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ABSTRACT Here, we present the draft genome sequences of the Coxiella burnetii
Dugway 7D77-80 and Dugway 7E65-68 strains, which were isolated from rodents in
Dugway, UT, in the 1950s. The strains reside in a distinct genomic group of C. bur-
netii and are considered avirulent despite having the largest genomes of the Coxiella
genus.

Coxiella burnetii, the bacterial cause of human Q fever, has an impressive range of
animal hosts, with the majority of human infections acquired by inhalation of

contaminated aerosols generated by infected domestic livestock (1). C. burnetii strains
display a range of virulence in rodent models of infection (2, 3). There are also
correlations between genetic content and disease outcome in humans (4, 5). Five
strains (5J108-111, 7D77-80, 7E9-12, 7E22-57, and 7E65-68) were isolated in 1957 in
Dugway, UT, from either a deer mouse (Peromyscus maniculatus) or a kangaroo rat
(Dipodomys ordii or Dipodomys microps) (2, 6). All were initially shown to be avirulent
for guinea pigs via an intraperitoneal route of infection (2). More recently, it was
demonstrated that the Dugway 5J108-111 strain is avirulent for guinea pigs via the
aerosol route and that infection of CB-17 mice induces low levels of proinflammatory
cytokines compared with those induced by infections by genomic group I strains, such
as African (RSA334), a human acute disease isolate (3). The Dugway strains constitute
a unique genomic group (group VI) (7–9). Genomic sequencing of Dugway 5J108-111
revealed the largest C. burnetii chromosome (2,158 kbp) and plasmid (54.2 kbp), which
together contain 2,052 genes (excluding pseudogenes). This is 203 more genes than
found in the highly virulent Nine Mile (RSA493) reference strain (8). Phylogenetically,
the Dugway strains appear to represent a more primitive genomic group that has not
undergone the genome reduction associated with pathogenic C. burnetii strains (8, 10).
Dugway-like strains have not been isolated from human Q fever patients nor patho-
logical animal infections, such as those causing abortions in sheep or goats (1, 10). Thus,
it is interesting to speculate that the novel gene content of the Dugway isolates enables
persistent subclinical infection of animal hosts with perhaps a specific tropism for rodents
(10, 11). The purpose of this study was to expand our knowledge of the genome content
of C. burnetii Dugway strains.

Strains were grown in acidified citrate cysteine medium-2 (ACCM-2) (12), and DNA
was isolated using a Mo Bio PowerMicrobial DNA extraction kit. DNA was sequenced
using an Illumina MiSeq instrument to generate 2 � 300-bp read pairs. Raw FASTQ
reads for each sample were quality trimmed using Trimmomatic version 0.3 (13).
Quality-trimmed reads were then assembled into contiguous sequences (contigs) using
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SPAdes genome assembler version 3.9.1, with the -careful flag and k-mer lengths of 21,
33, 55, 77, 99, and 127. Contigs with coverage of less than 2 and shorter than 200 bp
were discarded. The draft genomes were submitted to GenBank for annotation using
the NCBI Prokaryotic Genome Annotation pipeline (PGAP). The assembly properties and
annotation statistics for each genome are given in Table 1.

Accession number(s). The annotated draft whole-genome sequences of the chro-

mosome and QpDG plasmid of Coxiella burnetii Dugway 7D77-80 and 7E65-68 strains
have been deposited in DDBJ/ENA/GenBank under the accession numbers shown in
Table 1.
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TABLE 1 Genome statistics

Strain
No. of
contigs

Genome
coverage (�)

Plasmid
coverage (�)

GenBank
accession no.

Chromosome
size (bp)

Total no. of
chromosome genesa

Plasmid
size (bp)

Total no. of
plasmid genes

Dugway 7D77-80 33 75 168 NOLN00000000 2,138,428 2,286 53,590 67
Dugway 7E65-68 35 114 185 NOLM00000000 2,138,988 2,280 53,586 67
aTotal gene count includes coding genes, RNAs (tRNA, noncoding RNA [ncRNA], and rRNA), and pseudogenes.
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