat liver: role of sirtuin 1 
modulation in hepatoprotection. Physiol. Res., 63 , 615–623.

41. McGill, M.R. and Jaeschke, H. (2019) Animal models of 
drug-induced liver injury. Biochim. Biophys. Acta - Mol. Basis 
Dis., 1865 , 1031–1039.

42. Hoofnagle, J.H. and Björnsson, E.S. (2019) Drug-induced liver 
injury — types and phenotypes. N. Engl. J. Med., 381 , 264–273.

43. Babai, S. , Auclert, L. and Le-Louët, H. (2021) Safety data and 
withdrawal of hepatotoxic drugs. Therapies , 76 , 715–723.
: December 16, 2023 
ormatics. 
Commercial License 
n, and reproduction in any medium, provided the original work is properly cited. For 


	Graphical abstract
	Introduction
	Materials and methods
	Results
	Discussion
	Conclusions
	Data availability
	Supplementary data
	Acknowledgements
	Funding
	Conflict of interest statement
	References

