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Microscopic dynamics of synchronization
in driven colloids
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Synchronization of coupled oscillators has been scrutinized for over three centuries, from

Huygens’ pendulum clocks to physiological rhythms. One such synchronization phenomenon,

dynamic mode locking, occurs when naturally oscillating processes are driven by an externally

imposed modulation. Typically only averaged or integrated properties are accessible, leaving

underlying mechanisms unseen. Here, we visualize the microscopic dynamics underlying

mode locking in a colloidal model system, by using particle trajectories to produce phase

portraits. Furthermore, we use this approach to examine the enhancement of mode locking in

a flexible chain of magnetically coupled particles, which we ascribe to breathing modes

caused by mode-locked density waves. Finally, we demonstrate that an emergent density

wave in a static colloidal chain mode locks as a quasi-particle, with microscopic dynamics

analogous to those seen for a single particle. Our results indicate that understanding the

intricate link between emergent behaviour and microscopic dynamics is key to controlling

synchronization.
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I
n the natural world, little exists in a state of true equilibrium;
in fact, most of the physics around us is far from equilibrium1.
On both macroscopic and microscopic levels, driven systems

exhibit rich and complex behaviour well beyond their equilibrium
properties, due to the delicate balance between the external drive
and the ‘internal’ equilibrium behaviour opposing the drive2–10.

Driving a system with a natural internal oscillation by an
external modulation leads to a synchronization phenomenon
termed dynamic mode locking11. Coupled oscillators have
been studied since Huygens’ observation of synchronization
between pendulum clocks in 1665 (refs 11–15). In the case of
dynamic mode locking, coupling between the ‘internal’ and
‘external’ frequencies leads to synchronization into repeating
modes of motion11. Much effort has gone into the understanding
of this technologically important effect in vortex lattices16–20,
laser gyroscopes21, charge density waves22–24 and Josephson
junctions25–27. In all of these cases, however, typically only
averaged or integrated properties are probed, leaving a direct
visualization of the underlying dynamics lacking.

The use of experimental model systems composed of colloidal
particles in external fields is well established, due to their
inherently accessible time and length scales, and ease of
manipulation28,29. From stochastic resonance in double-well
potentials30–32 to directed motion on optical lattices7,33,
study of such systems has proved fruitful. Despite extensive
theoretical treatment34–38 and simulations39–43, the difficulty
of incorporating the complex hydrodynamics means that
experimental approaches continue to be valuable44–47, also as a
benchmark for theoretical and simulation studies.

In this article, we reveal the microscopic dynamics underlying
dynamic mode locking by driving colloidal particles across a
periodic potential energy landscape and observing them in real
space and time. Having access to particle trajectories allows us to
visualize the nature of the oscillating particle motion, and
differentiate locked from unlocked states. Moreover, we are able
to distinguish between modes which have the same average
velocity, which are indistinguishable by studying only integrated
properties17,18,22,25,48,49. The microscopic approach is also
illuminating when applied to more complex collective
behaviour. We study a colloidal chain with tunable flexibility,
and find that mode locking is enhanced when the chain length is
allowed to vary. Length fluctuations are found to be periodic
breathing modes, which are tied to the velocity oscillations of the
chain as a whole. Breathing modes in finite driven chains may be
caused by density waves50, manifesting as caterpillar-like motion.
We therefore engineer a density wave or ‘kink’ in a pinned
colloidal chain, and demonstrate that it behaves as a
quasi-particle, mode locking in a manner analogous to single
driven particles. By showing that a density wave displays dynamic
mode locking and classifying its phase portraits, we demon-
strate the wider applicability of our approach to studying
synchronization in complex driven systems6,7,20,38,41.

Results
Colloidal dynamic mode locking. Polystyrene particles with a
diameter of 3 mm, dispersed in a water–ethanol mixture, are
driven using a piezo stage across a one-dimensional potential
energy landscape with wavelength l generated with optical
tweezers51, as shown in Fig. 1a. The landscape is designed such
that there is a significant barrier to diffusive particle motion
between its minima, but also so that this barrier may be overcome
by modest driving velocities. The landscape must be periodic, so a
sinusoidal form is generated by placing the optical traps
sufficiently close to each other51. Figure 1b shows a measure-
ment of such a potential landscape with a wavelength of

l¼ 3.5 mm and a laser power per trap of WE0.75 mW (trap
stiffness: k¼ 3.8� 10� 7 kg s� 2; trap depth: V0¼ 75 kBT),
measured using a driven colloidal particle as described in ref.
51. The particle may be driven by both a constant (DC) velocity,
vDC, and a modulated (AC) velocity, vAC sin(2put), with u the
driving frequency (see Fig. 1a). First, in Fig. 2a (grey points), we
show the mean velocity, �v, of a particle driven with a constant
driving velocity only (vAC¼ 0). The mean particle velocity sharply
increases from zero when the driving velocity exceeds the critical
velocity and then follows the well-known relation
�v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

DC� v2
C

p
, where vC is the critical velocity below which a

particle is pinned by the landscape52.
To induce dynamic mode locking, the constant driving

velocity vDC is supplemented by a modulated driving velocity,
vAC sin (2put). Adding a modulated drive leads to completely
different dynamics, as shown by the open circles in Fig. 2a. Now
the average particle velocity increases non-uniformly, with ‘steps’
where �v remains constant over a range of vDC, indicating
synchronization. These plateaus are known as ‘Shapiro steps’
as seen in Josephson junctions25,26,48,49 and vortex lattices17–19.
The average velocity at the dynamic mode locking steps is given
by the resonance condition �v ¼ nlu, where n is an integer step
number. The ratio r ¼ �v=ðluÞ is the rotation number, which for a
locked state in our system is always strictly integer. It is
interesting to note that this resonance condition is independent
of the particle size, even though the critical driving velocity is not.

Phase portraits. From the particle trajectories, we can directly
visualize the periodic motion at resonance. We construct
so-called ‘phase portraits’, in which the phase velocity, dj/dt, is
plotted against the phase, j ¼ 2pðxðtÞ��vtÞ=l (ref. 53). The
phase portrait shows a ‘closed loop’ if the particle is in a locked
state and thus follows a perfectly periodic trajectory with an
integer rotation number. Otherwise, the phase portrait shows an
‘open loop’, as each cycle is slightly different and the phase
trajectory is quasi-periodic with a non-integer rotation number.
The phase portraits corresponding to different average velocities
(points A–E) are presented in Fig. 2a. Those for A, C and E
indeed show open loops as they lie between steps where there is
no synchronization. In contrast, the points on the resonant steps
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Figure 1 | Driving particles across a sinusoidal potential energy

landscape. (a) The particles are driven with a constant, vDC, and a

modulated (AC) driving velocity with amplitude vAC and frequency u. l is

the wavelength of the landscape. (b) Measurement of part of a typical

optical potential energy landscape, as described in ref. 51, fitted with a sine

function. Trap spacing: l¼ 3.5mm; laser power per trap WE0.75 mW.
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(B and D, with r¼ 1,2) clearly show closed loops in their phase
portraits.

The phase portraits also strikingly depict the microscopic
nature of the modes. Importantly, we can visualize differences
between modes with the same average velocity, which is not
possible when only considering integrated quantities. We
illustrate this in Fig. 2b–d, by showing three trajectories of
mode-locked particles with the same average velocity over one
period of the oscillation. In Fig. 2b, the particle simply moves
forward by one lattice spacing in each period. In Fig. 2c, the net
motion is the same, but the particle moves forward two and back
one lattice spacing, and in Fig. 2d, it moves forward three and
backward two, as indicated in the schematics. So, it is clear that
the microscopic particle dynamics differ significantly for each
mode, even though they all have the same average velocity. We
label the modes n(i,j), with n the net forward motion, and i and j
the number of lattice spacings moved forward and backward,
respectively, so that n¼ iþ j. The nature of the modes is also
evident from the phase portraits, where the number of ‘bumps’ in
the top and bottom halves correspond to i and j.

All of the dynamic modes in a portion of vDC–vAC space are
displayed on the state diagram in Fig. 2e and the complex
distribution of the modes highlights the rich dynamics. A vertical
cut through the state diagram corresponds to a ‘staircase’ as
shown in Fig. 2a and the colour corresponds to the step number n
in the resonance condition �v ¼ nlu. Subsequently, each colour
can be split into several regions, corresponding to different modes

with distinct particle motion as characterized by n(i,j). The
corresponding phase portraits are shown in Fig. 3. The oscillating
size of the regions with the same average velocity corresponds to
twisted ‘Arnold Tongues’, seen in many synchronized systems11.
For high average velocities, where the potential can be accounted
for perturbatively, the oscillating step width is well described by a
Bessel function19.

Although Arnold Tongues are continuous, in this noisy
Brownian system, gaps between the modes appear on the state
diagram. This means that at some values of the AC amplitude,
steps will not appear for all velocities satisfying the resonance
condition. For example, at vAC¼ 6.4 mm s� 1, there are no steps
corresponding to n¼ 1 or n¼ 3, even though steps exist for
n¼ 0,2,4,5 and 6. It is also worth noting that regions occur where
there is no n¼ 0 step, which means that there is no effective
critical driving velocity, and that the particle will always have net
forward motion as long as vDC40. The n¼ 0 modes are
particularly interesting, as they demonstrate that a lack of net
motion does not necessarily imply that the system is at rest. This
is another insight that would be absent from only studying the
integrated properties of mode-locked steps.

Driven colloidal chains. We now consider the dynamics of driven
coupled systems as dynamic mode locking is often found as a
collective effect5,18,19,54,55. We drive a chain consisting of seven
super-paramagnetic colloidal particles held together by attractive
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Figure 2 | Microscopic dynamics of dynamic mode locking. A particle is driven over a sinusoidal optical potential energy landscape with wavelength

l¼ 3.5mm. (a) Average particle velocity �v as a function of average driving velocity vDC. Solid grey points: zero AC drive. Open circles: AC drive with

amplitude vAC¼ 5.2mm s� 1 and frequency u¼0.75 Hz. Solid grey line shows �v ¼ vDC for the case of zero potential strength. All points are the result of six

repeats, error bars show the standard deviation of repeats. Phase portraits A–E correspond to the highlighted points on the graph. (b–d) Single period

trajectories and phase portraits corresponding to 1(1,0), 1(2,� 1) and 1(3,� 2) modes for particles driven with AC frequency u¼0.25 Hz. (e) State diagram

showing the dynamic modes over a range of AC and DC drives, for u¼0.25 Hz. Coloured regions are locked states. n(i,j) indicates the net forward motion n,

and the number of lattice spacings moved forward (i) and backward (j). Each point is confirmed in two repeats.
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magnetic interactions over the same sinusoidal optical potential
energy landscape used above (trap spacing: l¼ 3.5mm; laser power
per trap: WE0.75 mW; trap stiffness: k¼ 3.8� 10� 7 kg s� 2; trap
depth: V0¼ 75 kBT). We tune the flexibility of the chain via the
interaction parameter, G, which is the strength of the magnetic
interaction between a pair of particles at contact in units of kBT (see
Methods). A magnetic field is applied using a pair of identical
permanent magnets positioned equidistant from the centre of the
sample, and the magnetic field strength B (and therefore G, as
GpB2) is varied by altering this distance. Chain position, x(t), is
defined as the mean of the co-ordinates of the terminal particles,
and is, therefore, independent of the configuration of the particles in
the interior of the chain. Figure 4a shows the average chain velocity
for a flexible chain at G¼ 15 (B¼ 0.43 mT) and a stiff chain at
G¼ 392 (B¼ 2.2 mT). Both chains exhibit dynamic mode locking
with steps at �v ¼ nlu, as is also evident from the phase portraits for
the first step (insets in Fig. 4a). However, the mode-locking steps for
the flexible chain are remarkably wider than those for the stiff chain:
the width of the first step increases by 16%, while for the second

step this is almost 50%. Importantly, this points to a significant
enhancement of the synchronization stability due to the increased
flexibility of the chain.

The enhanced mode locking is clearly a collective dynamical
effect that cannot be explained at the level of the average velocity.
The simplest measure of the collective microscopic dynamics is
the length of the chains, l, which is defined as the centre-to-centre
distance between the terminal particles. Figure 4b,c compare the
chain length and velocity for the stiff and flexible chains
respectively. The stiff chain has a roughly constant length, and
there is no correlation between the chain length and the
instantaneous velocity. Strikingly, however, the length of the
flexible chain fluctuates at the frequency of the chain velocity
fluctuations, but exactly out of phase. This regular oscillation
points to the presence of an internal breathing mode tied to the
motion of the chain as a whole50. The contrast between the two
chains is highlighted by the phase portraits for the chain length
shown in Fig. 4d,e. For the stiff chain, this ‘length portrait’ is
stationary, indicative of the constant chain length. For the flexible
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chain, however, the phase portrait shows the closed loop form
characteristic of a regular locked oscillation. This indicates that
not only is the chain breathing, but that the breathing mode is in
fact locked, leading to enhancement of the mode locking stability
of the whole chain.

The fact that the velocity and length oscillations are exactly out
of phase implies that the flexible chain decreases in length as it
accelerates, and is shortest when travelling at its highest velocity.
This suggests that chain motion proceeds by the back particle
moving forward and compressing the chain, causing the particles
in front of it to move. When the front particle is pushed, it moves
to a new minimum on the landscape, relaxing and thus
lengthening the chain. This process of ‘caterpillar’ motion may
be described as the periodic motion of a density wave or ‘kink’
along the chain50. In this mobile chain, the density wave would
move along the entire chain as the chain moves forward just one
lattice spacing on the potential energy landscape. The speed of the
density wave motion in such a short chain is, therefore, over five
times faster than the motion of the chain as a whole, therefore
resolving it in a chain of closely spaced Brownian particles is
highly challenging. Furthermore, the close proximity of the
particles makes it possible that the effect of the density wave is
convoluted with hydrodynamic coupling40,44, though it is an
interesting and open question as to how this affects the collective
dynamics of the breathing chain and density wave.

Kink dynamics. To visualize the dynamics of such a density
wave, we slow it down by both lengthening the chain and
increasing the lattice spacing. We further simplify the situation by
considering a static chain, as even the mobile chain studied above
moves little on the timescale of density wave motion. We pin a
chain of 16 particles in a strong potential energy landscape of
15 minima (trap spacing: l¼ 5.5 mm; laser power per trap:
WE1.75 mW; trap stiffness: k¼ 8.7� 10� 7 kg s� 2; trap depth:
V0¼ 200 kBT), as shown in Fig. 5a. The ‘extra’ particle is forced to
lie along the axis using a weak magnetic field (B¼ 0.5 mT,
G¼ 20), thereby generating a kink. The position of this kink is

determined from the reduced local number density ~ri,
via a weighted average: xkink ¼

PN
i¼1 xi ~ri� 1ð Þ=

PN
i¼1 ~ri� 1ð Þ.

The reduced local number density is ~ri ¼ 2l= xiþ 1� xi� 1ð Þ,
where l is the wavelength of the sinusoidal optical potential
energy landscape, and xi is the position of particle i, such that far
away from the kink, ~ri � 1.

Figure 5b shows that when the kink is exposed to constant and
modulated driving velocities, it is able to move along the whole
chain, while the individual particles do not move more than one
wavelength of the potential. Strikingly, by measuring the average
kink velocity over a range of driving velocities, we show that the
kink displays dynamic mode locking, as is evident from the
plateaus in Fig. 5c. Moreover, going beyond the average velocity
level, we present phase portraits corresponding to points A–C on
the ‘staircase’ in Fig. 5d–f. Points A (Fig. 5d) and C (Fig. 5f) show
closed-loop phase portraits, confirming that the motion on the
steps is periodic. By comparison with the phase portraits for
single particles (see Fig. 2a), it is clear that these steps correspond
to 1(1,0) and 2(2,0) modes. Conversely, the phase portrait for
point B (Fig. 5e) shows a quasi-periodic trajectory, as this point is
not on a mode-locked step. These three phase portraits are closely
comparable to those for the equivalent points B–D in Fig. 2a. The
microscopic dynamics of a driven kink in a coupled system are
thus remarkably analogous to those of a single particle.

Discussion
We describe the microscopic dynamics of synchronization in
three driven colloidal model systems. All three display the
characteristic synchronization plateaus in their ‘force–velocity’
profiles25, demonstrating that colloidal particles in optical
potential energy landscapes form a robust model for the study
of dynamic mode locking. The tunability and manipulability of
colloidal systems gives this model a broad scope: here, we move
from single particles to chains and quasi-particle kinks, and there
is huge potential to explore further. The three one-dimensional
cases laid out here offer insight into the dynamics of
technologically important but difficult to observe systems,
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including the motion of vortex lines17,18 and charge density
waves23,24, indicating that future experiments in (for example)
two-dimensional or aperiodic potential landscapes could prove
fruitful. Moreover, the use of phase portraits to depict and
differentiate dynamic modes allows analysis and comparison of
the persistence and stability of locked states. Our analysis of mode
locking in a driven colloidal chain, where a breathing mode
apparently works to enhance the stability of a synchronized state,
is only possible due to access to particle-level information.
Furthermore, the ease with which experimental parameters may
be changed has allowed us to design a density wave into a chain,
making it possible to test the behaviour of this internal structure
in simpler conditions. Our experiments unveil the microscopic
dynamics that govern synchronization phenomena in driven
systems, which can be challenging to capture in theory and
simulation, especially in coupled driven systems where the role of
hydrodynamic coupling remains an open question40,44,45.
We believe that understanding and controlling these micro-
scopic dynamics is crucial in achieving tunable synchronization
behaviour in complex driven systems.

Methods
Colloidal model system. The colloidal particles used are Dynabeads M-270
carboxylic acid (diameter 3 mm), dispersed in 20% EtOHaq. These particles have a
much higher density than the solvent, such that they sediment onto the wall of the
quartz glass sample cell, forming a quasi-two-dimensional system. Iron oxide
nanoparticles in the polystyrene matrix make the particles super-paramagnetic,
such that they obtain a magnetic dipole moment when an external magnetic field is
imposed, but have no magnetic moment in the absence of the external field. The
strength of the dipolar inter-particle attraction is expressed as an interaction
parameter G, which gives the interaction energy at contact of a pair of particles of
diameter s relative to kBT: G ¼ m0

2p
w2B2

s3kBT, where m0 is the vacuum permeability,
w¼ 6.7� 10� 12 A m2 T� 1 is the magnetic susceptibility of the particles and B is
the magnetic field strength.

Optical tweezing and imaging. The optical tweezers setup is described in ref. 51,
and, in short, consists of a 1064 nm laser, steered by a pair of perpendicular
acousto-optical deflectors, and focused from above the sample using a Leica � 50,
NA¼ 0.55 long working distance microscope objective. We apply laser powers up
to 1.75 mW per trap, which is well below the threshold when particle heating
effects can come into play56. Imaging in the inverted configuration is done via a
Zeiss � 40, NA¼ 0.50 long working distance microscope objective, and a Ximea
CMOS camera, protected by an IR bandpass filter. Magnetic fields are imposed
using two permanent magnets, positioned equidistant from the sample.

Image analysis. Time-stamped particle co-ordinates are obtained in real time at
40 Hz using template particle tracking, and particle trajectories, x(t), are numerically
differentiated to find instantaneous velocity, v(t). Average particle velocity, �v, is
determined by linearly fitting to an integer number of periods of the trajectory.
Phase, j, is found from particle position: j ¼ 2pðxðtÞ��vtÞ=l, and phase
velocity from particle velocity: dj=dt ¼ 2pðvðtÞ��vÞ=l. The chain position,
x(t), is defined as the mean of the co-ordinates of the terminal particles, and
chain length, l, is defined as the difference between the co-ordinates of the
terminal particles. Phase is found from chain position as above. Kink position is
determined from the reduced local number density ~ri, via a weighted average:
xkink ¼

PN
i¼1 xi ~ri� 1ð Þ=

PN
i¼1 ~ri � 1ð Þ. The reduced local number density is

~ri ¼ 2l= xiþ 1 � xi� 1ð Þ, where l is the wavelength of the sinusoidal optical potential
energy landscape and xi is the position of particle i, such that far away from the
kink, ~ri � 1. The average kink velocity, �v, is determined by linearly fitting to an
integer number of periods of the kink trajectory.
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