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Frailty is a critical aging-related syndrome but the underlying metabolic mechanism
remains poorly understood. The aim of this study was to identify novel biomarkers and
reveal potential mechanisms of frailty based on the integrated analysis of metabolome
and gut microbiome. In this study, twenty subjects consisted of five middle-aged
adults and fifteen older adults, of which fifteen older subjects were divided into three
groups: non-frail, pre-frail, and frail, with five subjects in each group. The presence
of frailty, pre-frailty, or non-frailty was established according to the physical frailty
phenotype (PFP). We applied non-targeted metabolomics to serum and feces samples
and used 16S rDNA gene sequencing to detect the fecal microbiome. The associations
between metabolites and gut microbiota were analyzed by the Spearman’s correlation
analysis. Serum metabolic shifts in frailty mainly included fatty acids and derivatives,
carbohydrates, and monosaccharides. Most of the metabolites belonging to these
classes increased in the serum of frail older adults. Propylparaben was found to
gradually decrease in non-frail, pre-frail, and frail older adults. Distinct changes in fecal
metabolite profiles and gut microbiota were also found among middle-aged adults, non-
frail and frail older subjects. The relative abundance of Faecalibacteriu, Roseburia, and
Fusicatenibacter decreased while the abundance of Parabacteroides and Bacteroides
increased in frailty. The above altered microbes were associated with the changed serum
metabolites in frailty, which included dodecanedioic acid, D-ribose, D-(-)-mannitol,
creatine and indole, and their related fecal metabolites. The changed microbiome and
related metabolites may be used as the biomarkers of frailty and is worthy of further
mechanistic studies.

Keywords: frailty, healthy aging, gut microbiota, metabolites, metabolomics

INTRODUCTION

Over the past century, human life expectancy has been greatly expanded, with more older people
being characterized by multimorbidity and disability. Frailty has become the greatest barrier to
keep older adults healthy and prolong healthy lifespan. Frailty is a geriatric syndrome marked by
decreased reserve and increased vulnerability to stressors. The exponentially increasing number
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of frail people and frailty-associated adverse health outcomes (1)
(i.e., morbidity, disability, hospitalization, institutionalization,
and mortality) cause the huge burden on healthcare and social
systems. Therefore, understanding the mechanisms underlying
frailty and the identification of specific biomarkers for diagnosis
and prognosis of frailty are imperative.

Frailty, also known as “accelerated aging” is a multi-
factorial phenomenon with the pathological basis such as
DNA damage, alterations in gene and non-coding RNA
expression, loss of proteostasis, oxidative stress, and chromatin
disruption (2). Therefore, multi-omics platforms (e.g., genomics,
transcriptomics, proteomics, and metabolomics) have been
developed for the analysis of complex conditions of frailty.
The growing evidence has shown that all the pathological
basis of aging can cause undesired metabolic reactions,
and there is a “metabolic clock” that controls aging (3).
Metabolomic techniques can be utilized to non-invasively
identify and quantify metabolites in biological matrices (i.e.,
cells, tissues, and biological fluids). Furthermore, metabolomics
is downstream from other omics and can dynamically assess
changes in organismal function (4). A growing number of
studies have shown that metabolites play a key role in
physiological and pathological aging (5, 6), such as frailty
(7–10). Kameda et al. (7) identified 15 markers for frailty,
6 markers for cognition, and 12 markers for hypomobility
based on the metabolomic analysis. Among them, acetyl
carnosine and UDP glucuronate are the common biomarkers
of these three conditions. Consequently, the metabolomics
has become a powerful tool to identify the biomarkers of
metabolic deviations.

As reported, the metabolic capacity of the human body is
mainly influenced by intestinal microbiota and the interactions
with host cells (11–13). The human gut harbors a complex
community of over 100 trillion microbial cells called the
microbiome. Over the past decade, the increasing evidence has
shown that the composition and function of the microbiome
have undergone some changes with age. O’Toole and Jeffery
(14) reported a shift in the microbiota toward a Bacteroidetes-
predominated population and a loss of diversity in the
core microbiota groups during aging. As an age-related
condition, frailty has been proven to be associated with the
gut microbiome (15–17). Ticinesi et al. (18) showed that
frailty was associated with reduced microbiota biodiversity and
low representation of butyrate-producing bacteria. Collectively,
the intestinal microbiome and metabolites have undergone
significant changes in frailty. However, less is known about the
potential relationships between the gut microbiota, fecal, and
blood metabolome in frailty.

In this study, we applied physical frailty phenotype (PFP)
(19) to define physical frailty and performed 16S ribosomal
DNA (rDNA) gene sequencing of fecal samples and liquid
chromatography-mass spectrometry (LC-MS) metabolomics of
serum and feces from middle-aged adults, non-frail, pre-
frail, and frail older adults. We innovatively integrated multi-
omics approaches for a comprehensive analysis of metabolite
change related to the microbial composition during the
progression of frailty.

MATERIALS AND METHODS

Clinical Assessment
All clinical data were collected at the Department of Geriatric
Endocrinology, the First Affiliated Hospital of Nanjing Medical
University from 2019 to 2020. The patients were excluded who
had malignant tumors, were in the acute phase of diseases,
used probiotics or antibiotics within 1 month before admission
and during hospitalization, or failed to complete geriatric
assessment. Clinical interviews, physical examinations, and blood
tests were performed for twenty participants. The demographic
data that included age, sex, body mass index, healthy behavior,
fall history, number of comorbidities and medications were
collected. The presence of frailty, pre-frailty, or non-frailty was
established according to the efficient diagnostic tool—PFP (19).
The phenotypic model and diagnostic criteria of frailty are shown
in Supplementary Table 1. The diagram of the study protocol can
be found in Figure 1.

This study was approved by the Institutional Review
Board of the Jiangsu Province Hospital and was performed
in compliance with all relevant ethical regulations and
guidelines. All participants provided written informed consent
before recruitment.

Feces and Blood Sample Collection
Feces samples were obtained from all recruited subjects
within 3 days of admission. The participants were carefully
instructed on the procedures for feces sample collection. Each
sample was collected using Commode specimen collection
system (Thermo Fisher Scientific, MA, United States), frozen
immediately in liquid nitrogen, and then stored at –80◦C before
further processing.

Blood samples were collected between 08: 00 and 09: 00 a.m.
by the nurses on the second day of admission after overnight
fasting and collected in tubes without anticoagulant. The samples
were allowed to clot for 30 min, then centrifuged at 3,000 rpm for
10 min at 4◦C to obtain the serum, then aliquoted and stored at
–80◦C until further analyses.

Metabolomics on Serum and Feces
Samples
Sample Preparation
Serum samples were thawed on ice before the extraction
using 100 µl serum and 300 µl solvent [methanol/ACN (1:
1)] with a 60 s vortex step before centrifugation at 4,000 g.
After centrifugation, 150 µl reconstituted solution (methanol:
H2O = 1:1, v: v) was added to 300 µl supernatant with a 60 s
vortex step before centrifugation at 4,000 g for reconstitution.
The supernatants were collected for metabolomic profiling by
LC-MS analysis. A quality control (QC) sample was prepared by
mixing and blending equal volumes (10 µl) of the supernatant
of each sample to assess the analytical variability. Feces samples
were thawed on ice before extraction using 25 mg feces and
800 µl solvent [methanol/acetonitrile/ACN (2:2:1)] with a 5 min
grinding before centrifugation at 25,000 rpm for 15 min at 4◦C.
After centrifugation, 600 µl reconstituted solution (methanol:
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FIGURE 1 | Diagram of the study protocol.

H2O = 1: 9, v: v) was added to 600 µl supernatant with a 60-s
vortex step before centrifugation at 25,000 rpm for reconstitution.

Metabolomics Analysis
Untargeted metabolomics LC-MS analysis was carried out on
a Waters 2D UPLC (Waters, MA, United States), coupled to a
Q-Exactive mass spectrometer (Thermo Fisher Scientific, MA,
United States) with a heated electrospray ionization (HESI)
source and controlled by the Xcalibur 2.3 software program
(Thermo Fisher Scientific, Waltham, MA, United States). Data
were collected in both positive and negative ion modes to
improve the coverage of metabolites. A Waters ACQUITY
UPLC BEH C18 column (1.7 µm, 2.1 mm × 100 mm, Waters,
United States) and a mobile phase consisted of 0.1% formic
acid (A) and acetonitrile (B) in the positive mode and 10 mm
ammonium formate (A) and acetonitrile (B) in the negative
mode were used for chromatographic separation. The column
was maintained at 45◦C, and the gradient conditions were as
follows: 0–1 min, 2% B; 1–9 min, 2–98% B; 9–12 min, 98% B; 12–
12.1 min, 98% B to 2% B; and 12.1–15 min, 2% B. The flow rate
was 0.35 ml/min and the injection volume was 5 µl. The mass
spectrometric settings for positive and negative ionization modes
were as follows: spray voltage was 3.8/-3.2 kV; sheath gas flow rate

was 40 arbitrary units (arb); aux gas flow rate was 10 arb; aux gas
heater temperature was 350◦C; capillary temperature was 320◦C.
The full scan range was 70–1,050 m/z with a resolution of 70,000,
and the automatic gain control (AGC) target for MS acquisitions
was set to 3e6 with a maximum ion injection time of 100 ms. Top
3 precursors were selected for subsequent MS fragmentation with
a maximum ion injection time of 50 ms and resolution of 17,500,
and the AGC was 1e5. The stepped normalized collision energy
was set to 20, 40, and 60 eV.

Data Analysis
Raw LC-MS data were extracted and processed following
previously published protocols (20). Multivariate statistical
analysis [partial least squares method-discriminant analysis,
(PLS-DA)] was used to establish a relationship model between
metabolites and sample groups. The univariate methods
(Wilcoxon test and two-tailed Student’s t-test) were used to
detect significantly changed metabolites and then corrected by
false discovery rate (FDR) to ensure that metabolite peaks were
reproducibly detected. A number of metabolites responsible for
the difference in the metabolic profile scan between groups were
obtained based on the variable importance in the projection
(VIP) threshold of 1 from the sevenfold cross-validated PLS-DA
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model. By combining the univariate and multivariate statistical
analyses, significantly changed metabolites between groups were
acquired on the condition of p-value < 0.05, q-value < 0.05, fold-
change < 0.8 or > 1.2, VIP > 1. Annotations and identifications
of the metabolites were performed following the previously
published protocols (20).

Pathway Analysis
The Kyoto Encyclopedia of Genes and Genomes (KEGG)
database was used to understand the functional characteristics
of differential metabolites and determine the main biochemical
metabolic pathways and signaling transduction pathways
involved in the metabolites. In the pathway enrichment analysis
of differential metabolites, the significantly different metabolites
were compared with the overall identified metabolites as
a background, and the hypergeometric test was used to
find significantly enriched pathway entries. Metabolic
pathways with p-value < 0.05 were significantly enriched
by differential metabolites.

16S rDNA Microbiome Analysis
16S rDNA Sequencing
DNA was extracted from all fecal samples using MagPure
Stool DNA KF kit B (Magen, Guangzhou, China) following
the manufacturer’s instructions. The 16S rDNA was PCR-
amplified and then sequenced on the MiSeq system
(Illumina, CA, United States). The primer sequences
were F: 5′-GTGCCAGCMGCCGCGGTAA-3′ and R:
5′-GGACTACHVGGGTWTCTAAT-3′.

Operational Taxonomic Unit Clustering
The sequence reads with a similarity greater than 97%
were identified and clustered into an Operational Taxonomic
Unit (OTU) using the UPARSE software (21). Then, OTU
representative sequences were taxonomically classified using
Ribosomal Database Project (RDP) Classifier, and the community
composition was analyzed in each taxonomic rank: domain,
kingdom, phylum, class, order, family, genus, and species.

Rarefaction Curve
A rarefaction curve was generated using the MOTHUR package
(v1.31.2) (22) for richness estimations of the OTUs.

Diversity Analysis
Alpha diversity was performed to identify the complexity of
species diversity for each sample (group). To assess the diversity
in samples (groups) for species complexity, beta diversity
calculations were analyzed. Alpha and beta diversities were
estimated by MOTHUR (v1.31.2) and QIIME (v1.8.0) (23) at
the OTU level, respectively. Sample cluster was conducted by
QIIME (v1.8.0) based on the unweighted pair group method with
arithmetic mean (UPGMA).

Functional Annotation
KEGG functions of the microbiota were predicted using the
PICRUSt software (24).

Statistical Analysis
Statistical analysis was performed using R (v3.4.1) software.
Continuous variables were presented as median (interquartile
range) while categorical data were expressed as number and
percentage (%). Significant differences in species and functions
were evaluated with Wilcox test or Kruskal test. Linear
discriminant analysis (LDA) coupled with effect size (LEfSe) was
applied to evaluate the differentially abundant taxon.

Correlation Analysis Between
Metabolites and Microbiota
The Spearman’s correlation analysis based on R package
(v3.4.1) was used to analyze the correlation between metabolites
and microbiota. Differences were considered significant when
p < 0.05 and | r| >0.5. If r < 0, there was a negative correlation,
otherwise, there was a positive correlation.

RESULTS

Characteristics of Participants
A total of twenty participants consisted of five middle-aged
adults and fifteen older adults, of which fifteen older subjects
were divided into three groups: non-frail, pre-frail, and frail,
with five subjects in each group. The details of PFP of fifteen
older adults are shown in Supplementary Table 2. Middle-
aged adults were free from serious diseases and the resulting
weakness, aged 40–48 years. The other three groups of older
adults had similar age (non-frail subjects, median 82 years old;
pre-frail subjects, median 82 years old; frail subjects, median
84 years old). Both pre-frail and frail subjects had a higher
number of comorbidities than non-frail subjects, and frail
subjects used a greater variety of medications than non-frail older
adults. The clinical characteristics of participants are shown in
Supplementary Table 3.

Serum Metabolites Altered in Frailty
Totally, 448 metabolites in negative ion and 1,077 metabolites in
positive ion mode were identified. Raw LC-MS data are available
from the MetaboLights repository (accession no. MTBLS4367).
To observe the metabolic characteristics of healthy aging, we
compared the serum metabolome of non-frail subjects with
middle-aged adults, and PLS-DA showed the differences between
the two groups (Figure 2A). The relative concentration of
41 metabolites decreased and 49 metabolites increased in
the serum of non-frail subjects (p < 0.05, Supplementary
Table 4). According to the altered metabolites with class
information, healthy aging showed the changes of microbial
metabolism, benzene and (substituted) derivatives, and purine
metabolism (Figure 2B). Furthermore, KEGG metabolic pathway
analysis based on the altered metabolites revealed the significant
enrichment of 22 pathways in healthy aging, mainly including
phenylalanine metabolism, purine metabolism, and tryptophan
metabolism pathways (Figure 2C and Supplementary Table 5).

To analyze the metabolic characteristics of frailty, we then
compared the serum metabolome of frail group with non-frail
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FIGURE 2 | Serum metabolome analysis. (A,D) PLS-DA analysis of the grouped discrimination by the first two principal components (PCs) in positive (pos) and
negative (neg) ion modes. (B,E) Pie graph of the metabolite class composition of significantly altered metabolites according to the number of metabolites in serum.
(C,F) Bubble chart of pathway enrichment analysis of differential metabolites in positive (pos) and negative (neg) ion modes. RichFactor was the number of differential
metabolites divided by all the identified metabolites annotated to the pathway. (G) Relative abundance of the representative differential metabolites. Peak area:
relative concentrations of metabolites. *p < 0.05. Error bars represented mean ± SD.

group. PLS-DA revealed a separation of the two groups based
on the first two principal components (Figure 2D). Totally,
156 significantly altered metabolites were found between the
two groups, with 63 metabolites upregulated and 93 metabolites
downregulated in the serum of frail subjects (Supplementary
Table 6). The analysis of the metabolites with class information
showed that in addition to microbial metabolism, benzene,
and (substituted) derivatives, the shifts in frailty mainly
included fatty acids (and derivatives), carbohydrates, and
monosaccharides (Figure 2E). Most of the metabolites in these
classes had increased levels in the serum of frail subjects.
Remarkably, propylparaben gradually decreased in non-frail,
pre-frail, and frail older subjects, while other metabolites
did not show a meaningful trend (Supplementary Table 7).

KEGG metabolic pathway mapping showed that the altered
metabolites were significantly enriched in 13 pathways, such
as fructose and mannose metabolism, ABC transporters, and
lysine degradation (Figure 2F and Supplementary Table 8).
Relative concentrations of representative metabolites with class
and pathway information, such as D-ribose, D-(-)-mannitol,
creatine, indole, and dodecanedioic acid, are shown in Figure 2G.
These results revealed distinct serum metabolic characteristics of
healthy aging and frailty.

Fecal Metabolites Altered in Frailty
Strikingly, fecal metabolomes were also clearly different in
healthy aging and frailty. Totally, 1,422 metabolites in negative
ion and 2,538 metabolites in positive ion mode were identified.
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Raw LC-MS data are available from the MetaboLights repository
(accession no. MTBLS4372). PLS-DA showed a clear separation
trend between middle-aged adults and non-frail subjects
(Figure 3A). Compared to middle-aged group, 95 metabolites
had higher and 111 metabolites had lower concentration in the

feces of non-frail subjects (Supplementary Table 9). According
to the class information, fecal metabolite change in healthy aging
mainly included benzene (and derivatives) and amino acids, and
peptides (and analogs) (Figure 3B). The differential metabolites
were significantly enriched in 22 metabolic pathways using

FIGURE 3 | Fecal metabolome analysis. (A,D) PLS-DA analysis of the grouped discrimination by the first two principal components (PCs) in positive (pos) and
negative (neg) ion modes. (B,E) Pie graph of the metabolite class composition of significantly altered metabolites according to the number of metabolites in feces.
(C,F) Bubble chart of pathway enrichment analysis of differential metabolites in positive (pos) and negative (neg) ion modes. RichFactor was the number of differential
metabolites divided by all the identified metabolites annotated to the pathway. (G) Relative abundance of the differential metabolites related to the serum metabolites
shown in Figure 2G. Peak Area: relative concentrations of metabolites. *p < 0.05. Error bars represented mean ± SD.
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KEGG pathway analysis, including phenylalanine metabolism
and tyrosine metabolism (Figure 3C and Supplementary
Table 10).

As for frailty, the differences in fecal metabolites between
non-frail and frail groups were showed by PLS-DA (Figure 3D).
Totally, 462 metabolites significantly changed between non-
frail and frail subjects, with 191 metabolites upregulated and
271 downregulated in frail elderly group (Supplementary
Table 11). In addition to amino acids, peptides (and analogs)
and benzene (and derivatives), the analysis of metabolites
with class information displayed that the shifts in frailty
mainly included fatty acyls, steroids (and derivatives), and
purines (and derivatives) (Figure 3E). In the same way, KEGG
pathway analysis of significantly altered metabolites revealed
that 16 metabolic pathways were enriched in frailty, which
included bile secretion, lysine degradation, and steroid hormone
biosynthesis (Figure 3F and Supplementary Table 12). Relative
concentrations of 2′-deoxyinosine, creatine, 4-methylphenol,
tyramine, indole-3-ethanol, and dodecanedioic acid which had
relationship with the serum metabolites in Figure 2G also
changed in fecal samples of frail subjects (Figure 3G). Just
like serum metabolomes, these results showed differential fecal
metabolites and changes in several amino acid metabolic
pathways in healthy aging and frailty.

Taxonomic Alterations of Gut Microbiota
in Frailty
The previous study suggested that around 30% of metabolites
detected in human body originated from microbiota (25). To
identify the changes in gut microbiota during frailty and examine
their effects on serum and fecal metabolites, we performed
16S rDNA amplicon sequencing of fecal samples from twenty
participants, and the data were deposited in the BioProject
database (accession no. PRJNA787524). A total of 3,574 OTUs
were detected. The OTU Core-Pan diagram showed the number
of common microbial taxonomies among groups and the unique
taxonomies in each group (Figure 4A). There were 203 OTUs
overlapped among four groups, whereas 996, 1,089, 798, and
691 OTUs belonged to middle-aged adults, non-frail, pre-frail,
and frail subjects, respectively. The number of OTUs in non-frail
group was much larger than that in other three groups, which
indicated the most abundant microbiota of non-frail subjects.
Rarefaction curve indicated the results of observed species
corresponding to random sampling sequences per sample. A flat
trend was observed as the number of sequences increased, which
indicated that the sampling size was reasonable (Figure 4B).

To observe the differences in bacterial diversity among the
groups, the sequences were aligned to estimate alpha and beta
diversities. We did not find statistical differences in alpha
diversity of microbiota community between middle-aged adults
and non-frail subjects (Figure 4C). The Sobs index of the frail
group was significantly lower than that of non-frail group [126 (6)
vs. 218 (12), p = 0.03615] (Figure 4D). For beta diversity analysis,
UPGMA cluster analysis based on the weighted UniFrac analysis
was performed, and the phylogenetic distance between samples
was calculated (Figure 4E). No statistical significance was found

between non-frail subjects and middle-aged adults or frail and
non-frail groups (Figure 4F).

Next, the composition of intestinal microbe in all groups was
analyzed at phylum and genus levels, and we found considerable
variabilities of gut microbiota across samples in each sample.
A number of six and 21 species were the most distinct at the
phylum (Figure 4G) and genus (Figure 4H) levels, respectively.
At the phylum level, Bacteroidetes and Firmicutes were the
two predominant phyla. The relative abundance of Bacteroides
increased gradually in middle-aged adults, non-frail, pre-frail,
and frail subjects (relative abundance was 0.202, 0.337, 0.392,
and 0.448%, respectively). The relative abundance of Firmicutes
decreased gradually in middle-aged adults, non-frail, and frail
subjects (relative abundance was 0.622, 0.358, and 0.265%,
respectively). At the genus level, there were 2 significant gut
microbiota composition between middle-aged adults and non-
frail subjects and 5 significant gut microbiota composition
between non-frail and frail subjects (Supplementary Table 13).
These data revealed the differences among these groups with
more pronounced changes in the microbiota of frail subjects.

Furthermore, we used LEfSe to generate a cladogram to
identify the specific bacteria associated with healthy aging
and frailty. We identified 12 discriminatory microflora as
the key discriminants for healthy aging. The potentially
beneficial bacteria such as Lactobacillaceae (Lactobacillus) were
significantly overrepresented [all LDA scores (log10) > 4.8]
in feces of non-frail subjects, while Firmicutes [Erysipelotrichia
(Erysipelotrichales, Erysipelotrichaceae, Clostridium_XVIII),
Clostridium_XlVb, Blautia, and Negativicutes (Veillonellaceae,
Selenomonadales)] were the most abundant microbiota in
middle-aged adults (all | LDA scores (log10) | > 3.6) (Figure 4I).
Similarly, 12 discriminatory microflorae were identified as
the key discriminants in frailty. Frail subjects were mainly
characterized by higher abundance of Porphyromonadaceae
(Parabacteroides), Bacteroidaceae (Bacteroides), and Blautia [all
LDA scores (log10) > 3.6], while non-frail subjects showed higher
enrichment of Ruminococcaceae (Faecalibacterium, Gemmiger,
Sporobacter, Butyricicoccus), Roseburia, and Fusicatenibacter
[all | LDA scores (log10) | > 3.6] (Figure 4J). Taken together,
these data indicated the alteration of commensal gut microbiome
composition in healthy aging and frailty.

Correlation Analysis of Metabolites and
Gut Microbiota in Frailty
To explore the potential links between gut microbiota
composition and the metabolome of frailty, we carried out
inter-omics correlation analysis of the abundance of microbiota
at the genus level with serum and fecal metabolites. We found
that 5 serum metabolites D-ribose, D-(-)-mannitol, creatine,
indole, and dodecanedioic acid had relationships with fecal
metabolites and microbiota altered in frailty (Figure 5 and
Supplementary Tables 14, 15). Increased serum metabolites
D-ribose and D-(-)-mannitol were negatively correlated with
fecal 2′-deoxyinosine and potentially beneficial bacteria such
as Faecalibacterium and Fusicatenibacter. Nevertheless, as an
energy source, serum creatine was negatively associated with fecal
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FIGURE 4 | 16S rDNA-amplicon sequencing analysis. (A) The Core-Pan diagram of OTUs distribution among four groups. (B) The rarefaction curve of random
sequences per sample and their corresponding number of observed species. (C,D) Species diversity differences estimated by the observed Sobs, Chao, Ace,
Shannon, Simpson, and coverage indices. (E) UPGMA cluster analysis of 20 samples at genus level. A01, A02, A03, A04, and A05 represented middle-aged group;
B01, B02, B03, B04, and B05 represented non-frail group; C01, C02, C03, C04, and C05 represented pre-frail group; D01, D02, D03, D04, and D05 represented
frail group. (F) Beta diversity box-plot based on weighted UniFrac analysis among groups. (G) The percentages of gut microbiota diversity at phylum level. (H) The
percentages of gut microbiota diversity at genus level. (I,J) LDA integrated with effect size (LEfSe). Left: the phylogenetic distribution of microbiota in cladogram.
Right: the differences in abundance of microbiota. Middle-aged adults vs. non-frail subjects (I); non-frail subjects vs. frail subjects (J). NS, not significant.
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FIGURE 5 | Correlation analysis between metabolites and gut microbiota. Correlation profile of altered gut microbiota, fecal and serum metabolites in frailty based on
the Spearman’s correlation analysis. Fecal metabolites and serum metabolites of the same color were included in the metabolism pathway with the same color. ↑
and ↓ indicated higher and lower concentration of metabolites or abundance of microbiota, respectively. Red and blue lines indicated positive and negative
correlations, respectively.

creatine and positively with Roseburia and Faecalibacterium.
Decreased serum indole and the related fecal metabolites
4-methylphenol, tyramine and indole-3-ethanol were also
positively associated with these potentially beneficial bacteria.
Conversely, D-ribose and D-(-)-mannitol were positively related
to Bacteroides and Parabacteroides, but creatine and indole
were negatively related to these two microbiota that increased
in frail subjects. We also found that serum and fecal levels
of dodecanedioic acid, an energy substrate, were positively
associated with decreased Faecalibacterium, Fusicatenibacter, and
Roseburia and were negatively associated with Bacteroides and
Parabacteroides in frailty. These results suggested that alterations
of metabolite profiling and metabolic disorders in frailty might
be associated with gut microbiota.

DISCUSSION

Serum metabolomics and gut microbiome have emerged as
the exciting frontiers for understanding physiological changes
associated with aging and pathophysiologic changes in frailty.
In this study, we identified patterns of serum metabolites
and fecal microbiota during healthy aging (middle-aged adults
vs. non-frail subjects) and frailty (non-frail vs. frail subjects).
Notably, partly overlapping but distinct metabolite profiles in
healthy aging and frailty support the notion that frailty is an
integrated spectrum of age-related disorders. According to the
pie graph of the metabolites class composition and metabolite
concentrations, metabolites that belong to the classes of fatty
acids and derivatives, carbohydrates, and monosaccharides all
increased, which might suggest protein utilization disorder
or deficiency in frailty. Furthermore, we identified serum

metabolites that included D-ribose, D-(-)-mannitol, creatine,
and indole and their related fecal metabolites 2′-deoxyinosine,
4-methylphenol, tyramine, and indole-3-ethanol changed in
frailty. Indole is involved in the metabolism of muscle-
related amino acid tryptophan (26). Creatine is the major
energy source in the muscle that can produce ATP rapidly
to meet energy demands (27). Therefore, decreased serum
levels of creatine and indole, and the changes of their related
fecal metabolites also indicate the dysfunction of amino acid
metabolism and protein digestion/absorption in frailty and
suggest the involvement of energy deficiency from protein in the
pathogenesis of frailty.

In addition, we focused on dodecanedioic acid, an even-
number medium-chain dicarboxylic acids, with characteristics
intermediating between glucose and fatty acids (28). It is
a suitable energy substrate providing energy support during
exercise, since it reduces muscle fatigue and is rapidly oxidized
(29). As we have already known, muscle loss and energy
deficiency resulting from aging, diseases, and weight loss are
the core of the frailty cycle, which further leads to fatigue,
low strength, slowness, and reduced activity (19). Moreover,
Viltard et al. reported a significant increase of dodecanedioic
acid in extremely long-lived naked mole rats (30), which implies
its correlation with longevity. Therefore, decreased level of
dodecanedioic acid may also suggest a potential mechanism
related to energy deficiency in frailty.

Importantly, we observed coherent change of dodecanedioic
acid in feces and serum, which suggested that decreased serum
dodecanedioic acid might be due to the reduction of substrate
metabolism by gut microbiota. In fact, serum dodecanedioic
acid was positively correlated with Fusicatenibacter and
Faecalibacterium and negatively correlated with Bacteroides
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and Parabacteroides in frailty. The Spearman’s correlation
analysis also showed the relationships between serum metabolites
D-ribose, D-(-)-mannitol, creatine, indole, and the abundance
of Faecalibacterium, Roseburia, Fusicatenibacter, Bacteroides, and
Parabacteroides. Faecalibacterium prausnitzii was found to be a
key producer of short-chain fatty acid butyrate, which exerts an
anti-inflammatory effect in the gut (31). Tongeren et al. (32)
reported that Faecalibacterium prausnitzii significantly reduced
in frail people, and the similar result was confirmed in a
study conducted by Jackson et al. (17). Genera Roseburia and
Fusicatenibacter were also reported to be associated with the
protective effects on health (33, 34). Thus, we suppose that frailty
is accompanied by a reduction in the beneficial gut microbiota
that play an important role in regulating metabolites.

Since frailty status might be reversible or postponed (35, 36),
it is urgent to identify the potential biomarkers of pre-frailty for
the prevention and early intervention of frailty. In this study,
propylparaben was found to gradually decrease in non-frail,
pre-frail, and frail groups. However, due to the limitation of
our sample size, propylparaben is the only coherent metabolite
among non-frail, pre-frail, and frail subjects. Propylparaben is
a kind of xenoestrogen and exerts neuroprotective effects in
neurodegenerative diseases such as Alzheimer’s disease (37).
However, an acute exposure to propylparaben may cause DNA
damage in mice (38). Since its mixed directionality of association
with health, the role of Propylparaben in frailty is worthy
of further study.

In summary, our findings reveal distinct metabolic profiles
of healthy aging and frailty. The correlation of the changes
of gut microbiota and metabolites suggests the disturbances
of microorganism-host metabolic balance during frailty and
provides the basis for future studies on the pathogenesis of frailty.
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