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Abstract

Genetic groups have been widely adopted in tree breeding to account for provenance effects within pedigree-derived relationship matri-
ces. However, provenances or genetic groups have not yet been incorporated into single-step genomic BLUP (“HBLUP”) analyses of tree
populations. To quantify the impact of accounting for population structure in Eucalyptus globulus, we used HBLUP to compare breeding
value predictions from models excluding base population effects and models including either fixed genetic groups or the marker-derived
proxies, also known as metafounders. Full-sib families from 2 separate breeding populations were evaluated across 13 sites in the “Green
Triangle” region of Australia. Gamma matrices (C) describing similarities among metafounders reflected the geographic distribution of
populations and the origins of 2 land races were identified. Diagonal elements of C provided population diversity or allelic covariation esti-
mates between 0.24 and 0.56. Genetic group solutions were strongly correlated with metafounder solutions across models and meta-
founder effects influenced the genetic solutions of base population parents. The accuracy, stability, dispersion, and bias of model solutions
were compared using the linear regression method. Addition of genomic information increased accuracy from 0.41 to 0.47 and stability
from 0.68 to 0.71, while increasing bias slightly. Dispersion was within 0.10 of the ideal value (1.0) for all models. Although inclusion of
metafounders did not strongly affect accuracy or stability and had mixed effects on bias, we nevertheless recommend the incorporation of
metafounders in prediction models to represent the hierarchical genetic population structure of recently domesticated populations.

Keywords: breeding value accuracy, cross-validation, forest tree breeding, genetic groups, genomic selection, LR method, metafound-
ers, Myrtaceae, single-step GBLUP; MPP; Multiparental Populations; Multiparent Advanced Generation Inter-Cross (MAGIC)

Introduction
Provenance variation in growth and commercial value is usually
characterized at an early stage in the domestication of forest
trees and can play an important role in subsequent generations
of breeding (White et al. 2007). Forest geneticists have widely
adopted genetic groups to account for population differences in
linear mixed models (LMM) (e.g. McRae et al. 2004; Brawner et al.
2010; Callister et al. 2011; Kláp�st�e et al. 2019), typically as un-
known parent groups (UPGs) that were developed to account for
missing parents in livestock populations (Quaas 1988; Westell
et al. 1988). This approach treats provenances as fixed effects,
and it results in more conservative estimates of heritability rela-
tive to treating founders as unrelated individuals (Callister et al.
2021).

Widespread adoption of genomics in breeding programs has
prompted the development of the single-step genomic BLUP
method, which merges empirical relationship estimates from a
genotyped subset (G matrix) with the pedigree-derived relation-
ship coefficients (A) for the entire population (Legarra et al. 2009;
Aguilar et al. 2010; Christensen and Lund 2010). The resulting

inverse relationship matrix (H�1) is then used in place of A�1 in

LMM to produce (genomic) estimated breeding values ((G)EBV).
Although there have been a number of studies applying this

“HBLUP” approach to forest tree populations (e.g. Ratcliffe et al.

2017; Kláp�st�e et al. 2018; Thavamanikumar et al. 2020; Ukrainetz

and Mansfield 2020; Callister et al. 2021; Jurcic et al. 2021), none

have yet considered multiple base populations such as provenan-

ces.
UPGs have been incorporated into livestock HBLUP analyses

through various modifications of H�1 that extend the method of

Quaas (1988) and Westell et al. (1988) (Misztal et al. 2013; Tsuruta

et al. 2019; Masuda et al. 2021). A similar approach is to constitute

genetic groups as “metafounders” (MFs), which are pseudo-

individuals acting as proxies for UPGs in base populations

(Legarra et al. 2015; Masuda et al. 2022). Genetic diversity within,
and relationships among MFs, are computed using the genotypes

of their descendants. MF models have performed favorably in

both simulated and actual livestock populations (Bradford et al.

2019; Kudinov et al. 2020; Macedo, Christensen, et al. 2020;

Masuda et al. 2021). The MF approach is of particular interest for
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representing provenances of forest populations because it may
estimate biologically meaningful relationships among geographi-
cally or genetically defined races that arise from evolutionary
processes. MFs may also reveal cryptic relationships between
these races and infusions from external populations.

Predictions from quantitative genetic models can be assessed
against 3 important parameters: accuracy, bias, and dispersion.
Accuracy is a measure of the reliability of EBVs and is used to pre-
dict the response to selection (Bijma 2012). Bias is the difference
between means of EBVs and true breeding values (TBVs), whereas
dispersion is calculated as the slope of the regression of TBVs on
EBVs and compares the scale or variation of EBVs against TBVs.
Dispersion values less than 1 indicate over-dispersion and infla-
tion of EBV relative to TBV, whereas values greater than 1 indi-
cate under-dispersion of EBV. Bias and dispersion influence
expected genetic gain, with potentially significant impacts on se-
lection decisions (Macedo, Reverter, et al. 2020). Legarra and
Reverter (2018) introduced the linear regression (LR) method to
evaluate accuracy, bias, and dispersion using a cross-validation
approach.

Eucalyptus globulus Labill. is a commercially important planta-
tion species in Mediterranean climates around the world, and it
is particularly favored for pulpwood production. Its native range
in Southeast Australia has been classified into 13 races and 20
subraces using morphological and molecular markers
(Dutkowski and Potts 1999; Potts et al. 2004). Landraces have also
developed where E. globulus has been naturalized in areas such as
California, Portugal, Spain, and Chile. Genetic associations
among races have been shown to follow geographical patterns
(Costa et al. 2017), with Portuguese and Californian landraces
shown to be most closely related to the east Tasmanian races
(Freeman et al. 2007; Costa et al. 2017; Yost et al. 2021).

Callister et al. (2021) used HBLUP to conduct a joint analysis of
2 disconnected E. globulus breeding populations that were linked
using marker-derived pedigree. Relationships within the resulting
H matrix tended to be significantly positive among population
founders from the same population, while across-race relation-
ships among founders ranged from significantly positive to signif-
icantly negative. The authors suggested that true average
relationships within races were probably substantially larger
than those estimated in H and that accommodating ancestral
race effects in HBLUP should be prioritized. The goals for the pre-
sent study extend from this recent work (Callister et al. 2021) us-
ing a subset of their data. Our goals were to (1) fit models
including MF and examine relationships corresponding to race,
landrace, and plus tree (infusion) populations and (2) use the LR
approach (Legarra and Reverter 2018) to evaluate goodness of fit
for genetic models with and without genomic relationship infor-
mation, with genetic groups excluded or incorporated as UPGs, or
as MFs.

Materials and methods
Experimental populations
This study used a subset of the E. globulus phenotype data ana-
lyzed by Callister et al. (2021). Full-sib family data for 13 progeny
tests in the “Green Triangle” region of Australia were provided by
2 separate multigenerational commercial tree improvement pro-
grams, EG1 (Australian Bluegum Plantations) and EG2 (HVP
Plantations) (Fig. 1).

Pedigree founders or base population parents were allocated
to 14 genetic groups, which consisted of 9 races (following
Dutkowski and Potts 1999), 2 landraces (Portugal and California),

and 3 plus tree populations (see Supplementary Table 1). Plus
tree populations 1 and 2 corresponded to external sources of im-
proved populations from which phenotypic selections were
made. Miscellaneous unpedigreed individuals from unknown ori-
gins or external sources that lacked sufficient representation to
constitute their own groups were allocated to plus tree popula-
tion 3. The pedigree contained 35,533 progeny (35,247 of which
were phenotyped), 368 parents of progeny, 175 progenitors of
those parents, and 172 other seed orchard individuals that were
both related and unrelated to the tested progeny (see
Supplementary Table 2). Progeny represented 650 full-sib fami-
lies from EG1 and 592 full-sib families from EG2.

HBLUP was necessary to analyze joint-program data due to
the inadequacy of inter-program pedigree relationships. Callister
et al. (2021) reported 2,071 inter-program relationship coefficients
greater than 0.1, 428 greater than 0.2, and 70 greater than 0.3 in a
genomic relationship matrix (G) using a subset of the genotyped
individuals from the present analysis, which provides ample con-
nectivity for joint HBLUP models.

Field trials were primarily established in randomized
incomplete-block designs. Four to eight replications of each fam-
ily were established in contiguous row-plots of 4–5 trees. One EG1
trial was established as a single-tree plot design. Incomplete
blocks were arranged into replicates that were generally contigu-
ous, enabling the resolution of spatial trends within each trial.

Stem volume calculation
Diameter at breast height (DBH) for each tree was measured with
a tape at 3 years (4 sites), 4 years (3 sites), 5 years (5 sites), or 8
years (1 site) after planting. Tree height (HT) was measured with
a hypsometer for each tree in the 5 EG1 trials, and for 19% of trees
in EG2 trials. In these cases, unmeasured HT data were predicted
from DBH-HT relationships established among measured trees
for each trial. Stem volume (VOL) was calculated for each tree us-
ing DBH, HT (measured or predicted), and the volume function
provided by each breeding program. DBH of all stems forking be-
low breast height was measured in ten trials and in these cases,
VOL was aggregated to the tree level before analysis.

Genotyping
Leaves were sampled from 148 parents and 89 others in the EG1
program and from 80 parents, 958 progeny, and 32 others in the
EG2 program, where “others” refers to individuals that are not
parents or tested progeny. DNA extraction and genotyping were
conducted by Gondwana Genomics Pty Ltd, Canberra

Fig. 1. Location of 5 progeny trials from the EG1 program (blue symbols)
and 8 progeny trials from the EG2 program (green symbols) used for this
study. Inset provides context.
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(Thavamanikumar et al. 2020). The E. globulus marker panel con-
sisted of 2,568 single-nucleotide polymorphism (SNP) and small
biallelic insertion/deletion (INDEL) markers within candidate
genes identified in previous studies (Southerton et al. 2011).
Missing values were imputed using LinkImpute (Money et al.
2015). Pedigree errors were identified and corrected within the
genotyped population using the ASRgenomics package (Gezan
et al. 2021) in R version 4.1.0 (R Core Team 2021).

Statistical analyses
We conducted 2 sets of analyses, each including various models to
compare methods of incorporating genetic groups into analyses. A
set of single-population analyses was completed using the EG2 popu-
lation to contrast pedigree-based BLUP (ABLUP) with HBLUP mod-
els. A set of joint-population HBLUP analyses were completed using
information from both programs, with a joint H for unification.

Calculation of C
The relationship matrix across MF, C, is a function of genetic sim-
ilarity across populations following Cij ¼ 8cov(pi, pj), where pi rep-
resents allele frequencies in population i (Garcia-Baccino et al.
2017). We calculated C using the gammaf90 program of the
BLUPF90 software suite (Misztal et al. 2014), which estimates al-
lele frequencies, and thus Ĉ ij ¼ 8cov(p̂i,p̂j) using the GLS method
of Garcia-Baccino et al. (2017). The C used for single population
analyses was calculated across 9 genetic groups represented in
the EG2 program (8 races and 1 landrace; see Supplementary
Table 1). C for the joint population analyses was calculated across
all 14 genetic groups.

Relationship matrix calculation
The C-augmented inverse of the pedigree relationship matrix
was calculated as:

A�1
C ¼

A11
C A12

C A1m
C

A21
C A22

C A2m
C

Am1
C Am2

C Amm
C þ C�1

2
64

3
75; (1)

where the superscript “1” represents ungenotyped individuals, “2”
represents genotyped individuals, and “m” represents MF.

Without consideration of genetic groups, the inverse of H was
calculated as:

H�1 ¼ A�1 þ 0 0
0 G�1 � A�1

22

� �
: (2)

Following Christensen et al. (2012) and Aguilar et al. (2010), G
was blended as 0.95Gscaled þ 0.05A22, where Gscaled was a rescaled
version of Gobs, originally computed from observed allele fre-
quencies by the first method of VanRaden (2008). For HBLUP with
MFs, the C-augmented H�1 ðH�1

C Þ was calculated as:

H�1
C ¼ A�1

C þ
0 0 0
0 G�1

05 �A�1
C22 0

0 0 0

2
4

3
5; (3)

where A�1
C22 is the inverse of C-augmented pedigree relationship

matrix (AC) for genotyped individuals and G05 was calculated in
the same manner as G, except that the initial computation of the
relationship matrix was based on 0.5 allele frequencies (Legarra
et al. 2015).

To examine relationships among genotyped individuals of the
single program, A22 and AC22 were calculated from versions of A�1

and A�1
C produced with a subset of the pedigree. H�1

C was also pro-
duced with a single program pedigree subset small enough for con-
venient inversion and inspection.

Model fitting
Stem volume data were first analyzed at the individual site level
using ASReml-R version 4 (Butler et al. 2018) in R version 4.1.0 to
adjust the data for any trial design effects (incomplete block, row,
column, or plot) and spatial trend (AR1xAR1), represented as ran-
dom effects. The adjusted data were then standardized by trial to
a mean of zero and phenotypic standard deviation of 1.

All cross-site models were fitted using BLUPF90 programs and
the general LMM framework:

y ¼ Xbþ Z1a þ Z2f þ e; (4)

where y is the vector of phenotypic values, b is a vector of fixed
effects for sites, a is the vector of random additive genetic effects
with E(a) ¼ 0, f is a vector of random family-specific effects with
E(f) ¼ 0 and var(f) ¼ Ir2

f , and e is the vector of residual effects
with E(e) ¼ 0 and var(e) ¼ Ir2

e . X, Z1, and Z2 are incidence matrices
relating phenotypic records in y to effects in vectors b, a, and f.

Five models were fitted to the single population which differed
only in the specification of var(a). Three pedigree models were fit-
ted: without groups (ABLUP), with fixed genetic groups
(ABLUP_UPG), and with MFs (ABLUP_MF). For ABLUP, var(a) ¼
Ar2

a. For ABLUP_UPG, var(a) ¼ A�r2
a, where A� is adjusted to in-

clude fixed group effects (Quaas 1988; Westell et al. 1988). For
ABLUP_MF, var(a) ¼ ACr2

a, where AC was calculated using
Equation 1. Two HBLUP models were fitted to the single population
and joint population. Model “HBLUP” without groups assumes
var(a) ¼ Hr2

a, whereas HBLUP models with MFs (HBLUP_MF) were
fitted assuming var(a) ¼ HCr2

a.
Variances were specified for all random effects at values esti-

mated from ABLUP for the single population analyses and from
HBLUP for the joint population analyses. Additive variance for MF
models was divided by a scalar k ¼ 1þ �diagðCÞ=2� �C

(Legarra et al. 2015), which was 1.010 for the single population and
0.987 for the joint population.

Evaluation of model performance
Model performance was evaluated using the LR method (Legarra
and Reverter 2018). This approach involves removing phenotypes
from a focal group to create a partial dataset, which is analyzed
with the same model specification as the complete phenotypic
dataset. Solutions from analysis of the whole dataset are then
regressed against solutions obtained from the partial dataset to
provide model validation statistics. We formed focal groups con-
sisting of 5,400 progeny from the single population (all progeny of
20 parents representing a diversity of origins) and 8,367 progeny
from the joint population (all progeny of 60 parents representing a
diversity of origins and both programs). Legarra and Reverter
(2018) showed that regressions may be formed among solutions
for either the retained individuals or the focal individuals. We
used the focal group as our goal was to determine the best model
for predicting breeding values of unphenotyped individuals in the
pedigree. For each model specification, prediction accuracy (ACC)

was calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covðâw ;âpÞ
ð1��FÞr̂2

a

r
and stability (STAB) as the correla-

tion covðâw ;âpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðâwÞvarðâpÞ
p , where covðâw; âpÞ is the covariance between fo-

cal group solutions from the whole and partial datasets, �F is
average inbreeding coefficient of the focal group calculated from
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the H matrix without groups using the INBUPGF90 program

(Misztal et al. 2014), and r̂2
a is the REML estimate of the additive

genetic variance. Dispersion (DISP) was calculated as the regres-

sion slope: covðâw; âpÞ=varðâpÞ. BIAS was calculated as

�âp ��âw , where �âp and �âw are mean focal group solutions

from analysis of the partial and whole datasets, respectively.

Results
Relationship matrices
The C estimate for the joint population was:

Diagonal elements of C ranged from 0.24 to 0.56 with a mean

of 0.34, which corresponds to a mean inbreeding coefficient of

�0.64 within MF. Plus-Tree Populations were more genetically di-
verse than the average MF, with Cii estimates lower than the av-

erage of the diagonal elements. Off-diagonal elements of C

provide estimates of relatedness among populations that are de-

rived from correlations of allele frequencies. C showed there are

closer affinities amongst East Otways, West Otways, and

Strzelecki races from the mainland of Australia, and King Island

population was most similar to the West Otways population.
Closer affinities between the 3 east-coast Tasmanian races were

evident in C, with the greatest between-population relationship

coefficient found between South-eastern Tasmania and

Southern Tasmania (Cij ¼ 0.26). A UPGMA phylogenetic tree rep-

resenting the among-race relationships in C demonstrates these

2 clusters, while associating Western Tasmania loosely with east

Tasmanian races and showing that Furneaux is the most dis-

tantly related race (Fig. 2). The Portuguese and Californian land-
races were most closely related to South-eastern Tasmania and

Southern Tasmania in C. Plus-Tree Population 1 was most closely

related to the Strzelecki race (Cij ¼ 0.21) and Plus-Tree Population

2 was not strongly associated with any particular race in C, while

Plus-Tree Population 3 was most closely aligned with King Island

(Cij ¼ 0.23).
In contrast with the HBLUP method, which modifies the geno-

mic relationship matrix to be compatible with A, the HBLUP_MF
method modifies A to be compatible with G05. Table 1 shows cor-

relations among elements of the A22, AC22, Gobs, and G05 matrices

in the EG2 population. Correlations between diagonal and off-

diagonal elements of A22 and Gobs were 0.08 and 0.85, respectively

(Table 1). Inclusion of MF relationships in A increased the similar-

ity of pedigree and genomic relationship matrices. The correla-

tions between diagonal and off-diagonal elements of AC22 and G05

were 0.81 and 0.87, respectively (Table 1).

As expected, Gobs, calculated with observed allele frequencies,
displayed a similar mean to A22, but with greater variation
(Table 2). AC22 had slightly higher diagonal values than A22, as in-
breeding values were translated from C throughout the pedigree

and each founder’s inbreeding value in AC incorporates half of Cii

from its respective MF. The mean off-diagonal element of AC22

was substantially greater than that of A22 (Table 2), as relation-
ships within and among MFs in C were distributed throughout

AC. For example, founders with a common MF that were unre-
lated in A were related in AC by Cii, the diagonal value corre-
sponding to their common MF. Similarly, founders from different

Fig. 2. UPGMA plot of similarity among E. globulus races based on C. See
Supplementary Table 1 for key to race names.

Table 1. Correlations among diagonal (upper triangle) and off-
diagonal (lower triangle) elements of A22, AC22, Gobs, and G05.

A22 AC22 Gobs G05

A22 1 0.62 0.08 0.14
AC22 0.96 1 0.89 0.81
Gobs 0.85 0.30 1 0.30
G05 0.77 0.87 0.91 1
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MF that were unrelated in A were related in AC by Cij, the off-

diagonal value corresponding to the relationship between their

respective MFs. Relationships at the founder level therefore influ-

ence relationships among all parents and progeny in AC. Values

in G05 were considerably greater than all other relationship ma-

trices among genotyped individuals (Table 2). Diagonal elements

of the HC matrix representing single program parents and progeni-

tors were consistently greater than the corresponding elements

of A with UPG, ranging from 1.10 to 1.67, with a mean of 1.41.

Model results
Additive variance estimates were similar between the single popu-

lation and joint population (around 0.17; Table 3), corresponding to

narrow-sense heritability estimates of 0.168 for the single popula-

tion and 0.161 for the joint population (Table 3). Family-specific var-

iances were also similar between the single population and joint

population (around 0.04; Table 3). Genetic group solutions from

ABLUP_UPG were strongly correlated with MF solutions from

ABLUP_MF and HBLUP_MF in the single population (r 0.97 and 0.96,

respectively).
The inclusion of MF influenced (G)EBVs of individuals from

HBLUP_MF analyses. This is demonstrated in Fig. 3, where found-

ers’ HBLUP_MF solutions are both higher and lower than their

HBLUP solutions, depending on genetic group assignment.

Evaluation of models using the LR method
Accuracy of the single population focal group was increased by ad-

dition of genomic information, from 0.41 for ABLUP to 0.47 for

HBLUP (Table 4). Inclusion of genetic groups also increased ACC

of pedigree-based solutions, to 0.50 with UPG or 0.46 with MF

(Table 4). The ACC of HBLUP solutions was slightly lower with the

inclusion of MF for both the single population and joint population,

reduced by 0.02 and 0.01, respectively.
Stability was increased in the single population from 0.68 for

ABLUP to 0.71 for HBLUP, 0.76 for ABLUP_UPG, and 0.77 for

ABLUP_MF (Table 4). Stability was increased by addition of MF to

HBLUP, by 0.01 for single population and 0.03 for joint population.
Dispersion was generally acceptable as estimates were within

60.1 of 1.0 (Table 4). Nevertheless, ABLUP and ABLUP_MF models

were over-dispersed, and ABLUP_UPG produced the DISP value

closest to 1.0. DISP was similar between HBLUP models with and

without MF (Table 4).
Bias was similar among ABLUP models regardless of how ge-

netic groups were treated (Table 4). Inclusion of MF in HBLUP

models produced contrasting results. For the single population, MF

reduced bias from þ0.066 to �0.006, whereas for the joint popula-

tion, MF increased bias from þ0.034 to þ0.067 (Table 4).

Discussion
Forest tree breeding programs are often founded on diverse sets
of parents from wild populations with distinct characteristics
that have developed as adaptations to local environments.
Inclusion of provenances as genetic groups uses these similarities
to improve the estimation of genetic parameters and effects in a
range of tree breeding contexts (e.g. Callister et al. 2011; Lee et al.
2015; Ukrainetz et al. 2018). Thoughtful genetic group definitions
for unpedigreed individuals can elucidate patterns of gene flow
as well as improve predictions (Kláp�st�e et al. 2019). There is grow-
ing interest in the HBLUP approach to integrate genomic, pedi-
gree, and phenotypic information and provide unbiased
predictions of genetic merit for tree breeding programs (Callister
et al. 2021). Accounting for population structure with HBLUP is
therefore an important development for tree breeding programs
with genotyped subpopulations.

The MF approach is an elegant solution to the challenge of ac-
counting for distinct base populations in HBLUP and it is under
extensive investigation in livestock breeding (Masuda et al. 2022),
where applications include accounting for trends in genetic
means of unknown parents across time (e.g. Granado-Tajada
et al. 2020) and accounting for breeds in crossbred populations
(Xiang et al. 2017; Kluska et al. 2021; Poulsen et al. 2022). Our use
of MF in a forest tree population now expands the scope of this
approach to the plant kingdom, where it may be used to address
numerous applications in applied breeding, population genetics,
and conservation genetics. The distinct advantage of the MF ap-
proach over other genomic methods for population genetic stud-
ies is that it provides estimates of relationships among base
populations and diversity within groups using the genotype and
pedigree of individuals that may be multiple generations re-
moved (Legarra et al. 2015).

We have demonstrated that a C matrix used to describe MF
relationships can be constructed with relatively small founder
populations that represent races, landraces, and infused plus
tree populations. Diagonal elements of C representing our 14 E.
globulus MFs were substantially smaller than 2/3, which is the
expected value if the allele frequencies in the base generation
were uniformly distributed (van Grevenhof et al. 2019). Estimates
of relationships among races in C validated previous E. globulus
population studies that used microsatellite markers (Jones et al.
2002; Costa et al. 2017) and elucidated relationships between
landraces and native races (Freeman et al. 2007; Yost et al. 2021).
Although we expect these patterns across races and landraces to
have an empirical basis beyond this particular population, the di-
agonal elements of C appeared to be influenced by sample size of
the population. Further estimates of C based on different samples
would provide welcome validation, particularly from programs
with larger E. globulus base populations.

Table 3. Variance components from single population ABLUP and
joint population HBLUP.

Var. comp.a Single pop. Joint pop.

r̂2
a 0.171 0.164

r̂2
f 0.043 0.042

r̂2
e 6 SD(r̂2

e)b 0.805 6 0.040 0.812 6 0.038

ĥ
2

Xsite 0.168 0.161

a r̂2
a is the additive variance, r̂2

f is the family-specific variance, r̂2
e is the

site error variance, and ĥ
2

Xsite is the cross-site narrow-sense heritability.
b Mean and standard deviation of 8 single population site error estimates

and 13 joint population site error estimates.

Table 2. Mean, minimum, and maximum element values of A22,
AC22, Gobs, and G05 on the diagonal and off-diagonal.

Element Matrix Mean Min Max

Diagonal A22 1.00 1.00 1.25
AC22 1.07 1.04 1.35
Gobs 1.04 0.78 1.38
G05 1.34 1.13 1.71

Off-diagonal A22 0.03 0.00 0.75
AC22 0.19 0.08 0.92
Gobs 0.00 �0.24 0.85
G05 0.61 0.40 1.22
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As this is the first forestry study with MF, C comparisons are

restricted to results with livestock populations. Working with cat-

tle, Kluska et al. (2021) reported diagonal C similar to ours for 4 bi-

ological types including subspecies Bos taurus indicus and B. taurus

taurus and 6 combinations among them. Their diagonal C values

ranged from 0.15 (for the group combining all 4 primary biological

types) to 0.65, with a mean of 0.41. Off-diagonal elements of C in

Kluska et al. (2021) tended to be smaller than ours with E. globulus,

including values of -0.08 and -0.11 between Bos taurus indicus and

taurine animals from Europe, and from Britain, respectively.

Macedo, Christensen, et al. (2020) reported diagonal C values be-

tween 0.52 and 0.96 for diary sheep, with off-diagonal C between

0.22 and 0.44. Granado-Tajada et al. (2020) also found high diago-

nal C values with diary sheep, ranging up to 1.45, indicating that

unknown parents within the 3-year period represented by this

certain MF were considerably inbred. Working with red dairy cat-

tle, Kudinov et al. (2020) reported C with diagonal values from

0.57 to 0.74 and off-diagonals from 0.45 to 0.59, and with chick-

ens, Bermann et al. (2021) constructed a C with diagonal elements

of 0.50 and 0.57 for 2 MF and 0.38 in the off-diagonal.
The values of C impact the values of AC, including the sub-

component AC22. Kudinov et al. (2020) created an AC22 with diago-

nal and off-diagonal elements on average 0.29 and 0.55 units

greater than those in their A22, respectively. On the other hand,

with considerably smaller values in C than those reported by
Kudinov et al. (2020), our AC22 was only 0.07 units greater than
A22 on the diagonal and 0.16 units greater on the off-diagonal, on
average (see Table 2). Mean and range of our G05 were generally
similar to those of Kudinov et al. (2020) and Forni et al. (2011), who
compared various formulations of G in a swine population. Our
correlations between G05 and AC22 were also similar to those pre-
sented by Kudinov et al. (2020).

MF effects are treated as random effects, which varies from
the typical practice of treating founding populations as fixed
effects in forest genetics (White et al. 2007). Nevertheless, there
are some advantages to treating genetic groups as random
effects, and this approach has been considered more seriously by
animal geneticists (reviewed by Masuda et al. 2022). Theoretical
concerns with fixed-effect genetic groups include the lack of in-
breeding within groups and the inconsistency of allowing for se-
lection to have altered the means of groups but not their genetic
variance (Kennedy 1991). A more pragmatic concern in our expe-
rience with tree breeding is that poorly represented genetic
groups can be assigned extreme fixed-effect solutions which
cause biased EBVs for their relatives throughout the pedigree.
Including MF in HBLUP produced changes to (G)EBVs that were
similar to including UPG in ABLUP, variously elevating or depress-
ing solutions for founders depending on their race (see Fig. 3).
This is an important demonstration of the impact MF are likely to
have in applied tree breeding with HBLUP models.

We found that accuracy increased with the addition of genomic
information in the single population. Breeding value accuracy calcu-
lated as a function of prediction error variance has typically been
shown to increase from ABLUP to HBLUP in studies of forest trees
(e.g. Cappa et al. 2017, 2018; Thavamanikumar et al. 2020; Callister
et al. 2021). ACC has been shown to be higher in HBLUP than ABLUP
models using the LR method in livestock populations (Cesarani,
Biffani, et al. 2021; Kluska et al. 2021; Sungkhapreecha et al. 2021)
and by comparing true and estimated (G)EBVs in simulated experi-
ments (Garcia-Baccino et al. 2017; Bradford et al. 2019; van
Grevenhof et al. 2019). Addition of MFs to HBLUP models did not im-
prove ACC in our study, which differs from results of simulated
populations (Garcia-Baccino et al. 2017; Bradford et al. 2019; van

Table 4. Results of linear regression validation: accuracy,
stability, dispersion, and bias, expressed in dm3 units with
genetic standard deviation units in parentheses.

Population Model Acc Stab Disp Bias (SDâ )

Single program ABLUP 0.41 0.68 1.09 0.038 (0.14)
ABLUP_UPG 0.50 0.76 0.97 0.046 (0.17)
ABLUP_MF 0.46 0.77 1.10 0.048 (0.18)
HBLUP 0.47 0.71 0.95 0.066 (0.25)
HBLUP_MF 0.45 0.72 0.96 �0.006 (�0.02)

Joint program HBLUP 0.45 0.66 0.90 0.034 (0.13)
HBLUP_MF 0.44 0.69 0.91 0.067 (0.27)

Fig. 3. Relationships between joint population HBLUP_MF and HBLUP solutions for founders from 6 races selected for demonstration purposes. See
Supplementary Table 1 for key to race names.
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Grevenhof et al. 2019) that showed substantial increases in ACC
with the inclusion of MF. Like our result, Kluska et al. (2021) found
ACC from HBLUP to be lower with MF for most traits, while
Bermann et al. (2021) showed mixed results across 5 traits. Model
specification may affect ACC more for genotyped than ungenotyped
individuals (e.g. Ukrainetz and Mansfield 2020) and further compar-
ison of HBLUP models with and without MF is recommended using
a larger cohort of genotyped trees and separate LR validations for
genotyped and ungenotyped focal groups.

Stability (the correlation between âp and âw) is also called the
“ratio of accuracies” and the expected value is accp=accw (Legarra
and Reverter 2018; Macedo, Christensen, et al. 2020). Our results
showed only a small improvement in stability between ABLUP
and HBLUP in the single population, whereas other studies have
demonstrated more marked increases caused by the addition of
genomic information (e.g. Cesarani, Biffani, et al. 2021; Kluska
et al. 2021; Sungkhapreecha et al. 2021). Including MF improved
our HBLUP model stability by 0.01 in the single population and 0.03
in the joint population, while it had mixed impacts on stability
across 4 traits in Kluska et al. (2021).

When dispersion is equal to 1.0, the focal group’s (G)EBVs are
expressed on the same scale regardless of whether they are phe-
notyped. Over-dispersion (slope less than 1.0) will cause unphe-
notyped progeny to be selected in error, whereas under-
dispersion (slope greater than 1.0) will cause the best unpheno-
typed progeny to be overlooked for selection despite their merit.
Addition of genomic information has corrected strong over-
dispersion found for ABLUP models in actual datasets (e.g. milk
yield in Sungkhapreecha et al. 2021; direct weaning weight in
Kluska et al. 2021; all traits in Cesarani, Masuda, et al. 2021) and
simulated populations (Bradford et al. 2019). Other studies
(Macedo, Christensen, et al. 2020; Cesarani, Biffani, et al. 2021)
have reported dispersion of various models to be mostly within
10% of the expected value (1.0), which was also our result.

Genetic models ideally have zero bias, so that the mean (G)EBV
of unphenotyped trees is correctly predicted. Our bias results were
mixed. In the single population we found a small positive bias for
ABLUP and a larger positive bias for HBLUP, which was effectively
eliminated by the inclusion of MF. In contrast, a small positive bias
for HBLUP in the joint population was doubled by the inclusion of MF,
which could be a result of the relatively small number of genotyped
individuals contributing to the estimation of C. The livestock breed-
ing literature contains a wide range of reports about bias in ABLUP
and HBLUP models. Garcia-Baccino et al.’s (2017) simulation study
found bias to increase markedly with the addition of genomic infor-
mation and was effectively eliminated with the subsequent inclu-
sion of MF. In Bradford et al.’s (2019) simulation study, an
incomplete population displayed large positive bias by ABLUP, a
much smaller negative bias by HBLUP, and effectively no bias by
HBLUP with MF. Cesarani, Biffani, et al. (2021) and Sungkhapreecha
et al. (2021) both found that biases present in ABLUP models were
greatly diminished using HBLUP on the same populations. In con-
trast, Granado-Tajada et al. (2020) found that bias in dairy sheep
evaluations was greater for HBLUP than ABLUP, although the differ-
ence was not statistically significant. Macedo, Christensen, et al.
(2020) reported the least bias for HBLUP with MF, as did Macedo
et al. (2022) using a method of C construction based on inbreeding
trend over time.

Conclusions
Our results demonstrate that the MF method is well suited to rep-
resenting multiple founder populations in tree breeding analyses

that utilize HBLUP. The C matrix can be interpreted to reveal

cryptic relationships among UPGs and biologically meaningful

associations among provenances or races. Greater confidence in

such results will result from validation in future studies with a

larger sample of genotyped individuals.
Including MF in HBLUP did not substantially alter model accu-

racy or dispersion, while it slightly improved stability and pre-

sented mixed results for bias in this study. Nevertheless, it is a

preferable model on account of its improved approximation of

the hierarchical genetic population structure, which we know is

present in recently domesticated populations of forest trees.

Application of the HBLUP_MF model will therefore provide

greater certainty that provenance-level trait variations are being

well represented in (G)EBVs of subsequent generations.

Data availability
The genomic, pedigree, and phenotypic data are available at

https://doi.org/10.25387/g3.19487696.
Supplemental material is available at G3 online.
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