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The development of mathematical models of the immune response allows a better understanding of the multifaceted mechanisms
of the defense system. The main purpose of this work is to present a scheme for coupling distinct models of different scales and
aspects of the immune system. As an example, we propose a newmodel where the local tissue inflammation processes are simulated
with partial differential equations (PDEs) whereas a system of ordinary differential equations (ODEs) is used as a model for the
systemic response.The simulation of distinct scenarios allows the analysis of the dynamics of various immune cells in the presence
of an antigen. Preliminary results of this approach with a sensitivity analysis of the coupled model are shown but further validation
is still required.

1. Introduction

Systems biology is an emerging interdisciplinary area of
science that advocates a distinct perspective on the study of
biological phenomena, particularly focusing on understand-
ing a system’s structure and its dynamics [1]. The systems
biology approach often involves the use of mathematical and
computational techniques in the development of mechanistic
models that describes complex interactions in biological
systems.

One complex biological system that can benefit from the
systems biology approach is the immune system (IS). The IS
is composed by a large number of cells, molecules, tissues,
and organs that form a complex network that interact with
each other in order to protect the body against pathogenic
agents [2]. The IS of vertebrates is composed by three layers
of defense: (a) the physical barriers; (b) innate IS; and (c) the
adaptive IS.

The physical barriers are composed by the skin and
mucousmembranes that form a shield against the pathogenic

agents. If this shield is crossed by pathogens, they encounter
cells and molecules of the innate IS, such as proteins of
the complement system and macrophages, that immediately
develop a response to them.The macrophages phagocyte the
pathogens and produce proteins called cytokines that signal
to other innate cells that their help is needed. Recruitment of
more innate cells is essential for effective control of infections
[3]. Some of the innate cells such as the macrophages and
dendritic cells act as antigen presenting cells (APCs), playing
a pivotal role on activating the third layer of defense, which
is the adaptive IS response. B and T lymphocytes are some
of the main cells of this third layer response. The presence of
these cells is extremely important because they can adapt to
deal with almost any invader. B cells in its plasma form secrete
antibodies. Antibodies bind to pathogens, which turns the
latter more susceptible to phagocytosis (in a process called
opsonization). Three main types of T cells are known: (a)
killer T cells (also known as cytotoxic lymphocytes), (b)
helper T cells, and (c) regulatory T cells. Killer T cells induce
infected cells to commit suicide, in a process called apoptosis;
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helper T (Th2) cells produce cytokines and help priming
B cells; and regulatory T cells act in the regulation of the
response, although the complete process is still unclear [2].

A large number of works have proposed models to
describe the IS [4–13]. A great introduction to previous
models of the IS is available in the work of Perelson and
Weisbuch [14] and more recently the state of the art on
representing the IS was presented by Narang et al. [15].

Computational models of the adaptive IS are very often
developed using pure mathematical tools, such as ordinary
differential equations (ODEs), to describe the behavior of
its components and their relationships, although other tools,
such as system dynamics [16, 17], cellular automata [18–24],
agent-based systems [25–36], and complex adaptive systems
[37], are also used. Some works focus only on modeling the
innate IS [38–40], which is responsible for activating the
adaptive response.

The use of more than one approach tomodel the immune
response is not novel and there are different works that con-
sider differential equations together with cellular automata
[23], agent-based Systems [41], and system dynamics [16].
And also, the assumption of different scales of the immune
system was already considered by Kirschner [33]. However,
none of the previous approaches so far represented the
immune response considering the spatial features such as,
cellular movement, diffusion, and chemoattraction modeled
with PDEs and the dynamics of antibody activation modeled
with ODEs, which is the approach used in this work. Differ-
ential equations were chosen due to the advantage of dealing
with distinct scales, in comparison with other approaches,
and the possibility of numerical analysis of the model.

A previous work presented a mechanistic computational
model of the innate immune response to a general pathogen
[42]. This pathogen is represented by lipopolysaccharide
(LPS) that is present in the outermembrane ofGram-negative
bacteria. That model represents the behavior of the main
defense cells, such as macrophages, and molecules, such
as proinflammatory cytokines (TNF-𝛼 and IL-8) and anti-
inflammatory cytokines (IL-10). A set of PDEs was used to
reproduce important phenomena such as the temporal order
of cells arriving at the local of infection, the production of
proinflammatory and anti-inflammatory cytokines, and the
chemotaxis phenomenon. The model has been extended (a)
to allow the use of a three-dimensional domain in order
to better represent the site of infection and (b) to use
parallel programming techniques to guarantee a reasonable
simulation time [43].This work extends our previous models
[42, 43], enabling the innate IS to activate the adaptive one.
The main contribution of this work is a mathematical model
that reproduces the dynamics of both innate and adaptive
IS, coupling for this purpose models of different nature and
scales. The adaptive model chosen to be coupled with the
innate model consists of a set of equations, based on the
mathematical model of pneumonia which is described in
[44]. Besides, the coupled model represents a more complete
scenario: the dynamics of the cells and molecules inside the
tissue aswell as the communication through lymph andblood
vessels with the nearest lymph node. We must stress that the
main contribution of this work is the new way used to couple

models of distinct scales and aspects of the immune system,
represented by ODEs and PDEs. In this way, both models
used to represent the innate and the adaptive immune system
could be replaced by other models with slight modifications.
In fact, several recent models represent the dynamics of
acute inflammatory response in the lung [45–49]. The model
proposed by [44] was chosen due to the availability of all
parameters needed to implement the model.

The interest in modeling spatial features of the immune
response is due to the increasing availability of noninvasive
imaging techniques mainly on the last decade [50]. Besides,
the spatial information of an individual could be provided
at any time to validate the in silico models. A few examples
of recent works on noninvasive imaging in immunology are
[51–55]. Thus, an important aspect considered in choosing
pneumonia as an example to illustrate the new coupling
technique and why to use PDEs is the fact that this disease
causes damages in the tissue that can be observed by medical
imaging techniques. The simulation of the coupled model
can generate as a result an image that represents the damage
caused by bacteria to the local tissue, in this example the lung
(alveolar space).

Related works on coupling models of the IS deal with
different scales to represent the trigger for innate response
and activation of acquired response. At a molecular level [56]
used coupledODEsmodels to understand the behavior of the
proteins involved in the process of antigenic presentation. At
a cellular level there are works that couple models employing
agent-based systems with ODEs [31, 33, 57], or with system
dynamics [16], while others use only PDEs [39, 58], only
ODEs [45, 59], or DDEs [60] to achieve this purpose. A
similar approach using only ODEs to represent tuberculosis
dynamics can be found in [61]. The model proposed in
this work uses both PDEs and ODEs to describe the entire
dynamics. This is, for the best of our knowledge, the first
work that couples PDEs and ODEs to describe the dynamics
of innate and adaptive IS into a piece of tissue, including the
activation of the adaptive IS by the innate IS.

This work is organized as follows. Section 2 presents
the biological model used in this work and the coupling
of the mathematical models. The IS model presented in
this work was simplified when compared to our previous
models [42, 43]. The complete model was not used in order
to focus on the integration of the two different models:
(a) local tissue and (b) lymph nodes. Section 3 presents
its computational implementation. The results obtained by
the models, the discussion, and a sensitivity analysis of
the coupled model are presented in Section 4. Finally,
Section 5 draws our conclusions and present our future
works.

2. Materials and Methods

2.1. Biological Model. According to [44], there are several
microorganisms that could be etiological agents of destruc-
tive pneumonia. However, the inflammatory and destructive
process in lung tissue cannot be started unless there is a
malfunctioning of local and general defense mechanisms
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[62]. The multiplication of microorganisms occurs between
10 and 14 days and causes the disease which, in case
of recovery, ends as a result of destruction of bacteria
by antibodies, macrophages, and neutrophils. Initially, we
consider a simplified scenario where there are only resting
macrophages located in the tissue (as an example we chose
the lung tissue) and T- and B-lymphocytes in the lymph
nodes. After the injection of an antigen (A), those resting
macrophages (RM) that encounter an antigen become acti-
vated macrophages (AM) and start producing proinflamma-
tory cytokines (PC) to recruit other immune cells to the site
of infection. Activatedmacrophages act as antigen presenting
cells (APCs) migrating to the closest lymph node through
lymph vessels (Figure 1) and exhibiting the antigen to the
lymphocytes which initiates the activation and differentiation
of T-lymphocytes into T-helper 2 lymphocytes (Th2) and
activation and differentiation of B-lymphocytes into plasma
cells.

Plasma cells are mass producers of antibodies (Figure 2).
Those antibodies head to the local of the infection in the lung
tissue through blood vessels. As soon as they reach an antigen
they dowhat is called opsonization of the antigen, the process
by which an antigen is marked for ingestion and destruction
by a phagocyte (Figure 3) [63].

2.2. Coupling of Models. Marchuk uses DDEs to model the
processes involved in pneumonia [44]. In this work, some
assumptions are made to model that scenario.

(i) We do not consider the delay on biological processes
such as T lymphocyte clonal expansion and antibod-
ies production and release.

(ii) We consider only the temporal behavior of the cells
inside the lymph node and the spatiotemporal behav-
ior of the cells in the lung tissue. Thus, we expect to
visualize the damage caused to the lung parenchyma.

In order to represent the immune response, PDEs based
on a previous model of the innate response [42] have been
employed to model the spatial and temporal behavior of the
following components:

S. aureus bacteria (𝐴);
resting macrophages (𝑀

𝑅
);

activated macrophages (𝑀
𝐴
);

specific antibodies (𝐹).

Moreover, ODEs represent the cascade activation of
the lymphocytes leading to the production and release of
antibodies in the lymph node (LN), which is a simplification
of the model in [44]:

T-lymphocytes (𝑇);
B-lymphocytes (𝐵);
plasma cells (𝑃);
antibodies (𝐹𝐿).

Macrophages act likeAPCs, activating the adaptive IS and
the production and release of antibodies. The presentation

and the later presence of antibodies in the infection site are
only possible due to the coupling of the two distinct mod-
els presented herein. We assumed that the communication
between the alveolar tissue and the nearest LN is guaranteed
by the presence of lymph and blood vessels.

The linkage between the local and the systemic response
is achieved by representing the APCs and the antibodies in
both models. There is a PDE equation to model the activated
macrophage behavior while they are inside the tissue and an
ODE to model their concentration inside the LN. The flux
of activated macrophages from the tissue to the LN involves
the numerical integration of the macrophages in the tissue.
The same style of approximation was adopted to model the
migration of antibodies from the LN to the tissue. The PDEs
based model and the ODEs based model are shown in the
next subsection.

It must be stressed that pneumonia was chosen as an
example to illustrate the framework proposed in this paper
to couple models of different nature and scales; other models
could be chosen to represent different infection processes
caused by other diseases.

The general framework for the coupling of models pro-
posed herein could be summarized as follows.

(1) Selection of two distinct models of the immune
response: one related to a local response and other
related to a systemic one.

(2) Identification of common or related variables among
the chosen models, for example, the variables repre-
senting cells thatmigrate fromone location to another
during the response, and therefore act as APCs. If
no common or related variable is found, a relation
must then be created by adapting the models to the
coupling as stated in the next step.

(3) Implementation of necessary adjustments to the set
of equations. This step could involve changes on the
equations which must represent the flux between two
different locations; for example, there must be a term
to represent the flux of antibodies leaving the LN
and another one representing the arrival of them in
the tissue. Those terms do not necessarily exist on
the original models that are being coupled. The units
of measurement must also be considered within this
step. If necessary, conversions should be made to the
units of the parameters to keep the correctness of the
coupled model.

(4) Simulate the coupledmodel and validate the obtained
results.

We expect to gain insights on the immune system
response to distinct pathogenic agents with the coupling of
models. It follows an example of the coupling of models
to represent the immune response to S. aureus causing
pneumonia.

2.3. PDEs Model. All the PDEs are modeled considering
homogeneous Neumann boundary conditions.
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Figure 1: Communication between local tissue and lymph node; activation of resting macrophages (RM) and migration of activated
macrophages (AM) to the lymph node.

Lung tissue

RM
AM

AM AM

Lymph node

Th

B

(A
ct

iv
at

io
n)

P

Th2

A
Blood vessel 

Lymph vessel

(PC)

Antibodies

Lung tissue Lymph node

Blood vessel 

Lymph vessel

Figure 2: Activated macrophage (AM) stimulate lymphocytes by antigen presenting process; T cell differentiate in T-helper 2 (Th2) and B
cell differentiate in plasma cell (P) which produces antibodies (Y).

2.3.1. S. aureus Bacteria (A). Equation (1) depicts the model
for the S. aureus bacteria. The first term of (1) models the
replication of bacteria at a rate 𝛽

𝐴
and carrying capacity

is given by 𝑘
𝑎
. The second term gives its natural decay

by the coefficient 𝜇
𝐴
. Its engulfment by macrophages and

other nonspecific defense cells is represented by the third
and fourth terms of the same equation: 𝜆

𝑀𝑅
is the rate that

accounts for the activation of macrophages and 𝜆
𝑀𝐴

is the
destruction rate of bacteria by active macrophages.
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= 0.

(1)

The opsonization process for further phagocytosis in
shown in the 5th and 6th terms; 𝜆

𝐴𝐹|𝑀𝑅
represents the rate

for destruction of opsonized bacteria by restingmacrophages
and 𝜆

𝐴𝐹|𝑀𝐴
represents the rate for destruction by activated

macrophages. The variable 𝐹 is the amount of antibodies in
the tissue modeled by (4) which is an important part of the
coupling of models. The last term of this equation represents
the diffusion of the bacteria in the lung tissue where𝐷

𝐴
is the

bacteria diffusion coefficient. Initially there is an injection of
antigen only at one small part in the center of the tissue and
it is assumed that there is no flux through the borders.

2.3.2. Macrophages (𝑀
𝑅
,𝑀
𝐴
). Macrophages are represented

in two distinct states: resting (𝑀
𝑅
) and activated (𝑀

𝐴
) states.

Initially, there are only resting macrophages in the tissue and
they become activated after exposure to antigens (A). In the
activated state, they play an important role in presenting and
stimulating specific defense cells located in the LN.

Equation (2) represents the concentration of resting
macrophages in the alveolar tissue, in which the first term
accounts for their natural decay, the second term represents
their activation, the third term represents the flux of resting
macrophages entering the tissue from the blood, and the
last one is the diffusion term. The natural decay rate is
given by 𝜇

𝑀𝑅
, 𝛾
𝑀𝐴

is the rate in which resting macrophage
becomes active and𝐷

𝑀𝑅
is the resting macrophage diffusion

coefficient. Consider
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(2)

The flux of macrophages entering the tissue depends on
the localization of the blood vessels in the tissue. In order to
represent that behavior 𝛼

𝑀𝑅
represents the rate of migration

and 𝜃BV is a function that is equal to 1 where volumes are in
contact with blood vessels and 0 otherwise.

Equation (3) represents the concentration of activated
macrophages in the alveolar tissue after encountering anti-
gens. Again, the first termmodels their natural decay, at a rate
of 𝜇
𝑀𝐴

, the second term models their activation at a rate of
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Figure 3: Antibodies (Y) migrate to the lung tissue through blood vessel and opsonize the antigen (A).
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(3)

The last term of (3) models the connection between the
activated macrophages in the tissue and the concentration
that migrates to the nearest LN to act as APCs. It represents
the flux of 𝑀

𝐴
between the local alveolar tissue and the

LN through the lymph vessels. In this equation, 𝑀𝐿
𝐴
is the

macrophage concentration in the LN, which dynamics is
described by (5) and 𝜃LV is a function that is equal to 1 if the
volumes are in contact with lymph vessels and 0 otherwise.

It is assumed that in the beginning of the simulation there
are only resting macrophages over the tissue and there is no
flux through the borders.

2.3.3. Antibodies (F). Equation (4) describes the antibody
mechanics within the lung tissue. The first and second terms
represent the antibodies consumption to defeat bacteria in
the opsonization process, at rates depending on the state
of the phagocyte cell: 𝜆

𝐹𝐴|𝑀𝑅
for resting macrophages and

𝜆
𝐹𝐴|𝑀𝐴

for activatedmacrophages.The third termmodels the
diffusion process of antibodies in the tissue, at a rate of 𝐷

𝐹
,

and the last term describes the flux of antibodies between
the LN and the tissue, at a rate of 𝛼

𝐹
, in which 𝐹𝐿 is the

concentration of antibodies released by plasma cells in the LN
(11). Consider
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(4)

The last term of (4) is part of the model coupling and was
added to the PDEs model to make the connection between
the antibodies released in the LN and theirmigration through
the blood vessels to the infection site. It is assumed that there
is no flux through the borders.

2.4. ODEs Model. In the ODEs model the cellular homeosta-
sis is guaranteed by the addition of an equilibrium term in
the equations corresponding to the adaptive IS. The idea is
to preserve the minimum amount of adaptive IS cells in the
body [44].

2.4.1. Macrophages (𝑀𝐿
𝐴
). In order to perform the coupling,

the antigen presentation needed to be represented as a
trigger to the acquired response. The concentration of active
macrophages inside the LN which migrated from the tissue
was modeled by (5). This equation represents the active
macrophages which migrated from the local alveolar tissue
to the LN through the lymph vessels, at a rate of 𝛼

𝑀

𝑑𝑀
𝐿

𝐴

𝑑𝑡

= 𝛼
𝑀
(𝑀
𝑇

𝐴
−𝑀
𝐿

𝐴
)

𝑉LV
𝑉LN

,

𝑀
𝐿

𝐴
(0) = 𝑀𝐴0

(5)

in which 𝑉LN is the assumed volume of the LN and 𝑉LV is
the integral of the volumes where there is contact with lymph
vessels given by

𝑉LV = ∫
Ω

𝜃LV (𝑥, 𝑦, 𝑧) 𝑑Ω. (6)

The average concentration of active macrophages in the
tissue (𝑀𝑇

𝐴
) was calculated by the integration of the values

of active macrophages within the domain of simulation in
contact with lymph vessels and is described by

𝑀
𝑇

𝐴
=

1

𝑉LV
∫

Ω

𝜃LV (𝑥, 𝑦, 𝑧)𝑀𝐴𝑑Ω, (7)

whereΩ represents the volume of the whole tissue simulated.

2.4.2. T-Lymphocytes (T). The T-helper lymphocytes are
stimulated by active macrophages in the LN and play an
important role in the activation of B-lymphocytes and plasma
cells to start the production of specific antibodies against
antigens. The first part of (8) represents the activation ofTh2
cells, with its clonal expansion leading to the appearance of
new cells. 𝑏

𝑇
is the rate for the stimulation of Th2 cells and

𝜌
𝑇
is the number of descendants Th2 cells created by single

division. The second term represents the expenditure of Th2
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cells to stimulate B cells, at a rate of 𝑏
𝑝
. Finally, the third

term models the maintenance of the homeostasis in absence
of antigenic stimulation

𝑑𝑇

𝑑𝑡

= 𝑏
𝑇
(𝜌
𝑇
𝑇𝑀
𝐿

𝐴
− 𝑇𝑀

𝐿

𝐴
) − 𝑏
𝑝
𝑀
𝐿

𝐴
𝑇𝐵 + 𝛼

𝑇
(𝑇
∗
− 𝑇) ,

𝑇 (0) = 𝑇0

(8)

in which 𝑇∗ is the steady state value of the concentration of
T-helper cells.

2.4.3. B-Lymphocytes (B). After B-lymphocytes cells have
been stimulated by T cells and active macrophages in the
LN, they start to proliferate and turn into plasma cells. Their
proliferation is represented by the first termof (9), inwhich 𝑏𝑏

𝑝

is the rate for the stimulation of B cells and 𝜌
𝐵
is the number

of new B cells as an outcome of the stimulation. Again, the
second term shows themaintenance of the homeostasis in the
absence of antigenic stimulation

𝑑𝐵

𝑑𝑡

= 𝑏
𝑏

𝑝
(𝜌
𝐵
𝑇𝑀
𝐿

𝐴
− 𝑇𝑀

𝐿

𝐴
𝐵) + 𝛼

𝐵
(𝐵
∗
− 𝐵) ,

𝐵 (0) = 𝐵0

(9)

in which 𝐵∗ is the steady state value for the concentration of
B cells.

2.4.4. Plasma Cells (P). The plasma cells are generated from
stimulated B cells, T-cells, and active macrophages in the LN
and are the cells that release antibodies against the specific
antigen that was presented by the APCs

𝑑𝑃

𝑑𝑡

= 𝑏
𝑝

𝑝
(𝜌
𝑃
𝑇𝑀
𝐿

𝐴
𝐵) + 𝛼

𝑃
(𝑃
∗
− 𝑃) ,

𝑃 (0) = 𝑃0
.

(10)

The first term of (10) describes the generation and
maturation of plasma cells from stimulated B cells, in which
𝑏
𝑝

𝑝 is the rate for the stimulation of plasma cells and 𝜌
𝑃

is the number of new plasma cells. The last term is the
maintenance of the homeostasis in which 𝑃∗ is the steady
state concentration of plasma cells.

2.4.5. Antibodies (𝐹𝐿). Antibodies released by plasma cells in
the LN are represented by

𝑑𝐹
𝐿

𝑑𝑡

= 𝜌
𝐹
𝑃 − (𝛼

𝐹
𝜃BV (𝑥, 𝑦, 𝑧) (𝐹

𝐿
− 𝐹
𝑇
))

𝑉BV
𝑉LN

,

𝐹
𝐿
(0) = 𝐹0

(11)

inwhich the first termdescribes the production of antibodies,
at rate 𝜌

𝐹
, by plasma cells and the last term represents the

connection between the two models (PDEs and ODEs). The
last term of (11) describes the flux of antibodies between the
LN and the tissue, at a rate of 𝛼

𝐹
, on volumes with contact

Table 1: Initial values of the coupled model.

Parameter Value Unit Reference
𝐴
0

2 Cell/mm3 Estimated
𝑀
𝑅0

4 Cell/mm3 Estimated
𝑀
𝐴0

0.0 — [44]
𝐹
0

0.0 — [44]
𝑇
0

0.0 — [44]
𝐵
0

0.0 — [44]
𝑃
0

0.0 — [44]
𝐹
0

0.0 — [44]
𝑇
∗

8.4 ∗ 10
−3 Cell/mm3 [44]

𝐵
∗

8.4 ∗ 10
−4 Cell/mm3 [44]

𝑃
∗

8.4 ∗ 10
−6 Cell/mm3 [44]

𝐹
∗

0.0 Cell/mm3 [44]
𝑀𝑅
∗

4 Cell/mm3 Estimated

with the blood vessels given by 𝜃BV. 𝐹
𝑇 is the average number

of antibodies in the tissue described by

𝐹
𝑇
=

1

𝑉BV
∫

Ω

𝜃BV (𝑥, 𝑦, 𝑧) 𝐹 𝑑Ω, (12)

where Ω is the tissue domain and 𝑉BV is the integral of the
volumes where there is contact with blood vessels given by

𝑉BV = ∫
Ω

𝜃BV (𝑥, 𝑦, 𝑧) 𝑑Ω. (13)

2.5. Initial Conditions and Parameters. The initial conditions
for the PDEs model which describe the process of formation
of inflammatory site are shown in Table 1.

It was considered that initially only a small portion of
the tissue had the presence of antigens and the domain
of simulation was 10mm3. This initial injection of antigen
was represented in the center of the hexahedral domain of
simulation (between 3mm and 7mm over the axes). Initially
it is also considered the presence ofmacrophages in its resting
state equally distributed over the tissue.

Tables 2, 3, and 4 present the set of parameters used in
the simulations. Almost all parameters used in the simulation
were obtained in Marchuk [44] applying the necessary unit
conversions and some fitting to the coupled model. The only
exceptions are the diffusion coefficients 𝐷

𝑀𝑅
, 𝐷
𝑀𝐴

, and 𝐷
𝐹

which were estimated by Pigozzo et al. [42] and the diffusion
coefficient of bacteria 𝐷

𝐴
based on the work of Haessler and

Brown [62].

3. Implementation

The numerical method employed to solve the mathematical
model was the finite difference method, a method commonly
used in the numeric discretization of PDEs. The finite
difference method is a method of resolution of differential
equations that is based on the approximation of derivatives
with finite differences [64, 65].
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Table 2: Diffusion coefficients.

Parameter Value Unit Reference
𝐷
𝐴

3.7 ∗ 10
−5 mm3/day [62]

𝐷
𝑀𝑅

4.32 ∗ 10
−2 mm3/day [42]

𝐷
𝑀𝐴

0.3 mm3/day [42]
𝐷
𝐹

1.6 ∗ 10
−2 mm3/day [42]

Table 3: Replication, decay, activation, and phagocytosis rates.

Parameter Value Unit Reference
𝛽
𝐴

2.0 1/day [44]
𝑘
𝐴

50.0 cell/mm3 Estimated
𝜇
𝐴

0.1 1/day [44]
𝜇
𝑀𝑅

0.033 1/day [42]
𝜇
𝑀𝐴

0.07 1/day [42]
𝛾AM 8.3 ∗ 10

−2 mm3/cell∗day [44]
𝜆
𝑀𝑅

5.98 ∗ 10
−3 mm3/cell∗day [44]

𝜆
𝑀𝐴

5.98 ∗ 10
−2 mm3/cell∗day [44]

𝜆
𝐴𝐹|𝑀𝑅

1.66 ∗ 10
−3 mm6/cell2∗day [44]

𝜆
𝐴𝐹|𝑀𝐴

7.14 ∗ 10
−2 mm6/cell2∗day [44]

Table 4: Other coefficients used in the coupled model.

Parameter Value Unit Reference
𝛼
𝑀𝐴

10
−3 1/day [44]

𝛼
𝑇

0.01 1/day [44]
𝛼
𝐵

1.0 1/day [44]
𝛼
𝑃

5.0 1/day [44]
𝛼
𝐹

0.43 1/day [44]
𝛼
𝑀𝑅

4.0 1/day Estimated
𝑏T 1.7 ∗ 10

−2 mm3/cell∗day [44]
𝑏
𝑃

10
5 mm6/cell2∗day [44]

𝑏
𝐵

𝑃
6.02 ∗ 10

3 mm6/cell2∗day [44]
𝑏
𝑃

𝑃
2.3 ∗ 10

6 mm3/cell∗day [44]
𝜌
𝑇

2.0 — [44]
𝜌
𝐵

16.0 Cell/mm3 [44]
𝜌
𝑃

3.0 — [44]
𝜌
𝐹

5.1 ∗ 10
4 — [44]

𝑉LN 160 Cells Estimated

Our implementation is based on the finite difference
method for the spatial discretization and the explicit method
for the time evolution with an upwind scheme for the con-
vective term of the equations.The upwind scheme discretizes
the hyperbolic part of the PDEs using a bias for the flux
direction given by the signal of the characteristic speeds.
The upwind scheme uses an adaptive or solution-sensitive
stencil to precisely simulate the direction of information
propagation.

(1) begin
(2) Initialize();
(3) createFiles();
(4) while ((𝑡 < 𝑖𝑡𝑒𝑟𝑃𝑒𝑟𝐷𝑎𝑦 ∗ 𝑛𝑢𝑚𝐷𝑎𝑦𝑠) && (𝐴 > 𝑡𝑜𝑙)) do
(5) calcIntegrals();
(6) solveODEs(); // systemic response model
(7) solvePDEs(); // local response model
(8) recordResults();
(9) end
(10) end

Algorithm 1: Main program for the coupled models.

Below there is an example of a finite difference operator
used in the discretization of the Laplace operator that simu-
lates the diffusion phenomenon in 3D:

𝐷
𝑂
(

𝜕
2
𝑂 (𝑥, 𝑦, 𝑧)

𝜕𝑥
2

+

𝜕
2
𝑂 (𝑥, 𝑦, 𝑧)

𝜕𝑦
2

+

𝜕
2
𝑂 (𝑥, 𝑦, 𝑧)

𝜕𝑧
2

)

≈ 𝐷
𝑂
∗ ((𝑜 [𝑥 + 1, 𝑦, 𝑧] − 2 ∗ 𝑜 [𝑥, 𝑦, 𝑧] + 𝑜 [𝑥 − 1, 𝑦, 𝑧])

×(Δ𝑋
2
)

−1

)

+ 𝐷
𝑂
∗ ((𝑜 [𝑥, 𝑦 + 1, 𝑧] − 2 ∗ 𝑜 [𝑥, 𝑦, 𝑧] + 𝑜 [𝑥, 𝑦 − 1, 𝑧])

×(Δ𝑌
2
)

−1

)

+ 𝐷
𝑂
∗ ((𝑜 [𝑥, 𝑦, 𝑧 + 1] − 2 ∗ 𝑜 [𝑥, 𝑦, 𝑧] + 𝑜 [𝑥, 𝑦, 𝑧 − 1])

×(Δ𝑍
2
)

−1

) .

(14)

In (14), 𝑂 represents the discretization of some types of
cells, such as resting and activated macrophages; 𝐷

𝑂
is the

diffusion coefficient of these populations of cells, 𝑥, 𝑦, and 𝑧
are the position in the space, and Δ𝑋, Δ𝑌, and Δ𝑍 are the
space discretization.

The code was implemented using the C programming
language and it was considered a 10 × 10 uniform grid with
space discretization of Δ𝑥 = Δ𝑦 = Δ𝑧 = 0.1 representing
10mm3 of tissue. The time step for both ODEs and PDEs is
Δ𝑡 = 10

−4 and the set of ODEs was solved with explicit Euler
method. Algorithm 1 shows the general implementation of
the coupling ofmodels inwhich 𝑖𝑡𝑒𝑟𝑃𝑒𝑟𝐷𝑎𝑦 = 104, 𝑛𝑢𝑚𝐷𝑎𝑦𝑠
depends on the scenario simulated—for the coupled model it
was considered equal to 30. 𝐴 is the amount of antigens still
present in the tissue. The simulation finishes when its value
is less than or equal to a given threshold value, in this case
𝑡𝑜𝑙 = 10

−6.
An effort to parallelize the coupling of models is still in

progress [43] and does not rely in the scope of this paper.
More information about the implementation of the PDEs can
be obtained in [40].
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4. Results and Discussion

To show the importance of immune cells, molecules, and
processes in the dynamics of the immune response and
also to validate the coupling of models, a set of simulations
were performed under distinct scenarios. The simulations
start with a simple scenario were the cells of the IS are not
considered (Case 1). Aiming to analyze the importance of
the antibodies to the elimination of bacteria, the response
is represented firstly by the simulation of only the innate
cells (Case 2) and then with the complete model including
activation of the lymphocytes, production, and migration of
antibodies to the tissue (Case 3). A sensitivity analysis was
performed in order to evaluate the behavior of the coupled
mathematical model.

4.1. Case 1: Antigen Behavior. The purpose of this case is to
show the diffusive term in the antigen Equation (1).

Initially, the antigen is injected only in themiddle portion
of the three-dimensional domain (Figure 4(a)). All images
in Figure 4 show a cut view of the volume along the 𝑥-
axis in order to better visualize both the initial condition
and the diffusion of the antigens. The simulation shows
that, without the immune system cells, after a few hours
the antigen starts to spread over the domain because of
the diffusion (Figure 4(b)). Furthermore, the replication can
also be observed with the increase of the population of S.
aureus (Figures 4(c) and 4(d)). Before the end of the 20-day
simulation it can be observed that there are antigens all over
the domain in considerable amounts. In this case only (1)
was simulated without considering any kind of response.The
cubic domain was sliced in half to improve the visualization.

Figures 5(a) and 5(b) show the logistical growth of antigen
limited only by the space available, respectively, during 20
and 100 days. It can be observed that after 10 days the
antigen reaches the maximum amount the simulated tissue
could carry, which is assumed to be 50 antigens per cubic
millimeter.

4.2. Case 2: Innate Response to an Antigen. Initially, without
considering the trigger of the acquired response, the bacteria
S. aureus increases for days held only by macrophages
and the available space, which is assumed to contain at
most 50 antigens per cubic millimeter. But after this initial
period of time, macrophages are capable of restraining the
antigen growth. However, they are not able to eliminate them
completely. (Figure 6(a)).

Firstly, innate response to an antigen during 30 days was
simulated (Figure 6(a)). According to the results shown by
Figure 6(a), one can see that the amount of antigen increases
until approximately 10 days (240 hours) and then decreases
slowly.However, to understandwhat happens after those days
that seemed to lead to an elimination of the antigen another
test was performed for 100 days that showed that the initial
amount of antigen injected in the tissue and the rates inwhich
the innate immune cells arrive from the blood the antigen
are not eliminated but stay on a chronic equilibrium state
(Figure 6(b)). Throughout the simulations, the macrophages

in the resting state come from the blood vessels which were
positioned in the corners of the cubic domain along the𝑦-axis
(Figures 7(a) and 7(b)).

The set of Figures 8(a)–8(d) show the spread of the
antigen over the tissue in a 10mm3 domain. Again, in order
to better visualize the results the volume was cut along its
𝑥-axis. The initial amount of antigens was injected in the
central portion of the tissue simulated (same used for Case
1) and it can be seen that the replication of the antigen and
the absence of the acquired response lead to the spread of
the antigen over the tissue restrained by the macrophages.
The cubic domain was sliced in half to improve the
visualization.

Figures 9(a) and 9(b) depict the averages of macrophages
both resting and activated in the tissue, respectively, over
30 days of simulation. The state changing from resting to
activated can be observed as the resting population decreases
while the activatedmacrophage population increases, though
they are not exactly opposite curves due to distinct phagocy-
tosis and decay rates.

4.3. Case 3: Coupled Model. The third case represents the
complete scenario with the APCs stimulating the lympho-
cytes.The coupledmodel scenario was simulated considering
four blood capillaries and four lymph capillaries inside the
10mm3 cubic domain. The capillaries were placed, respec-
tively, on the edges of the cube over the 𝑦-axis (Figure 7(b))
and distributed near the central portion of the cubic domain
over the same 𝑦-axis (Figures 10(a) and 10(b)).

This distribution is given by a subroutine which is easily
modified to allow distinct configurations. The antigen initial
condition is the same simulated on the second case: an injec-
tion in the central portion of the domain.A 30-day simulation
was performed and the results showing the coupling follow
within this section.With the arrival of antibodies in the tissue
the immune response was able to eliminate the antigen after
20 days of simulation as shown in Figure 11.

Figure 12 shows a comparison between the average pop-
ulation of activated macrophages inside the tissue and the
population of activated macrophages in the LN. Logarithmic
scale was used for the comparison. As one can observe,
activated macrophages are migrating to the nearest LN to
work as APCs: as the resting macrophages become activated,
their population increases in the tissue as well as in the LN,
which shows that the coupling is working.

Other feature of the coupling is the migration of antibod-
ies produced after the stimulation cascade from the LN to the
location where the infection takes place. The concentration
of antibodies is shown in Figure 13 in which an average of
antibodies inside the tissue is represented over time as well
as the concentration of antibodies in the nearest LN. It can be
observed that the antibodies start to be produced early in the
simulation, just after a few hours, what is due to the presence
of activated macrophages in the LN. A small amount of
antibodies migrate to the local of the inflammation through
the blood vessels after a few hours and a significant amount is
present in the tissue after a few days which contributes to the
elimination of antigens.
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Figure 4: Initial condition and diffusion of the antigens at a 20-day simulation limited only by available space. After approximately 10 days
of simulation the whole domain is filled with antigens.
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Figure 5: Antigen average concentration inside the tissue without any response.
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Figure 6: The results show the average of antigen in each mm3 of the tissue restrained only by the innate response.
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Figure 7: Scheme representing the position of the blood vessels on the edges of the tissue simulated.

X
Y

Z

(a) After 48 hours (b) After 120 hours (c) After 240 hours

40

30

20

10

1

50
S. aureus

(d) After 320 hours

Figure 8: Antigen diffusion during 30 days of simulation limited by the presence of macrophages.Themacrophages are capable of restraining
the antigen growth but they are not able to defeat this initial amount.
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Figure 9: Macrophages in the tissue over 30 days of simulation.
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Figure 10: Scheme representing the position of the lymph vessels in the tissue. They are not centralized to better visualization of the cells
diffusion.
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Figure 11: Antigen concentration (average) in the tissue for 20 days
of simulation of the coupled model.

The average of antibodies, as well as the average of
macrophages, tends to a steady state instead of decreasing
after the elimination of the antigen. This happens due to
the absence of a self-regulation process. At the moment, as
the macrophages that are activated are still present in the
LN, they continue to stimulate the lymphocytes to produce
more antibodies which keepmigrating to the tissue.However,
the acquired response is self-regulated and we expect to
add this feature to the model through the addition of anti-
inflammatory cytokines, such as IL-4 or IL-10. This work is
already in progress.

Figure 14 shows the concentration of T-Lymphocytes, B-
Lymphocytes, and plasma cells, within 20 days of simulation.

It could be noticed that the activation is happening early with
the increase of lymphocytes in the first hours. Thus, the peak
of those cells occurs approximately after 2 days for the T-
lymphocytes and around the 5th day for B-lymphocytes and
plasma cells.

Aiming to show the diffusive process and the effect of the
arrival of the antibodies in the tissue the set of Figures 15(a)–
15(f) presents the antibodies and Figures 16(a)–16(f) present
the antigens. The antibodies arrive at the tissue through the
lymph vessels which are positioned according to Figures 10(a)
and 10(b). The domain is a hexahedron which was sliced to
better visualization henceforth there are 4 vessels but Figures
15(a)–15(f) only show half of them. Moreover, Figures 16(a)–
16(f) are also sliced to better visualization of the diffusion.

After a couple of days of the beginning of the sim-
ulation, it is possible to see the antigen starting to dif-
fuse (Figure 16(a)). The antigen continues to diffuse slowly
restrained by the innate response until approximately the 3rd
day. After a few days the amount of antibodies that is arriving
at the tissue helps macrophages to defeat the antigen more
efficiently in the regions where there is more concentration
of antibodies (Figures 16(c)–16(f)).

4.4. Sensitivity Analysis of the Coupled Model. The sensitivity
analysis can be used to help with the verification of a
mathematical model by evaluating how the model responds
to changes in one or more inputs. The validation of the
model involves comparison of the results to independent
observations from the system being modeled which is not
always feasible. Therefore, the sensitivity analysis can be
used to understand the behavior of the model and reach a
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Figure 12: Average concentration of activated macrophages in the tissue and concentration of activated macrophages in the nearest LN.
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Figure 13: Antibodies in the LN and in the tissue (average) during
20 days of simulation.

comfortable position in terms of qualitative results [66].Thus,
there are several ways of performing this assessment of the
sensitivity of the model; it was chosen herein the so called
one-factor-at-a-time approach (OAT), which is themost used
strategy [67].

The sensitivity analysis of the coupled model considered
the complete scenario during 30 days in a cubic centimeter
domain. Each chosen parameter on Table 5 was assessed
one at a time varying its value from −100% to +200% to
understand its influence on the output. Table 5 presents
the chosen parameters with a brief description and their
maximum error value (Maxerr).

The error was calculated applying (15) to each parameter
as follows:

Maxerr = MAX
𝑘
(

√∑
𝑁

𝑖=0
(𝐸orig (𝑖) − 𝐸𝑘 (𝑖))

2

√∑
𝑁

𝑖=0
(𝐸orig)

2

), (15)

Table 5: Sensitivity analysis—chosen parameters, description, and
the maximum error value.

Parameter Description Maxerr
𝛾AM Macrophage activation rate 6.47

𝛼
𝐹

Antibodies migration rate 6.36

𝑀
𝑅0

Resting macrophage initial condition 6.17

𝛽
𝐴

Antigen replication rate 5.67

𝜌
𝐹

Antibodies release rate 5.15

𝑘
𝐴

Antigen carrying capacity coefficient 4.82

𝑏
𝑃

𝑃
B cell expenditure to become plasma cell 4.09

𝛼
𝑀𝐴

Activated macrophage migration rate 4.09

𝜆
𝐴𝐹|𝑀𝐴

Activated macrophage phagocytosis rate of
opsonized antigen 4.06

𝑏
𝑃

T cell expenditure to stimulate B cell 2.42

𝐷
𝑀𝑅

Resting macrophage diffusion coefficient 0.93

𝐷
𝐴

Antigen diffusion coefficient 0.85

𝜆
𝑀𝐴

Activated macrophage phagocytosis rate 0.76

𝑏
𝐵

𝑃
B cell stimuli coefficient 0.73

𝐷
𝑀𝐴

Activated macrophage diffusion coefficient 0.24

𝐴
0

Antigen initial condition 0.09

𝛼
𝑀𝑅

Resting macrophage source coefficient 0.07

𝜆
𝑀𝑅

Resting macrophage phagocytosis rate 0.05

𝜆
𝐴𝐹|𝑀𝑅

Resting macrophage phagocytosis rate of
opsonized antigen 0.01

𝑏T T cell stimuli coefficient 3 ∗ 10
−4

in which 𝑘 index each variation within the same parameter.
𝐸orig is the number of antigens over time using the original
set of parameters, 𝐸

𝑘
represents each resultant number of

antigens over time with the variation of one parameter at-
a-time and 𝑁 is the number of time steps. Thus, we have a
maximum error value for each parameter that enables us to
understand which parameters are the most sensitive of the
coupled model.
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Figure 14: T-lymphocyte, B-lymphocyte, and plasma cell concentrations in the LN.
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Figure 15: Antibodies arriving in the tissue through the blood vessels. Initially the antibodies do not exist in the tissue and they arrive through
the capillaries and start to diffuse over the tissue.

Among the 20 assessed parameters we are going to
consider those with Maxerr ≥ 1. Therefore, the most sensitive
parameter is the rate of activation of macrophages 𝛾AM.
Without the activation, the acquired response is not triggered
and the response depends only on the resting macrophages
(Figure 17(a)). The second one is the migration rate of the

antibodies to the tissue (𝛼
𝐹
). This parameter is essential to

the acquired response and without this migration rate there
are only resting and activated macrophages in the tissue
(Figure 17(b)). The initial condition of resting macrophages
(𝑀
𝑅0
) is also significant for themodel by the fact that without

them there is practically no response as they are responsible
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Figure 16: Antigen diffusion during 20 days of simulation of the coupled model. The macrophages are capable of restraining antigen growth
but they are not able to defeat this initial amount. However, the antibodies arriving through the blood vessels help macrophages to eliminate
the antigen through opsonization.

for recognizing and engulfing the antigen (Figure 17(c)).
After they identify the antigens they become APCs which
triggers the acquired response. According to the results
shown in Figure 17(d), without the replication rate (−100%)
the amount of antigen in the tissue remains reduced but
sufficient to trigger the immune response which eliminates
the antigen. Increasing this rate, the immune response as
a whole takes more time to eliminate the antigen. With
more than 50% of increase the response is not able to defeat
the antigen in 30 days. The release rate of antibodies in
the LN (𝜌

𝐹
) also affects directly the acquired response. As

it can be observed in Figure 17(e), doubling the original
value the antigens are eliminated in almost half the time
(approximately 9 days) whereas decreasing this rate by 50%
the response takes approximately 28 days. The carrying
capacity parameter, shown in Figure 17(f), is the only one that
cannot be varied from −100%; otherwise it would generate
a division by zero (1). So, it was varied from −50% and for
that value, the response is able to eliminate the antigen a
couple of days before the original value used in simulations,
whereas doubling the value, it takes approximately more 10
days to defeat the antigen. If there is more antigen that is able
to replicate the immune response needs more time to defeat
them.

The coefficient 𝑏𝑃
𝑃
is important to determine the number

of B cells that turn into plasma cells. If this value is reduced
to 100% it means that not a single B cell turns into a
plasma cell leading to a nonexistent specific response. How-
ever, increasing this parameter leads to larger production
of antibodies and quicker specific response to eliminate
antigens (Figure 18(a)). Moreover, the activated macrophage
migration rate to the LN (𝛼

𝑀𝐴
) is essential to initiate the

acquired response as without this migration the antigen is
not presented to the lymphocytes in the LN and the specific
antibodies are not mass produced. Thus, if this parameter is
set to zero there is only the innate response (Figure 18(b)).
The activated macrophages phagocytosis rate of opsonized
antigen, 𝜆

𝐴𝐹|𝑀𝐴
, also shows great discrepancy if set to zero

(Figure 18(c)). This rate is important to the effectiveness of
the acquired response and the more its value is increased the
earlier the response is able to eliminate the antigens. Setting
the coefficient 𝑏

𝑝
equal to zero means that the B cells are

stimulated even without the presence of T cells, leading to the
constant stimulation of existent B cells in the LN.ThoseB cells
turn into plasma cells which population increases promptly
in the LN. Also, as soon as the activated macrophages arrive
in the LN, a large production of antibodies starts. As a
consequence, a great number of antibodies arrive in the
tissue, approximately 4 days after the injection of antigens.
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on the population of antigens.
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Approximately 3 days after the arrival of the antibodies
the antigens are eliminated. Meanwhile, if the value of that
coefficient is 200% bigger, it means that a lot more T cells
are needed to stimulate the B cells, leading to a much smaller
number of antibodies arriving in the tissue, which in turn are
not able to helpmacrophages to defeat the antigens in 30 days
(Figure 18(d)).

4.5. Discussion. Based upon two distinct mathematical mod-
els of the human immune system a novel form of coupling
modelswas developed.This couplingwas performedfirstly by
analyzing the features of each previous model to identify the
possible bridges between them and then building the linking
itself. The choice of coupling models instead of developing a
whole new set of equations is due to the fact that thesemodels
were already validated experimentally, which is not easy to
achieve without collaborative work. We chose a model with
already fitted parameters [44] and we had to convert those
parameters to the unit we were using in previous work [42]
as the former units were given in molar concentration (mol)
and we expect to analyse the number of interactive cells per
cubic millimeter.

In order to perform the coupling we had to add some
terms to the PDEs and even a new Equation (4) to represent
the interactions between the cells and their migration. The
former PDEs based model [42] was not able to simulate the
presence of antibodies inside the tissue which was achieved
with the coupling performed in this work. That model
represents other features of the immune response as the
presence of neutrophils and the chemotaxis process which
are not present in this coupling yet due to simplification. Our
intention is to focus on the coupling and then improve the
model with those characteristics of the innate IS. The terms
that were added to the model are the ones which control the
flux of cells between the tissue and the nearest LN (3) and the
terms that represent the opsonization process in (1).

The former ODEs based model [44] actually represented
some features of the acquired response such as the clonal
expansion of T helper cells with delay differential equations
(DDEs). DDEs have been used to model biological processes
as they give a better approximation for such aspects [68,
69]. We have opted not to use DDEs initially in order to
simplify the model as we solve the equations using our
own solver. We hope to introduce this concept in the future
to better represent those biological processes. We modified
that model in the following aspects: (a) we removed the
equation for bacteria equilibrium due to the fact that we
are representing this insertion of bacteria inside the tissue
(modeled by the PDE given by (1)) and (b) we modified the
equation that represents the antigen presenting cells in the LN
(5). The previous equation considered bacteria stimulation
and natural decay. The modified equation solely considers
the flux of active cells between the tissue and the LN as the
activation and natural decays are represented locally in the
tissue (3). This representation required an integration of the

concentration of cells in the tissue to estimate the amount of
cells in the LN (7).

We would like to reinforce that those two models pre-
sented herein were chosen due to the availability of param-
eters already fitted.The outcomes of the coupled model agree
qualitatively with the literature [44]. Further quantitative
validation of the coupling is still required. That could be
achieved, for example, by comparing the outputs of the
coupled model to results obtained experimentally. This is an
ongoing work. We would also like to perform this coupling
with other models to gain insights into a specific infection
scenario.

5. Conclusions

This work presented the coupling of two distinct models of
different aspects of the immune system: one of them uses
PDEs to model the dynamics of cells in a three-dimensional
section of tissue and the other one uses ODEs to model
the dynamics of cells in the nearest LN. To the best of
our knowledge, the integration of two models in the format
presented has not been proposed before in the field of
immune systems. To exemplify the coupling, a mathematical
and computational coupling of models was presented that
simulates the immune response to S. aureus bacteria into a
three-dimensional section of a tissue. To achieve this goal, the
models reproduce the initiation,maintenance, and resolution
of innate and adaptive immune response. A set of PDEs and
ODEs are used to model the main agents involved in this
processes, like the antigen, macrophages, antibodies, and T
and B cells.

The model presented in this work represents an infec-
tion scenario: the diffusion of antigens into the tissue and
the migration of macrophages to combat the infection.
Macrophages also migrate outside the tissue and stimulate
the adaptive IS to produce antibodies, which in turn migrate
inside the tissue and opsonize the antigens. The proposed
integrated model was capable of reproducing qualitatively
the spatial and temporal behavior of resting and activated
macrophages as well as specific antibodies.

A sensitivity analysis was performed for the coupled
model showing that themost relevant parameters are the ones
related to the activation of the response, as the macrophage
activation rate (𝛾

𝐴𝑀
), effectiveness of the acquired response

as the antibodies migration rate (𝛼
𝐹
), and the presence of

the immune responses itself as the resting macrophage initial
condition (𝑀𝑅

0
). Other parameters that are important to the

success of the immune response are the antigen replication
rate (𝛽

𝐴
), antibodies release rate (𝜌

𝐹
), and the amount of

antigens that could grow in the tissue (𝑘
𝐴
).

We expect that with that spatial coupled model we could
simulate and analyze the evolution of damages caused to
an organ parenchyma, for example, the damage in the lung
tissue caused by tuberculosis or pneumonia. Also, we are
already implementing a more complete mathematical model
including molecules, like cytokines, and others processes
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involved in the immune responses to consider the chemotaxis
process. Furthermore, we intend to improve the visualization
of the damage caused to the tissue in order to compare to
medical imaging results. Thus, we believe that the coupling
of models in the proposed format could provide some insight
into the behavior of the immune system.
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