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Abstract
Millimeter Waves (MMW) will be used in the next-generation of high-speed wireless technol-

ogies, especially in future Ultra-Broadband small cells in 5G cellular networks. Therefore,

their biocompatibilities must be evaluated prior to their massive deployment. Using a micro-

array-based approach, we analyzed modifications to the whole genome of a human kerati-

nocyte model that was exposed at 60.4 GHz-MMW at an incident power density (IPD) of 20

mW/cm2 for 3 hours in athermic conditions. No keratinocyte transcriptome modifications

were observed. We tested the effects of MMWs on cell metabolism by co-treating MMW-

exposed cells with a glycolysis inhibitor, 2-deoxyglucose (2dG, 20 mM for 3 hours), and

whole genome expression was evaluated along with the ATP content. We found that the

2dG treatment decreased the cellular ATP content and induced a high modification in the

transcriptome (632 coding genes). The affected genes were associated with transcriptional

repression, cellular communication and endoplasmic reticulum homeostasis. The MMW/

2dG co-treatment did not alter the keratinocyte ATP content, but it did slightly alter the tran-

scriptome, which reflected the capacity of MMW to interfere with the bioenergetic stress

response. The RT-PCR-based validation confirmed 6 MMW-sensitive genes (SOCS3,
SPRY2, TRIB1, FAM46A, CSRNP1 and PPP1R15A) during the 2dG treatment. These 6

genes encoded transcription factors or inhibitors of cytokine pathways, which raised ques-

tions regarding the potential impact of long-term or chronic MMW exposure on metabolically

stressed cells.

Introduction
Industrial development and new technologies have generated new anthropogenic risks for
humans that include chemical risks (i.e., endocrine disrupters, nanoparticles) and physical
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risks (i.e., radioactivity, exposure to electromagnetic fields). The radiofrequencies range from
30 kHz to 300 GHz and have numerous applications in telecommunication (i.e., cellular net-
works, Local Area Networks, surveillance / radars systems) and medical systems (i.e., MRI,
radiofrequency cancer ablation). Radiofrequencies have been classified into the 2B group as
“possibly carcinogenic to humans” by the International Agency for Research on Cancer
(IARC) based on epidemiologic studies [1]. To date, this classification remains unconfirmed by
reproducible experimental studies and molecular mechanisms.

Saturation of the lower part of the microwave spectrum and a constant demand for higher
data rates (for gaming, data streaming, etc.) anytime and anywhere have made new frequencies
necessary. Millimeter waves (MMW, 30–300 GHz) constitute a promising new range of fre-
quencies that may be heavily used in the coming years. The 60-GHz band is extremely attrac-
tive for high-speed wireless systems because a broadband, unlicensed bandwidth is available
worldwide. High data-rate small cells and the point-to-point backhaul links of future 5G het-
erogeneous networks are expected to be massively deployed after 2020, which will lead to the
exposure of personnel and the general public to new signals. MMW have also been used for
therapeutic purposes in Eastern European countries [2,3], which raises questions regarding
possible interactions between these waves and living systems. Several publications have shown
both the hypoalgesic [4,5] and immune/inflammatory [6–8] effects of MMW that primarily
depend on the frequency of interest. However, the mechanisms associated with these therapeu-
tic effects remain unknown.

MMWmolecular targets are unidentified to date, and no mechanisms have linked MMW
with cancer or medical applications. We aimed to identify these potential links. To this end, we
explored the possibility of energy stress induction. Ordinarily, alterations in cellular energy lev-
els are observed in cancer cells. This metabolic change is characterized by a decreased aerobic
mitochondrial production of ATP, which is associated with increased anaerobic glycolysis and
lactic acid production [9,10]. This observation is known as the Warburg effect [11,12]. We
investigated the ability of MMW to modify the cellular response to a metabolic stressor that
mimicked the Warburg effect. Based on this hypothesis, we disrupted the glucose pathway by
treating cells to a competitive inhibitor of glucose known as 2-deoxyglucose (2dG). This treat-
ment decreases ATP production and starts to be used for several cancer therapeutic purposes
[13,14] by inducing tumor cell apoptosis [15], as well as for tumor imaging while complexed
with radioactive component [16].

Because the MMW penetration depth in tissues and liquids is small (approximately 0.5 mm
at 60 GHz), the primary MMW targets are the skin (mainly keratinocytes, melanocytes, and
nerves endings) and the cornea [17,18]. Because the skin is a sensitive organ that responds to
various environmental insults, it represents a notably attractive target for MMW-mediated bio-
logical effects. Importantly, multiple publications have shown that the skin can function as a
neuroendocrine organ that affects the global homeostasis of the endocrine and/or immune sys-
tems [19–21]. Therefore, the first aim of this study was to evaluate the effect of a 60-GHz-at-20
mW/cm2 treatment on a primary keratinocyte culture. The second aim was to observe the bio-
logical effects of these waves when the cells were exposed to a metabolic stressor that mimicked
the Warburg effect.

Materials and Methods

Cell culture
Because the primary MMW target comprises the superficial layer of the skin, experiments were
performed using the predominant cell type in the skin-keratinocytes. The keratinocytes were
derived from two sources. The first model, primary human neonatal keratinocytes (provided
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by Invitrogen, Cergy Pontoise, France), was maintained in Keratinocyte-SFM medium (Gibco,
Carlsbad, CA) supplemented with antibiotics (Invitrogen, Cergy Pontoise, France) and was
seeded onto collagen IV-coated plates (Becton Dikinson Franklin Lakes, NJ), according to the
manufacturer’s instructions. To maintain cell culture homogeneity, primary keratinocyte cul-
tures were used between passages 4 and 8 for all experiments. For exposure experiments, 6-well
collagen IV plates (Becton Dikinson Franklin Lakes, NJ) were seeded with 250 000 cells per
well two days prior to the exposures. The HaCaT cell line was chosen as the second keratino-
cyte model and was cultured as previously described [22]. Cells (200 000 cells/well) were trans-
ferred to 6-well plates one day prior to the MMW exposure. The primary keratinocyte culture
and HaCaT cell line were exposed [Expo] or sham-exposed [Sham] at 60.4 GHz in the presence
or absence of 20 mM 2-deoxyglucose (2dG, Sigma-Aldrich, Saint-Quentin Fallavier, France),
using a previously described exposure system [23]. The exposure protocol is summarized in
Table 1.

ATP content measurement
HaCaT cells were trypsinized and harvested by centrifugation after the treatments. Cells were
lysed, and the ATP concentration was quantified using the Roche ATP bioluminescence Assay
kit, according to the manufacturer’s instructions (Roche diagnostics, Meylan, France). The
sample bioluminescence was measured at 562 nm with a VERITAS microplate luminometer
(Turner BioSystems, Sunnyvale, CA, USA).

Exposure system and experimental setup
The 6-well culture plate was placed in the MEMMERT UE400™ incubator and exposed from
the bottom by a standard pyramidal horn antenna. Cells were exposed [Expo] or Sham-
exposed [Sham] with an average Incident Power Density (IPD) of 20 mW/cm2 for 3 hours.
This IPD level was the limit defined by the International Commission on Non-Ionizing Radia-
tion Protection (ICNIRP) guideline [24] for frequencies with spatial maximum power density
averages that not exceed 1 cm2. To protect cells fromMMW exposure-induced overheating,
the temperature increase was compensated by decreasing the incubator set point. The tempera-
ture in the cell medium was monitored using a 4-channel Reflex fiber optic thermometer
(NEOPTIX, Quebec, Canada). Complete biological replicates were performed (n = 4 for
HaCaT; n = 5 to 6 for primary keratinocytes–Table 1), and the order of each manipulation was
randomly determined.

Microarray
Primary keratinocytes were immediately harvested following exposure. Total RNA was purified
using the Qiagen RNeasy kit (Qiagen, Hilden, Germany) and quantified using the Nanodrop
1000 spectrophotometer (Nanodrop Technology, Cambridge, UK), as previously described
[25].

A one-color whole gene expression modification analysis was performed using the Agilent
Whole Human Genome 8x60K Microarray Kit (Agilent Technologies, Les Ulis, France). Four
replicates per condition were analyzed with the GeneSpring GX software (Agilent Technolo-
gies, Les Ulis, France). Briefly, the expression profile was log2-transformed and normalized
(scaling and baseline transformation), and 23 767 gene entities were eventually detected on
the microarrays. Expression level-based filters (intensity greater than 125) with standard
deviations< 0.5 were used for probe selection as previously described [25]. The complete data
set was deposited in the Gene Expression Omnibus (GEO) database (www.ncbi.nlm.nih.gov/
geo, GEO series accession number: GSE83829).
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Microarray analysis
Gene expression modifications were compared using a two-tailed Mann-Whitney test. A
microarray analysis was performed using multiple Mann-Whitney tests (detailed in S1 Fig) for
confirmation. P-values were adjusted by controlling the false discovery rate (FDR) with the
Benjamini & Hochberg (BH) correction for multiple testing. A gene was considered signifi-
cantly differentially expressed if the adjusted p-value was below 0.05, and the absolute fold-
change (FC) was above 2 or 1.5. Four direct side-by-side comparisons (S1 Fig) were performed.
The first aimed to determine the MMW effect alone (Sham versus Expo). The second charac-
terized the 2dG effect on gene expression (Sham versus Sham_2dG). The third aimed to deter-
mine if the co-exposure altered gene expression (Sham_2dG versus Expo_2dG). The fourth
was an analysis of the global MMW effect on gene expression apart from the 2dG treatments
((Sham+Sham_2dG) versus (Expo+Expo_2dG)). For the last comparison, the two Sham condi-
tions and the two Expo conditions were pooled.

RT-PCR validation
Five hundred nanograms of RNA were reverse-transcripted using the M-MLV Reverse Tran-
scriptase kit, according to the manufacturer’s instructions (Invitrogen, Carlsbad, CA). Primers
were designed using QuantPrime (www.quantprime.de), verified on Primer-blast (www.ncbi.
nlm.nih.gov/tools/primer-blast/), and purchased from Sigma Aldrich (Sigma Aldrich,
St. Louis, MO). The primer sequences are presented in Table 2. Two housekeeping genes, Glyc-
eraldehyde-3-Phosphate Dehydrogenase (GAPDH) and TATA Box-Binding Protein (TBP),
were used to normalize gene expression. PCR products, amplified with the IQ SYBR Green

Table 1. Summary of exposure protocol for the microarray experiment.

Sham Expo Sham_2dG Expo_2dG

60-GHz exposure (20 mW/cm2) - + - +

2-deoxyGlucose (2dG) (20 mM) - - + +

Treatment time 3 h 3 h 3 h 3 h

Average Temperature in culture medium (°C) 35.81±0.16 35.16±0.58 35.69±0.22 34.54±0.95

Number of replicates used for microarray experiments 4 4 4 4

Number of replicates used for RT-PCR validation 5 5 6 6

doi:10.1371/journal.pone.0160810.t001

Table 2. List of primers used to validate the differentially expressed genes determined by the GeneSpring analysis.

Gene Symbol Forward Reverse Refseq #

CSRNP1 ATAGGATCTGCGACCCTGAGAC TGTGTGGTCCATCTGGCACTTG NM_033027

FAM46A ACACCACTCACGCTCAAGGAAG TCCATCGGTCAGAGTCATTGCAC NM_017633

HBEGF GAGACTTGTGCTCAAGGAATCGG CCTCTGCAGTCTGAAATCACCTTG NM_001945

HS3ST1 AGCAAGTATGGAAGCGGGACTC AGTTGCTGCACACGTAGCCATC NM_005114

LIF TGCTTCATCCGGCTTAGCTTGG AGTTTGTCTTTCTCGAAGCCCATC NM_002309

PPP1R15A GAGGAGGCTGAAGACAGTGG AATTGACTTCCCTGCCCTCT NM_014330

TRIB1 CTTCTGGTTGGACGATACCC TTCCAAGACGGACTCAAACC NM_025195

SOCS3 TCGCCTTAAATGCTCCCTGTCC TCCAGGCTGAGTATGTGGCTTTC NM_003955

IER3 GAACTGCGGCAAAGTAGGAG AACTTACGACCCACCACCAG NM_003897

SPRY2 CGCAGAAAGAAGAGAATCCAAGGG GAACACATCTGAACTCCGTGATCG NM_005842

GAPDH TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG NM_002046

TBP TGCACAGGAGCCAAGAGTGAA CACATCACAGCTCCCCACCA NM_003194

doi:10.1371/journal.pone.0160810.t002
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supermix (Bio-rad, Hercules, CA), were continuously measured using the CFX Connect™ Real-
Time PCR Detection System (Bio-Rad, Hercules, CA). All data were incorporated into the CFX
Manager gene analysis software (Bio-Rad), and the relative changes in gene expression were
analyzed using the delta Ct method [26]. The RT-PCR-based validation was performed using
mRNA obtained from the four mRNA preparations used in the microarray experiments along
with one or two additional mRNAs, depending on the condition being tested (see materials
and methods, Table 1). The results were statistically analyzed using the two-tailed Wilcoxon-
Mann-Whitney test. Each value was provided as the mean with its standard deviation (SD) and
was considered statistically significant when p< 0.05. Statistics were calculated with R from
the BiostaTGV interface http://marne.u707.jussieu.fr/biostatgv/.

Results

Treatment with 2dG, but not with MMW, affects the intracellular ATP
concentration
The human HaCaT keratinocyte cell line was treated with 20 mM 2dG and/or exposed to 60.4
GHz MMWwith an IPD of 20 mW/cm for 3 hours. The MMW did not significantly modify
the ATP level after a 3-h exposure at 60.4 GHz (Fig 1). However, the 2dG treatment induced a
significant 2-fold decrease in the ATP contents of unexposed and MMW-exposed cells. More-
over, no significant difference in the ATP level was observed with MMW co-exposure during
the 2dG treatment. These data clearly indicate that MMW does not potentiate the 2dG-trig-
gered energetic stress.

Treatment with 2-deoxyglucose, but not with MMW, dramatically affects
the human keratinocyte transcriptome
Human primary keratinocytes were treated with or without 20 mM 2dG and exposed [Expo]
or unexposed [Sham] to an average Incident Power Density (IPD) of 20 mW/cm2 for 3 hours.
Four exposure conditions were tested (Sham, Expo, Sham_2dG and Expo_2dG; Table 1). First,
the MMW effect on the primary keratinocyte transcriptome was evaluated. Without the 2dG
treatment, a Mann-Whitney test comparison of the [Sham] and [Expo] conditions (Table 1, S1
Fig) showed that the primary keratinocyte transcriptome was unchanged (Table 3). This result
demonstrated that in athermic conditions without co-exposure, acute MMW stimulation did
not stress cells enough to alter gene expression, which confirmed our previously published data
[25].

The 2dG effect on keratinocyte gene expression was also evaluated. Using a side-by-side
Benjamini Hochberg-corrected Mann-Whitney test, the 2dG_Sham and Sham conditions were
compared using a cut-off FC value of 2, where 665 differentially expressed probes were identi-
fied, or 1.5, where 770 differentially expressed probes were identified. Among those in the last
list (FC> 1.5 and a BH-corrected p-value< 0.05), 632 probes corresponded to unique coding
genes, with 286 probes upregulated and 388 downregulated by the 2dG treatment. The absolute
FC values fell between 1.5 and 30, and their average was 2.6 (S1 Table).

Functional enrichments were performed on the 632 coding genes using the DAVID soft-
ware (David version 6.7; http://david.abcc.ncifcrf.gov/). Biological categories were considered
enriched when the Bonferroni-corrected p-value fell below 0.05. The 2dG-affected biological
processes and molecular functions were mainly associated with DNA-binding activity and
transcription and were strongly associated with transcriptional repressor activity (S2–S5
Tables). A KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways database analysis
through the WEBGESTALT toolkit (WEB-based GEne SeT AnaLysis Toolkit [27]) was
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performed (S6 Table). The main enrichment was associated with the p53 signaling pathway,
which was consistent with a potential role for 2dG in cell cycle arrest. We also highlighted the
enrichment of the neurotrophin signaling pathway with an emphasis on the NFκBIE gene,
which is implicated in cell survival. Moreover, 2dG interferes with cellular communication by
increasing the potential cytokine-cytokine receptor interaction (i.e., with IL6, IL20, IL24 and
CXCL3) and factors involved in MAPK signaling pathways (i.e., DUSP10, DDIT3, GADD45A
and GADD45B). In the KEGG-enriched pathway, the most remarkable effect involved protein
processing in the endoplasmic reticulum (i.e., PPP1R15A, DDIT3, XBP1, HSPA1B and
EIF2AK3). This highlighted an effect on endoplasmic reticulum stress, which is specifically
characterized by a high overexpression of the DNA-Damage-Inducible Transcript 3 (DDIT3),
which is a dominant-negative inhibitor of CCAAT/enhancer-binding protein (C/EBP).

MMW effects on the human keratinocyte transcriptome with the 2dG co-
treatment
Two Mann-Whitney statistical analyses were performed. These analyses aimed to determine
if MMWmodified the primary keratinocyte transcriptome during the 2dG co-treatment
(Table 1, S1 Fig). Our objective was to determine the MMW effect on the 2dG-stressed kerati-
nocytes [sham_2dG] versus [Expo_2dG] by performing a Mann-Whitney test (Table 3, S1
Fig). The analysis with the BH correction showed that six genes were differentially expressed

Fig 1. Relative cellular ATP concentration. HaCaT cells were treated with or without 20 mM 2dG for 3 h. Additionally, cells were exposed
(black histograms) or unexposed (white histograms) to 60.4 GHz (20 mW/cm2). Data are presented as the mean of four independent
experiments and are expressed as the percent of an independent unexposed control that was set to 100%.

doi:10.1371/journal.pone.0160810.g001
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with fold changes above 1.5; fourteen genes were identified without the BH correction (the
gene are detailed in Table 3).

A second Mann-Whitney test was performed to compare the expo and sham conditions
regardless of the 2dG treatment (Table 3; S1 Fig). This analysis was performed to determine if
a general, 2dG-independent MMW effect was evident on the keratinocyte transcriptome
([Sham+Sham_2dG] versus [Expo+Expo_2dG]). With the BH correction, this test identified
two genes as differentially expressed with fold changes above 1.5; seven genes were observed
without the BH correction. Most of these genes were also observed in the previously detailed
analysis (Table 3).

Ten genes were selected for validation by RT-PCR based on these analyses. This gene
list contained all of the genes revealed by the Mann-Whitney analysis with the BH correction
(8 genes) and two from the Mann-Whitney test without the BH correction that showed low
p-values. Altogether, the ten genes selected from the group of nineteen for the RT-qPCR-
based validation were: heparin-binding EGF-like growth factor (HBEGF), cysteine and ser-
ine-rich nuclear protein 1 (CSRNP1), leukemia inhibitory factor (LIF), heparan sulfate (glu-
cosamine) 3-O-sulfotransferase 1 (HS3ST1), family with sequence similarity 46, member A
(FAM46A), tribbles pseudokinase 1 (TRIB1), sprouty homolog 2 (SPRY2), immediate early
response 3 (IER3), protein phosphatase 1, regulatory subunit 15A (PPP1R15A) and suppres-
sor of cytokine signaling 3 (SOCS3), which belongs to the same protein family as SPRY2
(Table 3).

Table 3. Conditions compared and genes determined as statistically relevant by Mann-Whitney analyses.

Conditions compared BH FC BH corrected p-value BH uncorrected p-value Gene list

Sham versus Expo Yes 0 Yes 0

No 0 No 0

Sham_2dG versus Expo_2dG Yes 2.0 0.039 0.021 CSRNP1

1.73 0.039 0.021 FAM46A

2.74 0.039 0.021 HBEGF

2.29 0.039 0.021 HS3ST1

1.78 0.039 0.021 LIF

1.67 0.039 0.021 TRIB1

No 1.52 0.021 ALDH1L1

1.50 0.043 DUSP5

1.66 0.043 IER3

1.54 0.021 PIM1

1.61 0.043 ERRFI1

1.60 0.043 PPP1R15A

Down:

1.55 0.021 ZNF555

1.57 0.021 HUWE1

(Sham+Sham_2dG) versus (Expo +Expo_2dG) Yes 1.78 0.013 0.005 SPRY2

1.51 0.013 0.009 IER3

No 1.79 0.009 SOCS3

1.63 0.046 CSRNP1

1.58 0.046 HES1

Down:

1.78 0.0063 ZNF441

1.60 0.036 LOC100130876

doi:10.1371/journal.pone.0160810.t003

Additive Effects of Millimeter Waves and 2dG Co-Exposure on the Human Keratinocyte Transcriptome

PLOSONE | DOI:10.1371/journal.pone.0160810 August 16, 2016 7 / 14



Gene validation by RT-qPCR
Six genes were validated as MMW sensitive (Fig 2A). Of the four unconfirmed genes, one
(HS3ST1) was not validated due to the high instability of its Ct values, and the profiles of three
genes (IER3, LIF and HBEGF) were inconsistent with those determined by microarray (Fig
2B). The six validated genes were SOCS3, SPRY2, FAM46A, TRIB1, PPP1R15A and CSRNP1
(Fig 2). For these genes, a relevant MMW effect was observed when MMWwas applied in com-
bination with 2dG. Altogether, these PCR validations have permit to validate the existence of
six genes differentially expressed while response to metabolic stroke was associated with acute
MMW exposure.

Discussion
We observed no effects of the MMW treatment alone on the human primary keratinocyte tran-
scriptome in athermic conditions, and MMW did not alter the ATP contents of exposed cells.
The 2dG treatment affected ATP metabolism, which altered gene expression. The most notable
response was the decrease in gene expression, which was consistent with adaptation to meta-
bolic stress. It is noteworthy that the 2dG treatment increased the expression of genes impli-
cated in transcriptional repression. Moreover, the treatment did not activate genes involved in
cell apoptosis, which was consistent with the literature [28]. Therefore, the cells survived dur-
ing the 3-hour treatment by activating pro-survival phosphorylation cascades [29]. This obser-
vation was consistent with the KEGG-enriched MAPK signaling pathway.

Interestingly, the 2dG treatment triggered a stress response known as the unfolded protein
response (UPR) by affecting several relevant genes [30,31]. Among the ER-localized UPR early
stress sensors, only eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3, also
known as PERK) was upregulated, with a fold change of 2.16. A specific EIF2AK3 increase
without a modification to IRE1 has been shown to be a cellular marker of adaptation and sur-
vival during hypoxia [32]. The XBP1 gene was also upregulated by this treatment (FC = 1.95),
along with its target gene, DNAJB9 (upregulated, FC = 4.5). The target genes of the EIF2AK3
activity cascade [33,34], such as DDIT3 (also known as CHOP or GADD153, FC = 28) and
PPP1R15A (also known as GADD34, FC = 5.6) were also upregulated. Several reports address-
ing glucose starvation have highlighted DDIT3 and PPP1R15A as affected genes, and DDIT3
has been described as a promoter of apoptosis under conditions of ER stress [35,36]. Because
the 2dG treatment was short (3 h), the 2dG treatment induced increases in genes associated
with cell rescue, such as DNAJB9 (also known as ERDJ4, FC = 4.5), but not its associated genes,
such as HSPA5 (also known as GRP78 or BIP) and HYOU1 (also known as ORP150). The
absence ofHSPA5 andHYOU1 upregulation was noteworthy because these genes were previ-
ously reported as upregulated by 2dG [37,38]. This discrepancy may be due to our 3-hour 2dG
treatment, which may have focused on the early response genes of the cell. Had the treatment
been prolonged, more apoptosis-associated genes would have been observed.

However, the 2dG treatment activated cytokine production by increasing IL6 (FC = 7) and
IL6R (FC = 2) expression, along with CXCL3 (FC = 11). Two cytokines that are specific to kera-
tinocytes [39] and implicated in T cell-mediated skin inflammation [40] were also differentially
expressed (IL20 and IL24, FC = 5.3 and 5.6, respectively). These pro-inflammatory effects acti-
vate the immune system, particularly neutrophils [41,42]. Therefore, the immune response is
expected to sustain the positive effects of the 2dG treatments against cancer when it is used as a
co-treatment [16].

Regarding the MMW effect on keratinocytes, we found that exposure did not modify the cel-
lular ATP cell content. This observation indicated that acute MMW exposure did not to target
mitochondrial function. Moreover, the profile of differentially expressed genes observed after
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Fig 2. The gene expression profiles of the validated genes.Histograms represent the RT-qPCR data. The
expression profiles were classified depending on their validation profiles as follows: (A) validated by RT-PCR or
(B) not validated by RT-PCR.

doi:10.1371/journal.pone.0160810.g002
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the MMW exposure was not caused by increased metabolic stress but instead reflected the
capacity of MMW to interfere with the cellular response when cells were treated with 2dG. The
microarray analysis highlighted that acute MMW exposure alone had no impact on gene
expression, which was consistent with a previous study [25]. Even if the 2dG treatment induced
endoplasmic reticulum (ER) stress, the MMW co-treatment did not modify ER stress as previ-
ously described [22]. However, the statistical analyses showed additive effects on gene expres-
sion only when cell homeostasis was disturbed by 2dG. Of these potential biomarkers, ten genes
were selected for a RT-PCR-based validation, and six of the ten selected genes were validated
(SPRY2, SOCS3, PPP1R15A, FAM46A, TRIB1 and CSRNP1). This demonstrated a clear and rel-
evant MMW effect. Five of the six validated genes (SOCS3, SPRY2, PPP1R15A, TRIB1 and
CSRNP1) were associated with the cell surface receptor signaling pathway (GO:0007166; Biolog-
ical process). This involvement suggests that MMW co-exposure may modify the cell surface.
Moreover, four of these genes (SOCS3, SPRY2, PPP1R15A, TRIB1) were also involved in nega-
tively regulating signaling (GO:0023057), particularly signal transduction (GO:0009968).

MMW exposure directly increased the expression of SPRY2 and SOC3. Sprouty homolog 2
(SPRY2) inhibits receptor tyrosine kinases (RTKs) through the ERK pathway [43]. This gene
is essential for development and the prevention of diseases, such as cancer and leukemia. It is
noteworthy that SPRY2 is connected to the RAS/RAF signaling pathway that was previously
observed to be modulated after electromagnetic exposure [44,45]. The suppressor of cytokine sig-
naling 3 (SOCS3) is a STAT-induced STAT inhibitor that tempers the effects of several cytokines
and specifically targets the JAK2/STAT5 and JAK2/STAT3 pathways. SOCS3 was not previously
observed as a specific target of the millimeter waves, but modulation of the STAT pathway has
been previously reported [46–48]. Together, the up-regulation of both SPRY2 and SOCS3 sug-
gests that the cytokine cascades that target RAS/RAF and JAK/STAT are inhibited after a short
MMW stimulation. SOCS3, PIM1, TRIB1, PPP1R15A, CSRNP1 (also named AXUD1) and IER3
have also been associated with thrombocythemia and have been precisely linked to the JAK/
STAT pathway [49]. Interestingly, the JAK/STAT signaling pathway is activated by the IL6/
IL6R signaling pathway, which is upregulated by 2dG. Therefore, SOCS3, SPRY2, PPP1R15A,
TRIB1 and CSRNP1 are involved in cellular communication. This last association implies a need
for further investigations into the risks of long-term, chronic MMW exposure on humans.

Conclusions
Treatment with 2dG induced a strong modification of the gene expression profile, but the
MMW effect on gene expression was weaker. No genes were modified when the cells were
exposed to MMW alone under athermic conditions. When cells were co-treated with MMW
and 2dG, only six genes were identified and validated by RT-qPCR. Of these validated genes,
SPRY2 and SOCS3 constituted an early response in which cytokine pathways could be inhib-
ited, and CSRNP1 corresponded to a transcription factor. Because these upregulated genes can
initiate a late transcriptome modification in the exposed cells, they may be involved in a long-
term response. Together, the differentially expressed genes indicated activity through the JAK/
STAT signaling pathway. In the future, investigations into the effects of long-term, chronic
MMW exposure will be necessary to understand the implications of these cytokine and tran-
scription factor modifications.
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