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Abstract.—The estimation of multiple sequence alignments of protein sequences is a basic step in many bioinformatics
pipelines, including protein structure prediction, protein family identification, and phylogeny estimation. Statistical
coestimation of alignments and trees under stochastic models of sequence evolution has long been considered the most
rigorous technique for estimating alignments and trees, but little is known about the accuracy of such methods on biological
benchmarks. We report the results of an extensive study evaluating the most popular protein alignment methods as well
as the statistical coestimation method BAli-Phy on 1192 protein data sets from established benchmarks as well as on 120
simulated data sets. Our study (which used more than 230 CPU years for the BAli-Phy analyses alone) shows that BAli-Phy
has better precision and recall (with respect to the true alignments) than the other alignment methods on the simulated data
sets but has consistently lower recall on the biological benchmarks (with respect to the reference alignments) than many of
the other methods. In other words, we find that BAli-Phy systematically underaligns when operating on biological sequence
data but shows no sign of this on simulated data. There are several potential causes for this change in performance, including
model misspecification, errors in the reference alignments, and conflicts between structural alignment and evolutionary
alignments, and future research is needed to determine the most likely explanation. We conclude with a discussion of the
potential ramifications for each of these possibilities. [BAli-Phy; homology; multiple sequence alignment; protein sequences;
structural alignment.]

Multiple sequence alignment is a basic step in
many bioinformatics pipelines, including phylogenetic
estimation, but also for analyses specifically aimed at
understanding proteins. For example, protein alignment
is used in protein structure and function prediction
(Cuff and Barton 2000), protein family and domain
identification (George and Heringa 2002; Mulder
and Apweiler 2002), functional site identification
(Sankararaman and Sjölander 2008; Alterovitz et al.
2009), domain identification (Bernardes et al. 2016),
inference of ancestral proteins (Holmes 2017), detection
of positive selection (Fletcher and Yang 2010), and
protein–protein interactions (Xue et al. 2015). However,
multiple sequence alignment is often difficult to perform
with high accuracy, and errors in alignments can have a
substantial impact on the downstream analyses (Lake
1991; Morrison and Ellis 1997; Ogden and Rosenberg
2006; Dessimoz and Gil 2010; Fletcher and Yang 2010;
Simmons et al. 2010; Wang et al. 2011; Karin et al. 2014;
Philippe et al. 2017). For this reason, the evaluation
of multiple sequence alignment methods (and the
development of new methods with improved accuracy),
especially for protein sequences, has been a topic
of substantial interest in the bioinformatics research
community (e.g., Thompson et al. 2011; Wang et al. 2011;
Iantorno et al. 2014; Pais et al. 2014; Le et al. 2017).

Protein alignment methods have mainly been
evaluated using databases, such as BAliBase (Bahr et al.

2001), Homstrad (Mizuguchi et al. 1998), SABmark
(Van Walle et al. 2005), Sisyphus (Andreeva et al.
2007), and Mattbench (Daniels et al. 2012), that provide
reference alignments for different protein families and
superfamilies based on structural features of the protein
sequences (see discussions about these benchmarks in
Aniba et al. 2010; Iantorno et al. 2014). Performance
studies evaluating protein alignment methods using
these benchmarks (e.g., Blackshields et al. 2006; Edgar
and Batzoglou 2006; Kemena et al. 2011; Sievers et al.
2011; Thompson et al. 2011; Mirarab et al. 2015; Nguyen
et al. 2015) have revealed conditions under which
alignment methods degrade in accuracy (e.g., large data
sets, or highly heterogeneous data sets with low average
pairwise sequence identity) and have also revealed
differences between alignment methods in terms of
accuracy, computational efficiency, and scalability to
large data sets. In turn, the databases have been used to
provide training data for machine learning techniques
to infer alignments on novel data sets (e.g., Do et al.
2006; Roshan and Livesay 2006). Method development
for protein alignment is thus strongly influenced by these
databases and has produced several protein alignment
methods that are considered highly accurate and robust
to many different challenging conditions.

An alternative approach to multiple sequence
alignment has been developed within the statistical
phylogenetics community in which an alignment is
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coestimated with a phylogenetic tree by considering
stochastic models of evolution in which sequences
evolve down a model tree under a process that
includes substitutions, insertions, and deletions (jointly
referred to as “indels”). Likelihood-based estimation of
alignments and/or trees under these models provide
a mathematically rigorous and therefore appealing
approach, and was initially proposed in Bishop and
Thompson (1986). Subsequent extensions of this basic
approach were made in a sequence of papers (Thorne
et al. 1991, 1992a, 1992b; Holmes and Bruno 2001;
Miklós 2002, 2003; Hein et al. 2003; Lunter et al.
2003; Miklós et al. 2004; Fleissner et al. 2005; Lunter
et al. 2005; Suchard and Redelings 2006; Redelings and
Suchard 2007; Novák et al. 2008; Bradley et al. 2009;
Redelings 2014). BAli-Phy (Suchard and Redelings 2006;
Redelings and Suchard 2007; Redelings 2014), a Bayesian
method that uses MCMC sampling to jointly estimate
the multiple sequence alignment and phylogenetic tree
under a stochastic sequence evolution model that allows
for indels and substitutions, is the most well-known of
these methods.

A related approach is PRANK (Löytynoja and
Goldman 2008), which closely adheres to a phylogenetic
model of sequence evolution but does not rely on a
detailed stochastic model to the same degree. Because
of its similarity in design objectives, Blackburne and
Whelan (2013) refer to PRANK as a “heuristic to
full statistical alignment.” Blackburne and Whelan
(2013) examined alignments computed using BAli-
Phy and PRANK in comparison to other methods on
biological protein data sets; BAli-Phy and PRANK were
clearly outliers in their visualization using principle co-
ordinate analysis (PCoA, a type of multidimensional
scaling), while the remaining methods largely grouped
together.

Only a few studies have evaluated BAli-Phy for
accuracy on either biological or simulated data.
Three studies (Liu et al. 2009; Redelings 2014; Nute
and Warnow 2016) evaluated BAli-Phy on simulated
nucleotide data sets and found it to have superior
accuracy compared to the other alignment methods
they examined; this question was examined directly
in Liu et al. (2009), Redelings (2014), and indirectly in
Nute and Warnow (2016) through the substitution of
MAFFT (Katoh et al. 2002) by BAli-Phy within PASTA
(Mirarab et al. 2015), a div ide-and-conquer meta-
method that is designed to scale MSA methods to larger
data sets.

Additionally, Katoh and Standley (2016) evaluated
BAli-Phy on protein biological benchmarks as well as on
simulated protein data sets (to the best of our knowledge,
this is the only study that has evaluated BAli-Phy in
terms of accuracy on biological data). In their study,
BAli-Phy was much less accurate than some other MSA
methods (PRANK, Muscle, Edgar 2004, and variants
of MAFFT) on the biological data, but was very good
(and for some criteria it was the best) on the simulated
data. This study is intriguing but its evaluation of
BAli-Phy was limited; the data analyzed were large for

BAli-Phy (the simulated data sets had 100 sequences,
and the biological data sets ranged up to 100 sequences),
and each run was limited to 1000 MCMC iterations.
As discussed by the authors (and in Redelings 2018),
1000 MCMC iterations may not have been sufficient to
allow BAli-Phy to reach convergence on data sets of this
size, and it is known that BAli-Phy can have reduced
accuracy if stopped prematurely (Redelings 2018). The
contrast in performance on biological and simulated
data is notable but a more careful evaluation of BAli-
Phy is necessary to determine whether these trends were
spurious.

Here, we report on an extensive performance study
in which we compared BAli-Phy version 2.3.8 to
a collection of leading protein sequence alignment
methods. We used 1192 data sets from four established
benchmark databases of protein multiple sequence
alignments (BAliBASE v3.0, Sisyphus v1.2, Mattbench,
and Homstrad, all downloaded in March 2017) as well
as 120 simulated data sets in order to characterize the
relative and absolute accuracy of the alignment methods
we explore. We limited our study to biological sequence
data sets with at most 25 sequences and to simulated
data sets (under 6 model conditions) with 27 sequences,
so that we were able to run BAli-Phy for long enough
to improve its chances of converging. In particular, we
ran BAli-Phy on each data set using 32 independent
runs, each for 48 h (i.e., BAli-Phy was run somewhat
longer than 2 months on each data set). This analysis
protocol enabled BAli-Phy to generate many hundreds
of thousands (and in several cases more than 1,000,000)
of MCMC samples for each data set that it analyzed
and hence to achieve good ESS values that suggest that
BAli-Phy may have converged on these data sets. Overall
our study used more than 230 CPU years for the BAli-
Phy analyses alone and provides a careful evaluation
of how BAli-Phy performs on biological and simulated
data sets.

In our simulation study, BAli-Phy produced
alignments that had higher Modeler scores (a measure
of precision) and SP-scores (a measure of recall) than
other alignment methods; furthermore, BAli-Phy
produced alignments that were very close in length
to the true alignment. The results on biological data,
however, were quite different. There, BAli-Phy generally
had Modeler scores that were often better than most
other alignment methods, but SP-scores that were lower
than many other alignment methods; furthermore,
BAli-Phy produced alignments that were generally
longer than the reference alignment and also longer
than all the other alignments. In other words, BAli-Phy
tended to underalign on biological data but not on
the simulated data and was visibly an outlier on the
biological data in terms of alignment length. Our
results are consistent with the prior studies discussed
above in finding that BAli-Phy is an outlier among
alignment methods and provides a more detailed
examination of these differences. Finally, there are
several possible explanations for why BAli-Phy has
different performance on biological and simulated data
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(discussed below), and further research is needed to
determine the causes of these differences.

MATERIALS AND METHODS

Alignment Methods
We explored the following multiple sequence

alignment methods: BAli-Phy v. 2.3.6, Clustal-Omega
v. 1.2.4 (Sievers et al. 2011), CONTRAlign v. 1.04 (Do et al.
2006), DiAlign v. 2.2.2 (Morgenstern 1999; Golubchik
et al. 2007), Kalign v. 2.04 (Lassmann and Sonnhammer
2005), MAFFT v. 7.305b (Katoh et al. 2002), Muscle
v. 3.8.31 (Edgar 2004), PRANK v. 140603 (Löytynoja and
Goldman 2005, 2008), PRIME v. 1.1 (Yamada et al. 2006),
Probalign v. 1.4 (Roshan and Livesay 2006), ProbCons
v. 1.12 (Do et al. 2005), PROMALS3D (retrieved January
31, 2018, installed and run with Python 2.7.8 and GCC
v. 4.7.1) (Pei et al. 2008), and T-Coffee v. 11.00.8cbe486
(Notredame et al. 2000; O’Sullivan et al. 2004; Notredame
2007). We explore two ways of running MAFFT: MAFFT-
G-INS-i and MAFFT-Homologs (using the SwissProt
Database, Bairoch and Apweiler 2000).

All methods other than BAli-Phy and Promals3D
were performed in default mode. Promals-3D enables
structural alignment features, but we turned these off
using the following sample command:

python promals < InputSequencesFile > -dali 0
-tmalign 0 -fast 0

BAli-Phy requires specific parameters (including the
substitution model and the number of MCMC iterations)
to be set by the user. We used RAxML (Stamatakis
2006) version 8.2.9 to select the protein sequence
evolution model based on likelihood scores obtained
on the alignment computed using MAFFT L-ins-i
(see Supplementary Section 1.3 available on Dryad at
http://dx.doi.org/10.5061/dryad.8k821ds, for details).
We ran 32 independent runs of BAli-Phy, each for 48
h, discarding the first 25% of the alignments that were
generated during the MCMC run, and then retaining
every 10th alignment in the remaining sample. The
point estimates of the alignments were computed using
the posterior decoding (PD). According to the output
from BAli-Phy, the vast majority of the BAli-Phy runs
we performed had good ESS values, which suggests
that BAli-Phy may have converged on those data; see
Supplementary Section 2.1 available on Dryad, for these
statistics.

Computational Resources
BAli-Phy and T-Coffee are the most computationally

intensive methods we explored, and so these were
run on the Blue Waters supercomputer at the National
Center for Supercomputing Applications (NCSA); all
other methods were run on the Campus Cluster at the
University of Illinois at Urbana-Champaign.

TABLE 1. Empirical properties of the 1192 reference alignments
from the four biological benchmark collections

Database PID # seqs. Alignment length % gapped Gap length

BAliBase 0.30 12.4 772.0 37.7 8.1
Homstrad 0.37 6.9 257.3 16.6 2.7
Mattbench 0.20 7.3 416.4 44.6 2.8
Sisyphus 0.26 9.4 172.3 21.0 4.9

Note: We report the average pairwise sequence identity (PID), average
number of sequences, average alignment length, average fraction of the
reference alignment occupied by gaps, and median gap length.

Data Sets
Protein biological data sets.— We took all the alignments
from the four databases we selected (BAliBASE,
Mattbench, Homstrad, and Sisyphus) that had between
4 and 25 sequences. Each alignment with more than 25
sequences was then subsampled to produce a data set
with between 5 and 25 sequences; see Supplementary
Section 1.2 available on Dryad, for the protocol used for
subsampling.

T-Coffee failed to align a number of data sets,
returning empty folders; this was particularly
pronounced on the BAliBase data, where 82 out
of 742 alignments were not completed, although it
also failed to align 2 data sets each from the other
three benchmarks (see Supplementary Section 2.3
available on Dryad, for discussion). BAli-Phy was
able to analyze all the data sets, but on two data
sets the posterior decoding algorithm failed due to
the high computational complexity of having a small
number of very long sequences. After eliminating the
data sets where T-Coffee and the Bali-Phy posterior
decoding failed to complete, we still had a large
number (1192) of reference alignments from the four
benchmarks. Table 1 presents empirical properties
for the reference alignments for these 1192 data sets,
including average pairwise sequence identity (PID),
average sequence length, average number of sequences,
average percentage gapped, and mean gap length.

Simulated data sets.—We generated 120 simulated data
sets (20 data sets from each of 6 different model
conditions) to evaluate the alignment methods for this
study. To obtain the basic model tree topology and
branch lengths, we selected the 27-sequence serine
protease data set from the Homstrad benchmark
collection, computed a MAFFT L-ins-i alignment
on the data set, and then used RAxML v8.2.9 to
construct a phylogenetic tree with branch lengths (see
Supplementary Section 1.1 available on Dryad, for exact
command). RAxML selected the WAG model for this
data set. We set the indel rate and the gap length
distribution (a negative binomial) to match the empirical
distribution for the serine protease data set. We then
modified this basic model tree in two ways—by rescaling
the branch lengths (by a factor of three) and reducing the
indel rate—to produce six different model conditions
(Table 2) that ranged in terms of the average percent
gapped (from 18.3% to 46.4%) and average pairwise

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
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TABLE 2. Empirical properties of the true alignments for the
simulated data sets, each with 27 sequences

Low subst. rate High subst. rate

In
de

lr
at

e High
PID 0.24 0.11

% gapped 46.4 42.6

Medium PID 0.24 0.11
% gapped 29.8 31.5

Low PID 0.23 0.12
% gapped 18.3 19.2

Note: Each submatrix represents one of the six model conditions, and
the top row within each submatrix represents the mean pairwise
sequence identity (PID) and the bottom row represents the percentage
gapped.

sequence identity (from 0.11 to 0.24). Hence, this process
produced six different model conditions with a range
of average PID and percentage gapped that cover the
characteristics of the biological benchmark data sets
we explored. The sequence length at the root is 200,
and then sequences evolve down the model tree with
indels and substitutions using the Indelible (Fletcher
and Yang 2009) simulator. We used WAG (Whelan and
Goldman 2001) for the substitution model, and indels
were generated with lengths drawn from a negative
binomial distribution.

Evaluation Criteria
The accuracy of the estimated alignment was assessed

in comparison to the reference alignment for the
biological data sets, and to the true alignment for the
simulated data sets. Each alignment on the same set of
sequences can be represented by its set of “homology
pairs,” where a homology pair is a pair of residues, one
from each of two different sequences, that are placed
in the same column in the alignment (see Mirarab and
Warnow 2011, 2017). Two different alignments can then
be compared to each other by examining the shared
or unique homology pairs. Furthermore, when one
alignment is treated as a reference or true alignment,
then the error in an estimated alignment can be evaluated
by calculating the number of homology pairs in the true
alignment that are missing from the estimated alignment
(i.e., the number of false negatives) as well as the number
of homology pairs in the estimated alignment that do
not appear in the true alignment (i.e., the number of
false positives). These error metrics are normalized to
produce values between 0 and 1, which are then called
the error rates. The first of these error rates is referred to
as the sum-of-pairs false negatives (SPFN) score and the
second is referred to as the sum-of-pairs false positives
(SPFP) score. Finally, the error rates can also be expressed
as accuracy measures in the obvious way: 1-SPFN is a
measure of recall, and is referred to as the SP-Score, and
1-SPFP is a measure of precision, and is referred to as the
Modeler Score.

We also report the expansion ratio, which is the ratio
of the number of sites in the estimated alignment to
the number of sites in the reference or true alignment;
values below 1.0 represent overalignment (i.e., shorter

alignments than the reference or true alignment) and
values greater than 1.0 represent underalignment. We
used FastSP v. 1.6.0 (Mirarab and Warnow 2011) to
calculate these values. Note that the classical tradeoff
between the false positive rate (FPR) and false negative
rate (FNR) has an analog in multiple sequence alignment
as well: just as a classifier can achieve zero FPR by
classifying everything as negative, an MSA can have
zero SPFP if the sequences are completely unaligned
(i.e., all sites in the alignment have at most one
nongap character). That is the extreme case, of course,
but serves to indicate that although expansion ratios
greater than 1.0 reflect underalignment, a pattern of
low SPFP and high SPFN (equivalently high Modeler
score and low SP-score) is also indicative of under-
alignment.

Finally, we examined the impact of alignment error
on tree error. We computed maximum likelihood trees
using RAxML v8.2.9 on estimated and true alignments
for the simulated data sets, and then recorded the
Robinson–Foulds (Robinson and Foulds 1981) error rate
(i.e., the fraction of the number of branches in the true
tree that are missing from the estimated tree), computed
using Dendropy (Sukumaran and Holder 2010).

The impact of pairwise sequence identity (PID)
on multiple sequence alignment accuracy is well
established (e.g., Thompson et al. 1999; Blackshields et al.
2006; Liu et al. 2009; Sievers et al. 2011; Wang et al.
2011), with alignment accuracy generally decreasing
as PID decreases, and expected to be very low when
PID is below 0.20 (Aniba et al. 2010). Therefore, we
evaluated the impact of PID on alignment accuracy in
our experiments. We grouped the sequence data sets into
four bins according to the PID within each data set, with
the highest PID bin (where PID is at least 0.5) expected
to contain the easiest data sets to align and the lowest
PID bin (where PID is at most 0.15) expected to contain
the most difficult data sets to align.

RESULTS

Results on Biological Data Sets
We began by exploring the overall accuracy of the

different methods we examined with respect to Modeler
score and SP-score (Fig. 1). The results shown are
restricted to the 1192 data sets where all methods ran
successfully.

There was a large range in scores on these data, with
the average Modeler score varying from 0.66 to 0.80 and
average SP-score varying from 0.63 to 0.77. PROMALS, T-
Coffee, CONTRAlign, and MAFFT-homologs each came
in the top four places for both criteria, and Kalign,
DiAlign, and PRANK had the lowest overall SP-scores
and Modeler scores of all the methods we tested. BAli-
Phy had the top average Modeler score (0.80) but among
the lowest average SP-scores of all the methods (0.67,
ranking 11 out of 14); thus, BAli-Phy’s average Modeler
score was substantially larger than its SP-score, a pattern
that indicates underalignment. All other methods had



Copyedited by: TP MANUSCRIPT CATEGORY: Systematic Biology

[16:27 11/4/2019 Sysbio-OP-SYSB180070.tex] Page: 400 396–411

400 SYSTEMATIC BIOLOGY VOL. 68

FIGURE 1. Average Modeler Score (i.e., precision) versus average SP-score (i.e., recall) of the full set of multiple sequence alignment methods
on the biological benchmark data sets, each with at least 4 and at most 25 sequences; each data point represents analyses of 1192 data sets from the
four benchmark collections (658 from BAliBase, 231 from Homstrad, 202 from Mattbench, and 101 from Sisyphus). See Supplementary Table S1
and Excel File available on Dryad for actual numeric values.

close average SP and Modeler scores (i.e., differences that
were at most 0.04, and usually at most 0.01).

Results on the individual benchmarks for Modeler and
SP-scores show similar trends (Fig. 2). For example, T-
Coffee had the highest SP-scores on the Homstrad (0.89),
Mattbench (0.78), and Sisyphus (0.80) benchmarks,
and PROMALS had the highest SP-score (0.74) on the
BAliBASE data (where T-Coffee had 0.71). Thus, T-Coffee
was either best or close to best in terms of SP-score on
these data sets. Similarly, although PROMALS was
only top on the BAliBASE data sets, it came in second on
the other benchmarks, where its average SP-scores were
fairly close to the best score: 0.01 lower than best on
the Homstrad data sets, 0.03 lower than best on the
Sisyphus data sets, and 0.06 lower on the Mattbench
data sets. MAFFT-Homologs had the second or third
highest SP-score on all but the Sisyphus benchmark, and
the third or fourth highest Modeler score on three of
the benchmarks. Finally, BAli-Phy consistently ranked
among the first three methods for Modeler Score (it
was top on BAliBASE, in second place on Sisyphus
and Mattbench, and in third place on Homstrad) and
between eighth and twelfth for SP-score (Fig. 2). Thus,
overall as well as on the individual benchmarks, BAli-
Phy produced alignments with high Modeler scores and
low SP-scores, a pattern that indicates underalignment.

To better understand this trend, we examined the
expansion ratios of the different alignment methods. A

few methods (notably Clustal, Probcons, and Promals)
had excellent expansion ratios (in the range 0.95 to
1.05) across all PID values. However, all others either
underaligned (i.e., expansion ratios greater than 1.05) or
overaligned (i.e., expansion ratios less than 0.95) for some
condition (Fig. 3). As expected, the lowest PID condition
(PID ≥0.5) was the most challenging for the remaining
methods. For this condition, BAli-Phy, DiAlign, and
Prank underaligned the most, with expansion ratios 1.87,
1.31, and 1.17 respectively. The methods that over-aligned
the most were Muscle (expansion ratio 0.81), Prime
(expansion ratio 0.84), Kalign (expansion ratio 0.86),
MAFFT-G-INS-i, MAFFT-Homologs, and CONTRAlign
(all with expansion ratio 0.89). Most significantly, BAli-
Phy’s expansion ratio was the largest of all the methods
for each bin, indicating that it underaligned the most
of all the methods and produced substantially longer
alignments than all other methods. Hence, BAli-Phy was
an outlier among these methods in terms of alignment
length.

The remaining experiments were restricted to the top-
performing alignment methods. Therefore, we exclude
Kalign, DiAlign, and PRANK, each of which had among
the lowest overall accuracy in terms of SP-score and
Modeler score on the biological data sets.

PID also impacted the SP-score and Modeler score
of the top methods, as shown in Figures 4 and 5.
As expected, all methods had their best SP-scores and

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
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FIGURE 2. Average Modeler Score (i.e., precision) versus SP-Score (i.e., recall) of all alignment methods on the individual biological benchmarks.
Results shown are for 1192 data sets from the four benchmark collections (658 from BAliBase, 231 from Homstrad, 202 from Mattbench, and 101
from Sisyphus) See Supplementary Table S2 and Excel File available on Dryad for actual numeric values.

Modeler scores under the highest PID bin (i.e., when PID
≥0.5) and their scores dropped as PID decreased. The
range in SP-scores and Modeler scores was narrowest
for the highest PID bin (at most 0.05 difference between
the largest and smallest scores) and increased as PID
dropped. For example, on the highest PID bin (Fig. 4), the
Modeler scores ranged from 0.91 (attained by T-Coffee)
to 0.95 (attained by BAli-Phy), while on the lowest PID
bin the Modeler scores ranged from 0.26 (Clustal) to 0.53
(BAli-Phy). Furthermore, although the Modeler scores

dropped for all methods as PID dropped, this effect was
smaller for BAli-Phy, Promals, and T-Coffee than for the
other methods (i.e., the change in average Modeler score
between the top and bottom PID bins for these three
methods was at most 0.47, and all other methods had
changes of between 0.59 and 0.68).

Similar trends hold for SP-score (Fig. 5), with the
following main difference: under the low PID bin,
BAli-Phy’s SP-score tied for the lowest of all methods,
indicating it is more impacted by changes in PID than

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
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FIGURE 3. Average expansion ratios on the 1192 biological benchmark data sets, each with at most 25 sequences, by average percent ID
(ID). Values more than 1.0 indicate underalignment (i.e., longer alignments than the reference alignment), while values less than 1.0 indicate
overalignment (i.e., shorter alignments than the reference alignment). The four bins based on average sequence identity, ordered from smallest
to largest, have 83, 417, 615, and 77 alignments, respectively. See Supplementary Table S3 and Excel File available on Dryad for actual numeric
values.

we saw for its Modeler score (in particular, the change
in BAli-Phy’s SP-scores between the high and low PID
bins was 0.64, which is approximately the same change
as for the remaining methods other than Promals and
T-Coffee). Finally, for the two bins where the differences
between methods were large (i.e., the bottom two bins),
T-Coffee and PROMALS had the top SP-scores.

Results on Simulated Data Sets
Methods that rely on gathering homologs from

external databases (e.g., MAFFT-Homologs, T-Coffee,
and Promals) are expected to have poor accuracy on
these simulated data, a prediction we confirmed (see
Supplementary Section 2.2 available on Dryad). We
therefore omit these three methods for the rest of this
section, but we include PRANK since, like BAli-Phy, it is
a phylogeny-aware method.

We explored the relative and absolute accuracy of the
multiple sequence alignment methods on simulated data
sets with 27 sequences with 6 model conditions, each
with 20 replicates. The accuracy of these methods varied
across these six model conditions (Fig. 6). When both

rates are low, all methods had excellent Modeler and
SP-scores (i.e., at least 0.95) and the differences between
them were small (e.g., the difference in score between
any two methods under the easiest model condition was
at most 0.02 for both criteria). However, with higher
substitution rates or indel rates, the accuracy of all
methods decreased and the range in scores increased.

The most striking observation on the simulated data
sets is that BAli-Phy had the best accuracy of all
methods with respect to both criteria. Furthermore,
while the difference between BAli-Phy and the least
accurate method was small (at most 0.02) for the easiest
model condition, the difference in accuracy between
BAli-Phy and the second most accurate method increased
as the indel rate or the substitution rate increased.
For example, under the most difficult model condition
(where substitution and indel rates were the highest),
BAli-Phy achieved an average SP-score of 0.93 and an
average Modeler score also of 0.93; the second best SP-
score was 0.87 (attained by Clustal) and the second best
Modeler score was 0.84 (attained by MAFFT-G-ins-i).
These are drops in accuracy in the 0.07 to 0.09 range
(see Supplementary Table S8 and Excel File available on
Dryad).

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
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FIGURE 4. Average Modeler Scores (i.e., precision) for the top methods on the 1192 biological benchmark data sets, binned into different
average pairwise sequence identity (ID) levels. The four bins based on average sequence identity, ordered from smallest to largest, have 83, 417,
615, and 77 alignments, respectively. See Supplementary Table S4 and Excel File available on Dryad for actual numeric values.

As shown in Figure 7, similar trends were seen
with respect to expansion ratios. Results under the
easiest model condition (with low mutation rates and
indel rates that were at most moderate), all methods
produced expansion ratios in the range 0.97–1.01 (i.e.,
nearly perfect). However, under the more difficult
model conditions, the methods could be distinguished
and we observed the following overall trends. BAli-
Phy produced alignments with expansion ratios of 1.0
under all six model conditions (except when given the
wrong substitution model, in which case it produced
alignments with average expansion ratio 0.99). Most
other methods overaligned under difficult conditions
(e.g., Muscle, MAFFT G-INS-i, CONTRAlign, Clustal,
and PRIME overaligned when mutation rates and indel
rates were high, with expansion ratios less than 0.90).
The three remaining methods (PRANK, Probalign,
and ProbCons) showed somewhat different responses.
PRANK tended to underalign (with an expansion ratio of
1.5 for the most difficult condition where both indel and
mutation rates were high) and Probalign underaligned
whenever substitution rates were high (expansion ratio
of 1.06–1.08), overaligned for the condition with high
indel rates and low substitution rates (expansion ratio
of 0.92), and had nearly perfect expansion ratios (in

the 0.98–0.99 range) for the remaining two conditions.
ProbCons had excellent expansion ratios (in the range
0.97–1.0) under five of the six conditions, but overaligned
(expansion ratio 0.91) when indel rates were high and
substitution rates were low. Thus, of these methods, only
BAli-Phy had consistently excellent expansion ratios
under all six model conditions.

The performance of PRANK on the simulated data
was generally not as strong as some of the other
methods. Under the most difficult model condition,
PRANK had the lowest average Modeler and SP-scores
(0.65 and 0.52, respectively), and produced the longest
alignments (with expansion ratio 1.5) of all the tested
methods. However, under the two easiest conditions
(low substitution rates with low or moderate indel rates),
PRANK produced alignments that were very close to
the correct length (expansion ratios between 0.96 and
1.0) and had SP-scores and Modeler scores of at least
0.96; it even achieved average SP-score and Modeler
score of 0.92 and 0.93, respectively, for the simulated
data under the low substitution rate with high indel
rate. Thus, PRANK’s accuracy was impacted by the
substitution rate: it was competitive with the better
methods under conditions with low substitution rates
but not when substitution rates were high. Also, when

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
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FIGURE 5. Average SP-scores (i.e., recall) for the top methods on the 1192 biological benchmark data sets, with data sets binned by average
pairwise sequence identity (ID) levels. The four bins based on average PID, ordered from smallest to largest PID values, have 83, 417, 615, and 77
alignments, respectively. See Supplementary Table S5 and Excel File available on Dryad for actual numeric values.

PRANK was given the true (model) tree as a guide
tree, these scores increased (in one case by 0.10, see
Supplementary Table S8 and Excel File available on
Dryad), but not enough to change its ranking within the
experiment (e.g., PRANK used with the true tree was
still in the bottom position for both SP-score and Modeler
score under the most difficult model condition).

Running Time
We also did a small evaluation of the running time of

a sample of the alignment methods. As noted, we always
ran BAli-Phy for 48 h on 32 independent runs, in order
to improve the chances of convergence. Hence, the total
running time for BAli-Phy always exceeded 2 months on
each data set. In other words, the way we ran BAli-Phy
is by design computationally intensive.

We selected four data sets (one from each of the
benchmark collections), each containing 17 sequences.
This comparison is meant to be approximate, as we
used different platforms for the methods and did not
ensure that all methods were run using the same
environments, and only examined four data sets; hence,
the results are not necessarily indicative of running time
on other data sets. T-Coffee and BAli-Phy were run on

the National Center of Supercomputing Applications
Blue Waters supercomputer and the rest of the methods
were run on the Campus Cluster at the University of
Illinois at Urbana-Champaign. Some of these methods
were compiled from the source code, and we used the
precompiled versions for other methods.

As shown in Table 3, BAli-Phy was the most
computationally intensive of all the methods. T-Coffee
was the next most computationally intensive, using from
7 to 59 min on these four data sets. PROMALS and
PRANK were faster than T-Coffee, but each was slow
on at least one data set: PROMALS used 24 min on one
data set and PRANK used 4 min on another. All the
others were much faster, never using even a full minute
on any of the four data sets, and several of these (i.e.,
DiAlign, PRIME, Clustal, Muscle, and MAFFT-G-ins-i)
never exceeded 2 s on any data set.

Although this was a limited study, the methods that
were very fast on these data are likely to remain very fast
for other data sets with similar characteristics (number
of sequences and average sequence length), under other
modern computational platforms. On the other hand,
although we ran BAli-Phy 32 times, each for 48 h, similar
accuracy might have been obtained from a reduced
number of hours or number of independent runs; also,
the new version of BAli-Phy (v.3.1.5) may converge more

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
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FIGURE 6. Modeler score (i.e., precision) versus SP-Score (i.e., recall) for MSA methods on simulated amino acid data sets with 27 sequences
for 6 different model conditions that vary by the substitution rate and indel rate; averages over 20 replicates are shown. See Supplementary Excel
File available on Dryad for actual numeric values.

quickly than the version we used (v.2.3.8). Thus, these
running time values are not meant to be used to predict
running time on other data sets or on other platforms,
but mainly only to show that some of the better methods
(e.g., MAFFT-G-ins-i) were very fast, and much faster
than some of the other methods that also had very good
accuracy.

Impact on Tree Estimation
Alignment estimation is known to have an impact on

tree estimation (Dessimoz and Gil 2010; Wang et al. 2011;
Mirarab et al. 2015), and so we explored this issue as
well. We evaluated the topological error of maximum
likelihood trees computed using RAxML v8.2.9 on the
true alignment and on estimated alignments. We did
not explore the impact on tree error on the biological
data sets because true trees are unknown, and the true
species tree can differ from the true gene tree as the result
of multiple biological processes, including incomplete
lineage sorting (Maddison 1997).

We let RAxML select the protein substitution model
for each data set (see Supplementary Section 1.1 available
on Dryad) and report the normalized Robinson–Foulds
(RF) error for the single best ML tree found by
RAxML. We report the normalized RF error rates in
Supplementary Figure S1 available on Dryad and Delta-
RF (the increase in error rate resulting from using an
estimated alignment instead of the true alignment) in
Supplementary Table S9 available on Dryad.

Under the model conditions with low mutation rates,
all the methods had good accuracy, with Delta-RF
error rates that were at most 1%. However, under the
conditions with high substitution rates, the methods
could be clearly distinguished (Supplementary Table S9
available on Dryad). For example, under the hardest
model condition (where the indel and substitution rates
were both high), the Delta-RF rates were 28% for Clustal,
20% for PRANK, 9% for Probalign, 7% for ProbCons,
and 4% for Muscle; in contrast, BAli-Phy and PRIME
had 1%, and MAFFT-G-ins-i had 0% Delta-RF rate. More
generally, for all conditions, ML trees computed on the

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
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https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
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FIGURE 7. Box plot showing expansion ratios (1.0 is perfect, ratios below 1.0 indicate overalignment, and ratios above 1.0 indicate
underalignment) for MSA methods on simulated amino acid data sets with 27 sequences for 6 different model conditions that vary by the
substitution rate and indel rate; averages over 20 replicates are shown. Lines represent means and the lower and upper hinges of the box
represents first and third quartiles; the upper whisker is the maximum value, and the lower whisker is the minimum value. See Supplementary
Table S8 and Excel File available on Dryad for actual numeric values.

BAli-Phy, MAFFT-G-ins-i, and PRIME alignments had
Delta-RF at most 1%, and so were very close in accuracy
to ML trees computed on the true alignment. Thus, BAli-
Phy came in among the top alignment methods with
respect to topological accuracy of maximum likelihood
trees computed on these simulated alignments.

DISCUSSION

Although our study was restricted to amino acid
data sets with at most 27 sequences, the following
trends were consistently observed. The best Modeler and
SP-scores were obtained for the high PID conditions,
and this held for both types of data (simulated and
biological) and for all methods. In addition, SP-scores
and Modeler scores decreased as PID decreased. We
also saw that the expansion ratios were very close to
1.0 for high PID conditions, but when PID was low the
expansion ratios could be far from 1.0. Similarly, our

simulation study showed that under the low substitution
rate conditions (where PID was moderate at 0.24) then
alignment error did not have a noteworthy impact on
tree estimation (i.e., maximum likelihood trees estimated
on estimated alignments were on average within 1%
Robinson–Foulds error of the maximum likelihood trees
estimated on the true alignment); however, under the
high substitution rate conditions (where PID was low at
0.11) then maximum likelihood trees for some estimated
alignments (e.g., Clustal and PRANK) were very far
from the maximum likelihood tree computed on the true
alignment. Thus, decreases in PID resulted in decreases
in the accuracy (for all three alignment criteria we
evaluated) of alignment methods and also resulted in
increases in the error of trees computed on estimated
alignments. This reduction in accuracy under low PID
conditions explains why some biological benchmarks
were more difficult than others. For example, all
alignment methods had lower average Modeler and SP-
scores on Mattbench than on the other benchmarks, and

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy068#supplementary-data
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TABLE 3. Running time (in seconds) information of a single 17-
sequence data set in each of the biological benchmarks for a sample of
the alignment methods, with methods roughly sorted by running time
from fastest to slowest
Benchmark Mattbench Homstrad Sisyphus BAliBASE

Data set SF054 Proteasome AL00048098 BALBS213
Max. Seq. Len. 270 250 117 688
DiAlign 0.0 0.0 0.0 0.0
PRIME 0.1 0.0 0.0 0.0
Clustal 0.4 0.3 0.1 1.5
Muscle 0.5 0.4 0.1 1.0
MAFFT-G-INS-i 0.7 0.7 0.3 2.0
Probalign 1.7 1.4 0.4 7.9
ProbCons 3.1 2.6 0.6 12.6
CONTRAlign 5.8 6.2 1.4 42.0
PRANK 48.5 1:16.1 9.4 4:14.7
PROMALS 14:11.5 12:22.1 5:06.2 24:03.2
T-Coffee 46:47.2 58:04.7 7:06.5 59:18.8
BAli-Phy 48:00:00.0 48:00:00.0 48:00:00.0 48:00:00.0

Note: The running times are rounded to the nearest hundredth of
a second, and reflect wall clock time. The time reported for most
methods is based on a single processor. However, BAli-Phy was run
32 independent times, each for 48 h (in order to improve the chances of
convergence) but the running time reported is for a single run; MAFFT
uses 4 threads, and Clustal uses 12 threads.

the average PID for the Mattbench data sets (0.20) is the
lowest of the four biological collections we analyzed.
Similarly, the Homstrad data sets have the highest
average PID (0.37) of all these benchmarks, and the
Modeler and SP-scores were highest on these data sets.

Another consistent trend throughout this study is
that the differences between methods in terms of SP-
score, Modeler score, and expansion ratio increased as
PID decreased. Furthermore, under the high PID data
sets, the differences between methods are very small,
making distinctions between methods more difficult,
but methods were easily distinguished on the low PID
conditions. These trends suggest that the choice of
alignment method may have little impact when PID is
high but can be important when PID is low. The impact
of PID on alignment accuracy and downstream analyses
have been observed before (e.g., Blackshields et al. 2006;
Liu et al. 2009; Sievers et al. 2011), so these observations
confirm prior studies.

The best performing methods on the biological data
sets were typically T-Coffee and PROMALS (although
the relative performance depended on the PID level and
the criterion). For example, T-Coffee had the highest
average SP-scores for the low PID data sets but not
for the high PID data sets where PROMALS and
many other methods had higher SP-scores. MAFFT-
homologs and CONTRAlign also had good Modeler
and SP-scores on the biological data sets, coming in
the first four positions for all benchmarks. The good
overall performance of MAFFT-homologs, PROMALS,
and T-Coffee is noteworthy since these methods share
a common strategy of recruiting homologs from an
external database to use in the alignment task. Finally,
BAli-Phy produced the best Modeler scores but came in
at position 11 (out of 14) for its SP-score.

Results on the simulated data sets showed different
trends: as they are inherently unsuited for simulated

data, T-Coffee and PROMALS were not among the better
methods for SP-score or Modeler score, and BAli-Phy
had better scores than all the other methods for both
criteria. Hence, the relative performance of methods
seems to depend on PID, the criterion (i.e., Modeler score
or SP-score), and—to some extent—whether the data
were biological or simulated. In particular, our study
shows that BAli-Phy, a leading statistical method for
coestimating alignments and trees, had the best Modeler
scores and SP-scores of all the methods we examined
on simulated data sets but lower SP-scores than many
methods on the biological data sets.

To understand this difference in performance, it
is helpful to consider the tendency of methods to
either underalign (i.e., produce alignments that are
longer than the reference alignment) or overalign
(i.e., produce alignments than are shorter than the
reference alignment). Our study shows that that many
methods tended to overalign (producing expansion
ratios substantially less than 1.0) under challenging
conditions; the major exceptions to this were BAli-
Phy (which underaligned the most of all methods),
DiAlign, and PRANK (some other methods also
underaligned but to lesser degrees). Interestingly, in
contrast to the other alignment methods, BAli-Phy
never underaligned on the simulated data, even under
the most challenging conditions. Underalignment is
also demonstrated by higher Modeler scores than SP-
scores, a trend consistently produced by BAli-Phy on
the biological data (where the overall gap was 0.13),
but never on the simulated data (where BAli-Phy had
average Modeler and SP-scores that were within 0.01
for every model condition). In other words, our data
show that BAli-Phy underaligned on the biological data
with respect to the reference alignment, but did not
underalign on the simulated data with respect to the
true alignment. The fact that BAli-Phy underaligned on
biological data but not on simulated data explains the
change in performance for BAli-Phy between biological
and simulated data.

The performance of PRANK in our study is interesting
to consider, since PRANK is designed to be “phylogeny-
aware," and so has some similarities to BAli-Phy in
terms of approach. On biological data Prank produced
slightly higher Modeler scores than SP-scores (but on
average within 0.04 of each other); on the simulated data
Prank also produced larger Modeler scores, but the gap
was larger (0.15), at least for the most difficult model
condition. Prank underaligned on both simulated and
biological data, but the degree to which it underaligned
was larger on the simulated data. Thus, like BAli-Phy,
PRANK tended to underalign on the biological data and
responded differently to the biological and simulated
data. However, PRANK was not competitive with the
better methods in our study on either the biological
or simulated data for any criterion, while BAli-Phy
generally had the best (or close to the best) Modeler
scores under all conditions, and only had reduced
SP-scores on the biological data. As we have seen,
PRANK had very good accuracy (even if not the best
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accuracy) under conditions with high PID, but relatively
poor accuracy (compared to the better methods) under
the low PID conditions, such as occur under high
rates of evolution. PRANK’s reduced accuracy on
the simulated data sets with lower PID is perhaps
surprising, given that PRANK had superior alignment
accuracy in prior simulation studies (Löytynoja and
Goldman 2008). However, a careful examination of
Löytynoja and Goldman (2008) reveals that the
simulation conditions in which PRANK provided
outstanding accuracy had substitutions operating
under the simplest model (Jukes–Cantor with a strict
molecular clock), which may have favored PRANK in
some way.

CONCLUSIONS

Statistical sequence alignment, and in particular
statistical coestimation of multiple sequence alignments
and phylogenetic trees under phylogenetic models of
sequence evolution, has been considered by many to
be the most rigorous approach to alignment estimation.
This study examined the accuracy of BAli-Phy, a leading
method for statistical coestimation of alignments and
trees, on both biological and simulated data under a
range of model conditions, and explored the impact of
alignment accuracy on tree accuracy.

Our study shows that BAli-Phy has the best (or close
to best) accuracy of all methods for all criteria we
examined (SP-score, Modeler score, expansion ratio, and
accuracy of maximum likelihood trees estimated on the
alignment) for the simulated data; however, BAli-Phy
underaligns on biological data to a sufficient extent that
its overall SP-score drops to 11th place (out of 14) even
though its Modeler score remains in top place. In other
words, BAli-Phy has superior accuracy on simulated
data but mixed accuracy on biological data caused by
underalignment. We do not know why BAli-Phy exhibits
this difference in performance between biological and
simulated data.

Understanding this distinction in performance
requires some care as there are multiple possible
explanations, including the distinctions between
evolutionary and structural alignments, the potential
for model misspecification between the model assumed
in BAli-Phy and how proteins evolve, and the possibility
that reference alignments could have errors (Aniba et al.
2010; Iantorno et al. 2014). However, each explanation is
potentially valid, and each may contribute to a greater
or lesser degree to this distinction in performance.
Furthermore, interactions between these and other
factors could also be contributing to the differences we
observed.

The first potential explanation is that the reference
alignments in the biological benchmarks are accurate
as structural alignments but not as evolutionary
alignments. This explanation is consistent with the
argument made by some authors (notably Iantorno
et al. 2014; Chatzou et al. 2015) that the two types

of alignments have different objectives and that an
alignment may be correct in terms of structural features
and yet be incorrect in terms of evolutionary descent
(or vice-versa); in addition, the argument has been
made that similarities between sequences based on
shared structures, even if substantial, may not be due
to descent from a common ancestor (Reeck et al.
1987). For example, as noted by (Chatzou et al., 2015),
convergent evolution could lead to proteins having
very similar or even identical structural features, as
well as potentially the same functions, and alignments
based on these structures will not always reflect descent
from a common ancestor. If this is the major cause
for this discordance, then this study would suggest
that even if BAli-Phy is suitable for alignments used
in phylogenetic inference, it may not be suitable for
alignments used to predict protein structures. However,
others (e.g., Dover 1987) have argued that a high degree
of structural similarity should nearly always indicate
true homology, suggesting that the true structural
alignment ought to be very close to (and perhaps the
same as) the true phylogenetic alignment; if Dover
(1987) is correct in this assertion, then the distinction
between structural and phylogenetic alignments is
unlikely to be the main cause for the discordance
we observe.

The second potential explanation is that the reference
alignments are accurate evolutionary alignments, but
the model assumed by BAli-Phy is a poor match to the
true model under which the proteins evolve. There are
many critiques of sequence evolution models used in
phylogeny estimation (Liberles et al. 2012; Wilke 2012)
and in simulation studies (Boyce et al. 2014; Iantorno
et al. 2014), with two of the major concerns being
the assumption that the sites evolve identically and
independently (the i.i.d. assumption) and without any
selection occurring. Although the model underlying
BAli-Phy is more complex than the standard models
discussed in these papers in that it addresses insertions
and deletions (i.e., indels) rather than only substitutions,
the BAli-Phy model nevertheless also has those two
problematic features (i.i.d. site evolution and no selection
operating) that are clearly violated by protein sequence
evolution. If the degree of misspecification between
the model in BAli-Phy and how proteins actually
evolve is sufficient to explain much of the distinction
in performance between BAli-Phy on biological and
simulated data sets, then phylogeny estimation under
standard models may also be impacted since many
genomic regions (e.g., protein-coding sequences) are
acted on by selection and evolve under processes that
are not i.i.d.

Finally, since the structural alignments in the four
benchmark collections are estimated rather than known,
the accuracy of the biological benchmark alignments can
be questioned (Aniba et al. 2010; Iantorno et al. 2014). It
is therefore interesting to consider the possibility that
the reference alignments, since they are estimated using
a combination of manual and automated techniques,
may themselves be overaligned; in this case, the true
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alignment would have a high Modeler score and a
low SP-score with respect to the reference alignment,
which is what we see with BAli-Phy on the biological
data sets. Since we observed the same general trends
across all four benchmark collections, whatever the
issues are, they are likely to be impacting each collection
rather than just one. If some of the reference alignments
are incorrect, then more accurate structural alignments
would need to be developed in order to provide
reliable benchmarks for evaluating protein alignment
methods.

Investigating these different possible explanations
will require additional study. For example, the impact
of model misspecification could be explored using
simulations in which the various assumptions of the
stochastic model assumed in BAli-Phy could be violated.
Supplementary Section 2.4 and Table S8 available on
Dryad include an initial evaluation of the impact of
model misspecification of the substitution model (which
shows that using JTT instead of WAG can reduce SP-
score or Modeler score by 0.01), but other types of
model misspecification are likely to be more impactful.
For example, selection is clearly relevant to protein
sequence evolution, and so simulating under sequence
evolution models with varying degrees and types of
selection could potentially reveal the degree to which
selection complicates alignment estimation. Similarly,
heterotachy (Lopez et al. 2002; Taylor et al. 2006;
Zhou et al. 2007), where sites evolve independently not
under identical models, is also expected to be present
in many data sets and may complicate the inference
of alignment using the stochastic sequence evolution
model within BAli-Phy. Fortunately, some simulation
tools have been developed that could be used for such
studies, as described in Arenas et al. (2013) and Goldstein
and Pollock (2016). Determining whether the reference
alignments in these biological benchmarks have errors
will depend on experimental data that provide structural
features of folded proteins as well as on alignments
of multiple protein structures and so may require new
computational methods. Thus, determining the relative
contribution of each of these possible explanations will
require substantial effort and should be the focus of
future research.

Other directions for future work include examining
these questions on larger data sets. Our study examined
BAli-Phy version 2.3.8, but a new version has been
developed (version 3.1.5) that is faster and uses reduced
memory compared to the version we studied, and
is designed to handle larger data sets; therefore, any
subsequent evaluation of these issues on larger sequence
data sets should use this new version. The questions
we raise here are also relevant to RNA and DNA
sequence evolution (see, e.g., the thoughtful discussion
in Morrison 2018 about multiple sequence alignment
for nucleotides sequences), and so future work should
examine how statistical alignment methods perform
compared to other methods on nucleotide data sets with
structural alignments and also on simulated nucleotide
data sets.
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