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abstract

PURPOSE The analysis of cancer biology data involves extremely heterogeneous data sets, including information
from RNA sequencing, genome-wide copy number, DNA methylation data reporting on epigenetic regulation,
somatic mutations from whole-exome or whole-genome analyses, pathology estimates from imaging sections or
subtyping, drug response or other treatment outcomes, and various other clinical and phenotypic measure-
ments. Bringing these different resources into a common framework, with a data model that allows for complex
relationships as well as dense vectors of features, will unlock integrated data set analysis.

METHODS We introduce the BioMedical Evidence Graph (BMEG), a graph database and query engine for
discovery and analysis of cancer biology. The BMEG is unique from other biologic data graphs in that sample-
level molecular and clinical information is connected to reference knowledge bases. It combines gene ex-
pression and mutation data with drug-response experiments, pathway information databases, and literature-
derived associations.

RESULTS The construction of the BMEG has resulted in a graph containing. 41 million vertices and 57 million
edges. The BMEG system provides a graph query–based application programming interface to enable analysis,
with client code available for Python, Javascript, and R, and a server online at bmeg.io. Using this system, we
have demonstrated several forms of cross–data set analysis to show the utility of the system.

CONCLUSION The BMEG is an evolving resource dedicated to enabling integrative analysis. We have dem-
onstrated queries on the system that illustrate mutation significance analysis, drug-response machine learning,
patient-level knowledge-base queries, and pathway level analysis. We have compared the resulting graph to
other available integrated graph systems and demonstrated the former is unique in the scale of the graph and the
type of data it makes available.
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INTRODUCTION

Biological data produced by large-scale projects now
routinely reachpetabyte levels thanks tomajor advances in
sequencing and imaging. With multiple profiling methods,
platforms, versions, formats, and pipelines, a major un-
addressed issue is querying across the increasingly het-
erogeneous data. When faced with the substantial labor
and computation costs, researchers may use outdated
and/or only a fraction of publicly available data.

Graph databases are useful tools for integrating complex
and interconnected data.1-3 In the commercial sector,
several major data aggregators have successfully used
graph databases to integrate heterogeneous data.
Facebook (Menlo Park, CA) uses the “Social Graph”4 to
represent the connections between people and their
information, whereas Google’s search engine (Alphabet,
Mountain View, CA) uses Google’s “Knowledge Graph”

to connect various facts about different subjects. On the
basis of these observations, we have built the BioMedical
Evidence Graph (BMEG) to allow for complex integration
and analysis of heterogeneous biological data.

The BMEG was created by importing several cancer-
related resources and transforming them into a co-
herent graph representation. These resources include
patient and sample information, mutations, gene ex-
pression, drug response data, genomic annotations,
and literature-based analysis (Appendix Table A1).
The BMEG contains data on 15,000 patients, 52,000
samples, 6.8 million alleles, 640,000 drug-response
experiments, and 50,000 literature-derived genotype-
to-phenotype associations.

We describe a resource that enables analysts to
quickly access data frommultiple sources and perform
queries that integrate them with clear graph-based
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semantics. Independently, a researcher would need to
download hundreds of files, write multiple file parsers,
develop an integrated data model, map identifier systems,
and normalize analytical results. The BMEG centralizes that
work and makes it searchable using a full-feature query
engine. To enable analysis and machine learning, the
BMEG includes high-quality feature-extraction methods
applied consistently to all samples. This includes the results
provided by the best methods of somatic variant calling and
RNA-sequencing analysis for cancer genomic and tran-
scriptomic data sets. We used open challenges to create
leaderboards of the best methods from all of those sub-
mitted by the community. We then participated in the
development of open standards to enable the exchange of
genomic associations from cancer knowledge bases. Fi-
nally, we implemented computational integrity checks and
unit tests for each of the data import modules.

METHODS

Graph Schema

At the core of BMEG’s metadata is a tree representing the
organization of all the different data elements (Fig 1).
Program node represents the root of the tree, defining
a cohort of samples studied by a consortium. For example,
The Cancer Genome Atlas (TCGA; National Cancer In-
stitute, Bethesda, MD) is one such “program” and cohorts
for different tumor types can be selected using the pro-
gram’s child node called “Project.” Each tumor type is then
populated by a number of Case nodes, which in turn have
multiple Sample nodes, which can then be subdivided into
a number of Aliquot nodes. The BMEG schema builds on
this base structure to include data from a number of ad-
ditional sources including: (1) genome reference, (2) gene
and pathway annotations, (3) somatic variants, (4) gene
expression data, and (5) knowledge bases.

Data Sources

Initial data sources (Appendix Table A1) for the BMEG were
centered on large cohorts of patient-derived samples, with
DNA and RNA profiling, cell lines with drug-response data,

and literature-derived drug-phenotype associations. The
goal was to provide uniform input data for analysis and
machine learning.

RNA-Sequencing Data

To identify the best methods for RNA analysis, we launched
the somatic mutation calling–RNA challenge, which
benchmarked isoform quantification methods to prioritize
the methods used for processing data that would be
ingested into the BMEG. For example, for transcript
abundances we used results from Kallisto (Patcher Lab,
University of California, Berkeley, Berkeley, CA), a top
contending method in the somatic mutation calling–RNA
challenge, to process the TCGA and Cancer Cell Line
Encyclopedia (CCLE)5 data sets. In addition, the Genotype-
Tissue Expression project (National Institutes of Health,
Bethesda, MD)6 provided gene-level, transcript-per-mil-
lion-mapped reads estimates for normal tissues that could
be contrasted with tumors. Combinations of these re-
sources provide 36,000 vertices to the BMEG graph.

TCGA Metadata

The Genomic Data Commons (GDC; National Cancer In-
stitute, Bethesda, MD) created a data system to track the
clinical and administrative meta-data of the TCGA samples
and files. We used their web application programming
interface (API) to obtain TCGA patient and sample met-
adata for the evidence graph.

TCGA Genomic Data

To determine the best methods for somatic mutation
calling, we partnered with the Dialogue on Reverse Engi-
neering Assessment of Methods (DREAM) consortium,
Sage BioNetworks (Seattle, WA), and the Ontario Institute
for Cancer Research to launch the International Cancer
Genome Consortium–TCGA Somatic Mutation Calling
challenge.7 Many methods evaluated by this effort were
incorporated into pipelines that would be deployed on the
TCGA’s 10,000 exomes as part of theMulti-Center Mutation
Calling in Multiple Cancers (MC3) project.8 The MC3 adds
10,000 vertices that connect to 3 million alleles (2.6 million

CONTEXT

Key Objective
Can a graph database help researchers access multiple integrated data sets for cancer omics analysis?
Knowledge Generated
We have developed and tested an integrated graph database, BioMedical Evidence Graph, that connects patient sample data,

cell-line drug-response data, and multiple knowledge bases. Simple queries to this system allowed cross–data set analysis
in seconds when the same questions would have required days or weeks of manual effort otherwise.

Relevance
Analysis of cancer systems biology data requires a large variety of different kinds of data. The BioMedical Evidence Graph

system provides a uniform interface for data interrogation that will make it easier to pose a variety of clinically relevant
queries.
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distinct alleles) in the graph. For the set of copy-number
alteration events, we used the Gistic29 data from the Broad
Institute’s Firehose system (Massachusetts Institute of
Technology, Cambridge, MA).

Cell-Line Drug-Response Data

Cell-line clinical attributes and drug-response data has
been collated by the DepMap (Broad Institute)10 and
Pharmacodb (BHKLAB, Princess Margaret Cancer Centre –

University Health Network, Toronto, ON, Canada)11 projects,
respectively. This includes response curves, half maximal
inhibitory concentration and half maximal effective concen-
tration (EC50) scores from CCLE,12 Cancer Therapeutics

Response Portal (CTRP)13,14 and Genomics of Drug Sensitivity
in Cancer.15 In addition, theDepMap andCellModel Passports
(Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK)16

provided variant calls for a number of cell lines.

Variant Drug Associations

The Genotype To Phenotype (G2P; Wellcome Sanger In-
stitute) schema17 was designed to enable several different
cancer knowledge-base resources to be aggregated into
a coherent resource. The entries from these knowledge
bases typically demarcate associations such as “the T41A
mutation in CTNNB1 causes sensitivity to imatinib.” With
this resource, the BMEG has aggregated associations from
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FIG 1. The BioMedical Evidence Graph schema showing the vertex types and connections of the graph. Numbers on vertices represent the total instances of
a specific type defined by the vertex (eg, the Gene vertex includes 63,677 distinct protein-coding, microRNAs, and other gene entries); numbers on an edge
connecting two vertices represent the total connections between any instance of the first vertex to any instance of the second vertex (eg, there are 214,804
connections from transcripts to the genes that encode them). Pfam, protein families.
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six prominent cancer knowledge bases, including 50,000
associations vertices.

Pathway Data

Pathway Commons (https://www.pathwaycommons.org/)18

aggregates, normalizes, and integrates data from 22
public pathway databases. At 1.5 million interactions
and 400,000 detailed biochemical reactions, it is the
largest curated pathway database available. It aggregates
pathway relationships from Reactome (Wellcome Sanger
Institute; European Molecular Biology Laboratory, Heidelberg,
Germany),19 NCI Pathway Interaction Database (National
Cancer Institute),20 PhosphoSitePlus (Cell Signaling Tech-
nology, Danvers, MA),21 HumanCyc (SRI International, Menlo
Park, CA),22 PANTHER Pathway,23 MSigDB (Broad Institute,
Massachusetts Institute of Technology, Cambridge, MA),24

Recon X,25 Comparative Toxicogenomics Database (North
Carolina State University, Raleigh, NC),26 KEGG Pathway
(Kyoto University, Kyoto, Japan),27 Integrating Network
Objects with Hierarchies,28 NetPath (SolarWinds Worldwide,
Austin, TX),29 and WikiPathways.30 Once loaded into the
graph, these resources provided approximately 2 million
vertices that could be queried by the user.

Reference Data

The BMEG uses Ensembl identifiers31 as a global identifier
to unite various genomic components present across the
ingested biologic reference data and experimental results.
The genomic annotations from Ensembl were modeled into
the graph to provide a consistent chromosomal coordinate
system for any sequence-level sample information. Part of
the import pipeline includes annotating sample variants
using Variant Effect Predictor32 to connect them to gene,
transcript, and exon data from Ensembl. These, in turn, link
to Protein and Pfam (protein family)33 assignments, as well
as Gene Ontology34 functional annotations.

Queries Using a Graph Language

To enable various analytical queries and provide a frame-
work for analysts to build custom queries, we developed the
Graph Integration Platform (GRIP) to design queries to use
the BMEG. GRIP stores multiple forms of data and has the
ability to hold thousands of data elements per vertex and
per edge of the graph. This allows it to store sparse re-
lationship data, such as pathways and ontologies, as well as
dense matrix-formatted data, such as expression levels for
thousands of genes across hundreds of samples.

The query language implements most operations needed
for subgraph selection, as well as aggregation of features.
A general purpose end point places more emphasis on the
client side, building smart queries to obtain the data they
need rather than having custom server-side components
provide specialized facets. Because of this, clients can
easily create new queries, unanticipated by the server
developers, that still have the correct desired effect. The
API is available via Python (Python Software Foundation,

Wilmington, DE), Javascript (PluralSight, Farmington,
UT), and R (R Foundation, https://www.r-project.org/)
clients.

RESULTS

To test the utility of the BMEG and its query engine, we have
crafted example queries that traverse different parts of the
graph, to demonstrate how the system can quickly provide
an analyst with connected data. Although it would be
possible for an analyst to find the solutions to the following
exercises without using the BMEG, the analyst would need
to download and merge data from multiple different
repositories such as from the TCGA’s GDC system, somatic
mutations predicted from Broad Institute’s CCLE collec-
tion and the TCGA’s MC3 variant-calling project, seven
different somatic variant-to-phenotype association cata-
logs, PubChem for the names and modes of action of
molecular compounds, pathway gene sets from Pathway
Commons, and three different drug-response databases.
Thus, the benefits of ingesting all into a uniform graph
data structure should provide a more seamless pre-
sentation that users will find easier to use once the API
becomes familiar.

The GRIP Query Language is a traversal-based graph-
selection language inspired by Gremlin.35 The user de-
scribes a series of steps that will be undertaken by
a “traveler.” An example traversal would start on a vertex
with label Project, move to edges labeled samples, then
move along edges labeled aliquots. The engine then scans
the graph for all valid paths that can be completed given the
instructions. Each of the traversal instructions is based on
the graph schema seen in Figure 1. The commands are
written using the Python version of the client, but they could
be executed similarly in R or Javascript. These queries can
be visualized as paths traversed through the BMEG graph
(Fig 2).

We begin with an example that counts the mutations per
gene in a cancer cohort. This is a useful statistic to gauge
one aspect of whether a gene may be a driver of pro-
gression, as evidenced by its prevalence in a subpopulation
(in this case, breast cancer). As seen in example 1 in the
following section, the query starts on a breast cancer
project node (TCGA-BRCA) then traverses to the Case,
Sample, and Aliquot nodes while filtering out any data
properties that do not belong to the previous node in-
formation. As it passes the Sample node, it filters for tumor
samples. Once on the Aliquot node, it continues to the
SomaticCallset, which represents sets of variants produced
by a single mutation calling analysis. The traversal then
identifies the edges that connect the SomaticCallset to
different alleles, this time using the outE command to land
on the edge rather than the destination vertex. With the
gene identifier in hand, it then uses the aggregate method
to count the various terms that occur in the ensembl_
gene field.

Struck et al
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Example 1: Count Mutations per Gene in Breast Cancer

Query. For example 1, the query is written as follows:

• G.query().V(“Project:TCGA-BRCA”)

• .out(“cases”).out(“samples”)
• .has(gripql.eq(“gdc_attributes.sample_type”, “Primary
Tumor”))

• .out(“aliquots”).out(“somatic_callsets”).outE(“alleles”)

Case

Sample

Aliquot

Somatic Callset

Allele

Gene PathwayG2P Association

Compound

Project

Publication

Gene ExpressionDrug Response

(1)

(3)

(4)(5)(7)

(6)

(8)

(2)

FIG 2. Example queries. A diagram showing how each of the different queries described in this article traverse the
graph. Each separate query is labeled by the example number in the text.
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• .has(gripql.contains(“methods”, “MUTECT”))
• .aggregate(gripql.term(“geneCount”, “ensembl_gene”))

Result. The result lists the number of variant alleles found
for each gene. The example accesses data from the GDC as
well as the MC3 somatic variant call set:

• ENSG00000155657 (n = 416)
• ENSG00000121879 (n = 401)
• ENSG00000141510 (n = 300)
• ENSG00000181143 (n = 193)
• ENSG00000198626 (n = 113)

Example 2: Identify Pathways Containing Mutated Genes

There may be a theme among the most frequently mutated
genes in breast cancer. The next two example queries
address this by finding the most frequently affected
pathways. First, example 2 identifies pathways containing
mutated genes. Example 3 tallies the number of genes per
pathway. To identify the pathways involved in mutations,
the example derives a list of all mutated genes, finds their
associated pathways, and retrieves the tuples of every
gene-pathway pair, using the as_ command (the un-
derscore is added to avoid clashing with the Python-
reserved word as) to store the gene and then using the
render function to display only the needed data.

Query.

• G.query().V(genes).as_(“gene”)
• .out(“pathways”).render([“$gene._gid”, “$._gid”])

Result. The result returns all the pathways for which each
gene is a member. This query uses data extracted from
Ensembl and Pathway Commons.

• ENSG00000000419 (pathwaycommons.org/pc11/
Pathway_6bf6d39c0284b6...)

• ENSG00000000938 (identifiers.org/reactome/R-HSA-
432142)

• ENSG00000000971 (identifiers.org/reactome/R-HSA-
977606)

• ENSG00000001036 (pathwaycommons.org/pc11/
Pathway_4b5817426aa06d...)

Example 3: Determine the Number of Mutations in

Each Pathway

Continuing in this investigation to derive the most affected
pathways, the next step is to aggregate the mutations per
pathway and then sum them. To do this, the preceding
listed information can be combined with the previously
found result tabulating the mutations per pathway. To sum
all the mutations in all the genes in a particular pathway, the
traversal starts on the Pathway vertex marked for later re-
trieval using the as_ command. Once the traveler has split
and moved out to the multiple child Gene vertices, the select
command recalls the stored pathway vertex and moves
the traveler back. At this point, an aggregation is called to
count the number of travelers on each Pathway vertex.

Query.

• G.query().V().hasLabel(“Pathway”).as_(“pathway”)
• .out(“genes”).select(“pathway”)
• .aggregate(gripql.term(“pathwayGeneCount”, “_gid”))

Result. The result lists the number of mutations for each
pathway found.

• identifiers.org/reactome/R-HSA-191273 (n = 439)
• identifiers.org/reactome/R-HSA-381753 (n = 393)
• identifiers.org/reactome/R-HSA-212436 (n = 341)
• pathwaycommons.org/pc11/Pathway_4b5817426aa06d...
(n = 340)

Example 4: Find Publications Relevant to Phenotypic

Consequences of Mutations

A biologist may wish to find evidence in the literature for any
known phenotypic consequences of a collection of muta-
tions, providing clues about the mechanisms involved in
carcinogenesis. To this end, example 4 shows how the
mutations found in the Breast Cancer Carcinoma (BRCA)
cohort are linked to publications referenced by the G2P
associations. In this use case, the aggregate method is
called on the _gid variable, which represents a unique
global identifier for each vertex.

Query.

• G.query().V(“Project:TCGA-BRCA”)
• .out(“cases”).out(“samples”)
• .has(gripql.eq(“gdc_attributes.sample_type”, “Primary
Tumor”))

• .out(“aliquots”).out(“somatic_callsets”).out(“alleles”)
• .out(“g2p_associations”).out(“publications”)
• .aggregate(gripql.term(“pub”, “_gid”))

Result. The result returns a list of the number of mutations
for all genes connected in each of the returned papers. This
query connects data from the GDC, the knowledge bases
imported from the G2P project, and PubMed.

• Publication:ncbi.nlm.nih.gov/pubmed/27269946 (n =
1,033)

• Publication:ncbi.nlm.nih.gov/pubmed/27174596 (n =
1,029)

• Publication:ncbi.nlm.nih.gov/pubmed/19223544 (n =
858)

• Publication:ncbi.nlm.nih.gov/pubmed/20619739 (n = 664)

Example 5: Find Drugs Described in the Literature to

Treat Phenotypes Linked to Mutations

The phenotypes in the G2P associations, linked to the
collected breast cancer mutations, may be associated with
drugs that treat specific conditions. Example 5 defines
a traversal of the graph to uncover compounds linked to
phenotypes on the basis of specific alleles. The traversal is
much like the one illustrated in example 4; however, it also
includes a distinct operation to identify unique pairs of
cases and compounds. If there are multiple known asso-
ciation records from different publications and these
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publications link one allele to the same drug-response
phenotype, then only one relationship will be noted per
patient.

Query.

• G.query().V(“Project:TCGA-BRCA”)
• .out(“cases”).as_(“case”).out(“samples”)
• .has(gripql.eq(“gdc_attributes.sample_type”,“Primary

Tumor”))
• .out(“aliquots”).out(“somatic_callsets”).out(“alleles”)
• .out(“g2p_associations”).out(“compounds”)
• .distinct([“$case._gid”, “_gid”])
• .aggregate(gripql.term(“compound”, “_gid”))

Result. The result lists the number of times compounds
were associated to mutations in patients. This query uses
data in the graph derived from the GDC, the MC3 callset,
the G2P knowledge bases and PubChem.

• Compound:CID104741 (n = 345)
• Compound:CID11717001 (n = 340)
• Compound:CID56649450 (n = 327)
• Compound:NO_ONTOLOGY:CID24989044 (n = 313)

Example 6: Find Drugs Tested in Breast Cancer Cell Lines

Taking the analysis one step further, the next two examples
identify drugs proven effective against breast cancer cell
lines as determined in the CTRP project. Example 6
identifies those compounds that have been tested in breast
cancer cell lines as part of the CTRP project. The query
uses the drugs found in example 5 through a list named
compounds as a starting point.

Query.

• G.query().V(compounds).as_(“compound”).out(“projects”)
• .has(gripql.eq(“project_id”, “CTRP_Breast_Cancer”))
• .select(“compound”).render([“_gid”, “synonym”])

Result. The result lists those drugs that were profiled in the
CTRP effort. For example, at the top of the list, one finds that
the compound fulvestrant has been tested against breast
cancer cell lines in the CTRP project.

• Compound:CID104741: FULVESTRANT
• Compound:CID11717001: CHEMBL525191
• Compound:CID17755052: PICTILISIB
• Compound:CID24964624: CHEMBL1079175
• Compound:CID42611257: VEMURAFENIB
• Compound:CID56649450: ALPELISIB

Example 7: Find the Sensitivity of Breast Cancer Cell

Lines to a Drug

To get a sense of the effectiveness of each of these drugs,
a natural extension of this line of inquiry is to find out how
sensitive the cells are to them. The EC50 measures the
concentration achieving a response midway between the
baseline and maximum when cells are exposed to a drug. It
is a widely used measure of sensitivity (although a measure,
GR50, that factors in growth rate, has been shown to bemore
useful) and available for compounds tested in the CTRP

project. To this end, example 7 searches for the EC50 values
for the breast cancer cell lines tested against fulvestrant.

This query includes a call to the render method, which
shapes the output into a custom JavaScript Object Notation
structure (JSON). In this case, it forms a tuple with the stored
sample identifier and EC50 value. The list of tuples returned by
the client can then be passed directly into a Pandas
DataFrame.36

Query.

• G.query().V(“Program:CTRP”).out(“projects”)
• .out(“cases”).out(“samples”).as_(“sample”)
• .out(“aliquots”).out(“drug_response”).as_(“response”)
• .out(“compounds”).hasId(“Compound:CID104741”)
• .render([“$sample._gid”,”$response.submitter_compound
_id”,”$response.ec50”])

Result. The result lists the EC50 values for each of the
BRCA cell lines to fulvestrant, connecting the data from
CTRP to PubChem entries.

• Sample:CTRP:ACH-000937: fulvestrant (n=3.075000e−01)
• Sample:CTRP:ACH-000076: fulvestrant (n=2.317000e−02)
• Sample:CTRP:ACH-000983: fulvestrant (n=3.114000e−05)
• Sample:CTRP:ACH-000045: fulvestrant (n=3.055000e−01)

Example 8: Find Gene Expression Data Linked to

Cell Lines

Drug response data often are not available for patient
samples; thus, machine-learning methods that can use
more widely available data, such as gene expression data
from RNA sequencing, to predict drug response are highly
promising. Example 8 illustrates how associated tran-
scriptomic data can be obtained for the cell lines collected
in the previous steps. There is no RNA sequencing available
from the CTRP project; however, many of the cell lines were
assayed as part of the complementary CCLE project. To
identify these samples, example 8 follows the edge con-
necting the list named samples found in example 7 to their
parent cases. It then follows the same_as edge to identify
Case vertices in other projects that have overlapping iden-
tifiers, and then follows the tree down to the GeneExpression
node to obtain the expression values. Again, the example
uses the render function to return properly formatted data
structures that can be passed directly into Pandas.

Query.

• G.query().V(samples).as_(“sample”)
• .out(“case”).out(“same_as”)
• .out(“samples”).out(“aliquots”).out(“gene_expressions”).
as_(“exp”)

• .render([“$sample._gid”, “$exp._data.values”])

Result. The resulting matrix (Table 1) lists the expression
values of each gene across cell lines with variants in CTRP
and RNA in CCLE. The matrix can be used to develop
transcriptome-based drug-response prediction models.37,38
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Data Releases. The BMEG resource was designed to be
portable and open, with multiple ways to access the data
(Fig 3). The graph query engine that runs the system is
open source and easy to install, and all the compiled source
files are made available for bulk download. This will allow
other researchers to build on our existing system and to
reuse the collected data. We provide translations of the
BMEG to make it compatible with a number of different
query engines. Part of the BMEG toolkit is a set of scripts to
translate the data set and load it into other graph database
systems, including Neo4J (San Mateo, CA) and Dgraph
(Dgraph Labs, San Francisco, CA).

DISCUSSION

Recently, several graph-based data integration projects
have appeared, including biograkn,39 Biograph,40 Bio4j

(discontinued),41 Bio2RDF,42 and Hetionet.43 Many of
these systems were built to aggregate pathway and link
genotype to phenotype. The BMEG holds genomic,
transcriptomic, and phenotypic data from cancer cases,
as well as from cell-line samples, pathway data, genomic
descriptions, and extractions from genome-variant knowl-
edge bases. The system includes unit tests composed of
built-in Python conversion code, implemented in a Travis
continuous integration facility, for technical validation to
ensure data are copied and represented accurately. The
unique accumulation of various high-quality data types
differentiates the BMEG from other data systems. As dem-
onstrated in the example queries, data interrogation can
traverse sample mutations, pathway descriptions, knowl-
edge bases, and drug-response data, all within a few lines of
query code.

GripQL

Source Data

Mongo

GRIP

Neo4j DGraph

Cypher GraphQL±

A

C

B D

FIG 3. BioMedical Evidence Graph (BMEG) architecture diagram. (A) The Extract Transform Load (ETL) processes used to build the graph. (B) The
database and query engine used to power the bmeg.io site. (C) The different client-side options for communicating with the system. (D) Graph engines that
can be used with the BMEG export code to move the BMEG data to other graph databases. GripQL, Graph Integration Platform query language.

TABLE 1. Gene Expression in Transcripts per Million Across Cell Lines With Variants in CTRP

Ensembl Gene Name
Sample: CTRP:
ACH-000004

Sample: CTRP:
ACH-000007

Sample: CTRP:
ACH-000012

Sample: CTRP:
ACH-000013

Sample: CTRP:
ACH-000015

ENSG00000000003 2.615887 4.066089 5.820945 5.533875 4.821200

ENSG00000000005 0.000000 0.000000 0.000000 0.056584 0.000000

ENSG00000000419 5.323370 5.889960 6.006522 7.532161 6.948484

Abbreviation: CTRP, Cancer Therapeutics Response Portal.
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The fundamental idea of the BMEG is to define a con-
nected data set to enable many possible investigations
without the effort needed to collect, normalize, and merge
information across disparate systems, thus saving time
and effort to focus on research questions rather than data

wrangling. Adopting systems like the BMEG will drive
analyses that can tap a wide range of sample data, with
structured annotations, allowing for a number of feature
and prediction label combinations for machine-learning
applications to support new pattern discovery.
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