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Dilated cardiomyopathy (DCM) is a type of heart disease delimited by enlargement and
dilation of one or both of the ventricles along with damaged contractility, which is often
accompanied by the left ventricular ejection fraction (LVEF) less than 40%. DCM is
progressive and always leads to heart failure. Circular RNAs (circRNAs) are unique
species of noncoding RNAs featuring high cell-type specificity and long-lasting
conservation, which normally are involved in the regulation of heart failure and DCM
recently. So far, a landscape of various single gene or polygene mutations, which can
cause complex human cardiac disorders, has been investigated by human-induced
pluripotent stem cell (hiPSC) technology. Furthermore, DCM has been modeled as
well, providing new perspectives on the disease study at a cellular level. In addition,
current genome editing methods can not only repair defects of some genes, but also
rescue the disease phenotype in patient-derived iPSCs, even introduce pathological-
related mutations into wild-type strains. In this review, we gather up the aspects of the
circRNA expression and mechanism in the DCM disease scenario, facilitating
understanding in DCM development and pathophysiology in the molecular level. Also,
we offer an update on the most relevant scientific progress in iPSC modeling of gene
mutation–induced DCM.
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INTRODUCTION

Dilated cardiomyopathy (DCM) is genetically and phenotypically heterogenous, accompanied by left
ventricular dilatation and dysfunction. It is themost common form of cardiomyopathy in both adults
and children in the world. DCM is non-ischemic and progressive, with an increased risk of heart
failure (Jefferies and Towbin, 2010). The continuous expansion of the ventricle leads to a decline in
left ventricular ejection fraction (LVEF), which in turn leads to abnormalities in the extra myocardial
matrix, ventricular arrhythmia, and heart failure. It has been assumed to cause diseases such as viral
myocarditis and other rheumatological diseases, while endocrinological disorders might further
contribute to occurrence of DCM (Hänselmann et al., 2020; Imanaka-Yoshida, 2020). For example,
COVID-19 patients hold higher risk of developing DCM due to continuous immune activation
(Komiyama et al., 2020). Importantly, the occurrence of heart failure and arrhythmia determines
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patient’s poor or good prognosis. Most DCM patients need
transplantation to increase the survival rate.

In past several years, the study of circRNAs has opened a new
avenue for survey in DCM research (Lei et al., 2018). Increasing
evidences show that circRNAs have dynamic changes and tissue
specificity in several different cardiovascular diseases, which are
derived fromDCM (Holdt et al., 2018). While DCM development
is progressive, circRNAs can be used as biomarkers for DCM
disease diagnosis and therapeutic targets for the single gene
mutation in DCM treatment (Lei et al., 2018). Importantly,
the study of function of circRNAs offers a valuable resource
that can be used to further explore the diagnostic standard and
treatment of DCM for tissue specificity genes in heart diseases.
Because the development of disease is a long and gradual process,
it is convenient to use human cells or tissue disease models as
platforms for performing observation and research (Lei et al.,
2018).

In this review, we not only discuss the research onmechanisms
and roles of circRNAs in DCM but also talk about the hiPSC
modeling method for DCM disease investigation with the
function and mechanism of circRNAs.

What is DCM?
Heart failure is generally caused by either DCM or ischemic
cardiomyopathy (ICM). DCM, a type of cardiomyopathy, is
the leading cause of heart transplantation. It occurs most likely
in young population with high mortality–morbidity risk,
which is attributed to a combination of genetic and
acquired triggers. So far, the clinical measure of DCM is
mainly based on ejection fraction (EF) and NYHA
systematization, without considering the heterogeneity of
DCM (Priori et al., 2015; Ponikowski et al., 2016). Overall,
nearly 40–50% of DCM patients can relieve from heart failure
therapy, with a genetic basis (Merlo et al., 2011; Verdonschot
et al., 2018). The clinical symptoms of DCM in children are
different from those of adults in some places, such as coarse
faces and slightly dilated heart (Carboni et al., 2020).
Histological examination of DCM hearts shows evidence of
nonspecific changes as well as myocardial hypertrophy and
fibrosis (Bakalakos et al., 2018). Biopsy exposes may put
patients under unnecessary risk because of idiopathic DCM
being nonspecific (Palomer et al., 2018). Familial forms occupy
the 40% of cases, but many pathogenic genes are irregular,
intergenerational inheritance.

What is DCM-Related Gene?
While studying the role of circRNAs in the development of DCM
diseases, we should primarily consider some genes related to the
development of DCM disease. It is because most circRNAs are
classic noncoding RNAmolecules, while only a little of ribosome-
associated circRNAs can produce detectable peptides (van
Heesch et al., 2019). The function of circRNA has been widely
confirmed as an essential role for miRNA sponges to affect
mRNA expression to regulate the synthesis of disease-related
proteins and/or influence its parental gene expression to produce
the protein to affect the biological progress of the disease.
Whether and how these circRNAs are relevant to other forms

of the mechanism to regulate DCM-related mRNA remains to be
studied.

Adverse consequences of DCM generally lead to heart failure,
arrhythmias, and sudden cardiac death, and the fundamental
reasons are attributed to genetic and environmental factors. In the
past few decades, single mutations in genes encoding muscle
fibers, cytoskeleton, and channel proteins have been found to be
associated with DCM.

TTN truncation variants are the most common cause in DCM
patients, accounting for about 20–25% of disease cases, and have
the strongest causal effect with DCM3 (Gerull et al., 2002;
Herman et al., 2012). The second most common cause is
mutation of the LMNA gene, which accounts for about 10%
of disease cases. It is worth noting that different gene mutations
can cause different phenotypes of DCM, such as arrhythmic
DCM (aDCM) and non-arrhythmic DCM (naDCM). In addition,
the pathogenic mechanisms of some significant gene mutations
which cause DCM are summarized in Figure 1 (Fatkin et al.,
1999; Li et al., 1999; Brauch et al., 2009; Herman et al., 2012).
Mutations in RBM20 result in aggressive early release patterns,
manifested by progressive dilation and dysfunction of the left
ventricle (Hey et al., 2019). It has been found that nearly 80
different gene mutations are closely related to DCM disease, such
as CAVIN4 mutations and δ-SG gene mutations.

The Regulationship Between DCM-Related circRNAs
and Their Parental Gene
Previous circRNA profiles show 826 back-splice junctions in
human left ventricle samples selected from hypertrophic or
dilated cardiomyopathy patients, in which 80 junctions come
from the titin gene transcript. TTN produces a class of circular
RNAs that are dependent on RBM20, which has abundant titin
reverse splice junction in introns flanking. These RBM20-
dependent TTN circRNAs exclusively come from a region in
the TTN transcript. Tijsen et al. found that selective loss of circ-
TTN1 in hiPSC-CM leads to structural abnormalities in
engineered heart tissues, cell apoptosis, and reduced
contractility. Consistent with its SRSF10 binding, the loss of
circ-TTN1 leads to abnormal splicing of important
cardiomyocyte SRSF10 targets (such as MEF2A and CASQ2).
Surprisingly, the loss of circ-TTN1 causes abnormal splicing of
TTN itself (Tijsen et al., 2021).

It was compelling that circRNAs produced by titin mostly is
involved in the development of heart diseases (Khan et al., 2016).
Many circRNAs generated from titin have very complicated exon
structures. According to the general situation, TTN circRNA
generation comes from alternative splicing, while the more exons
are circularized, and the less linearly mRNAs are produced
(Ashwal-Fluss et al., 2014; Kelly et al., 2015). Interestingly,
there is no TTN I band circRNA expression in the hearts of
RBM20 knockout mice and human RBM20 mutation carriers.
The corresponding exons are included in a large number of linear
TTN transcripts. Meanwhile, this suggests a mechanism in which
exons spliced from TTN pre-mRNA can be used as substrates to
produce circRNAs (Khan et al., 2016). In addition to this
mechanism, hundreds of expression levels of circRNAs are not
affected by the host gene expression level, and some host genes
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can independently regulate their circRNAs (Siede et al., 2017).
The same host gene has different exon splicing, which can
produce circRNA variants in different cells (Hu et al., 2019).

circRNAs in the DCM Study
circRNAs in the DCM Patient Heart
After digesting linear RNA with the RNase R, a large number of
circular RNAs (circRNAs) are identified by RNA sequencing via a
high-throughput sequencing platform in DCM patients (Table 1).

Dong et al. characterized the circRNA profile landscape of the
DCM adult patient’s heart and found there are 392 circRNAs
consisting of 101 upregulated and 291 downregulated circRNAs
(p < 0.05 and FC > 2), while most of the dysregulation of circRNAs
are downregulated. Notably, circRNAs in DCM are initiated from
heart disease–related gene loci, which include the Rt-circRNAs

produced from exons of two different neighboring genes, such as
Rt-circRNA from SCAF8 and TIAM2, which very likely tend to
bind with heart disease–related miRNA. It led to hypothesize that
circALMS1_6 could sponge with miR-133, which plays an
important role in cardiac remodeling (Dong et al., 2020).
Furthermore, along a clinical investigation in identifying the
roles of circRNAs in cardiac systolic and diastolic function, Lin
et al. constructed the circRNAs–miRNA–mRNA gene regulatory
networks including 9,585 circRNAs (231 upregulated and 85
downregulated) and 22,050 mRNAs (617 upregulated and 1125
downregulated). The comprehensive dataset assessed that the
downregulated mRNA would inhibit cardiac systolica, and lack
of some circRNAs would lead to DCM (Lin et al., 2021).

In addition, Sun et al. carried out a circRNA profile in 25 child
patients screening novel non-invasive biomarkers for early

FIGURE 1 | Role of the DCM-related gene.

TABLE 1 | Identification and evaluation of known circRNAs in DCM patient hearts.

CircRNA Expression in DCM Study model Mechanism or potential
application

CircRNA (CAMK2D) Khan et al. (2016) Down Patient’s heart Their expression is related to RBM20 mRNA levels.
CircRNA (LAMA2) Khan et al. (2016) Up Patient’s heart
CircSLC8A1 Siede et al. (2017) Up Patient’s heart

CircCHD7 Siede et al. (2017) Up Patient’s heart Interact with either the ribosome or Argonaute2 protein complexes.
CircATXN10 Siede et al. (2017) Up Patient’s heart
CircDNA6JC Siede et al. (2017) Down Patient’s heart

SCAF8_e4:TIAM2_e1 Dong et al. (2020) Down Patient’s heart A theoretical basis for future studies of circRNAs in DCM.
SCAF8_e4:TIAM2_e2 Dong et al. (2020) Down Patient’s heart
CircFBLN1_5 Dong et al. (2020) Up Patient’s heart
CircNLGN1_1 Dong et al. (2020) Down Patient’s heart
CircABCC1_9 Dong et al. (2020) Up Patient’s heart
CircHERC4_11 Dong et al. (2020) Down Patient’s heart
CircTTN_34, 52,70,132 Dong et al. (2020) Down Patient’s heart
CircRYR2_71,95 Dong et al. (2020) Down Patient’s heart

Has_circ_0067735 Sun et al. (2020) Down Child patient’s heart Serve as non-invasive diagnostic biomarkers.
Has_circ_0070186 Sun et al. (2020) Up Child patient’s heart
Has_circ_0069972 Sun et al. (2020) Down Child patient’s heart

Chr7:8257935−8275635− Lin et al. (2021) Up Patient’s heart A theoretical basis for future studies of circRNAs in DCM.
Chr4:187627717−187630999− Lin et al. (2021) Up Patient’s heart
Chr1:219352489−219385095+ Lin et al. (2021) Up Patient’s heart
Chr5:158204421−158267118− Lin et al. (2021) Down Patient’s heart
Chr1:247200894−247202839− Lin et al. (2021) Down Patient’s heart
Chr13:35615070−35672542+ Lin et al. (2021) Down Patient’s heart
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PDCM diagnosis (Sun et al., 2020). A total of 1,156 circRNAs
have the differential expression profile in PDCM under condition
of fold change >2 and p < 0.05, including 257 upregulated and 899
downregulated circRNAs. Has_circ_0067735 and
has_circ_0070186 target mRNA CACNA2D2 and IGF1. They
are associated with DCM according to KEGG. “Response to
wounding,” “inflammatory response,” and “cytokine secretion”
are the most enrichment GO biological processes of PDCM-
associated circRNAs (Sun et al., 2020), and this is different from
DCM adult patients.

Recent studies show that circRYR2_71 and circRYR2_95 are
downregulated in the DCM patient heart (Dong et al., 2020). Ji
et al. explored the molecular pathways in miR-31-5p KO mice
and cultured cardiomyocytes demonstrating the alleviated
myocardial apoptosis via quaking and circular RNA Pan3
induced by doxorubicin treatment and QKI gene as a direct
target of miR-31-5p (Ji et al., 2020). Research on the RNA-
binding protein quaking (Qki) provides more evidences to
support the role of the circRNA in dilated cardiomyopathy
(Gupta et al., 2018). Qki5 overexpression attenuates dox-
induced cardiotoxicity by inhibiting cardiac apoptosis. Special
circRNAs back splice and Strn3, Fhod3, and titin have been
regulated by Qki5. Importantly, sensitivity of heart cell lines
toward DOX toxicity targets inhibition of titin-derived
circRNAs (Gupta et al., 2018). This study indicates the
important role of the circRNA in DCM in previous doctrine
(Khan et al., 2016). Interestingly, van Heesch et al. reported 40
circRNAs, such as the famous CDR1as and circSLC8A1, were
found to encode small peptides in the DCM patient hearts (van
Heesch et al., 2019). It is worth noting that the parental gene type
was determined by the specific function of circRNA itself. To be
more specific, according to the healthy heart and DCMheart data,
it is found that the parent genes of AUG circRNA are mostly
involved in protein modification, such as ubiquitination and poly
ubiquitination, while the parent genes of non-AUG circRNA are
enriched in structures that bind to RNA (Stagsted et al., 2019).

circRNAs in DCM iPSC-CMs
The study by Siede et al. and Tan et al. provides important
evidences for the involvement of circRNAs in the hiPSC-CM
model (Siede et al., 2017; Tan et al., 2017). Both hiPSC-CMs and
human hearts show thousands of exclusively expressed circRNAs
which were conserved (3874 and 6672, respectively). Due to the
conservation, it is possible to study these circRNAs in large
animal models as well as in human-derived cardiac cells. Both
in heart development and stress treatment, dynamically variable
of cicRNA expression is existed in the hiPSC-CM model.
CircRNAs reverse shear produced from the exon transcript of
six protein-coding genes, such as SLC8A1, ARID1A, FNDC3B,
CACNA1D, SPHKAP, and ALPK2, which are highly enriched in
hiPSC-CMs. In contrast, the expression levels of circAASS,
circFIRRE, and circTMEFF1 are notably lower in hiPSC-CMs
(Lei et al., 2018). Deep circRNA sequencing of cardiomyocyte
development used in β-adrenergic stimulation revealed 4,518
circRNAs, of which the host gene set is enriched with
chromatin modifiers and GTPase activity regulators (Siede
et al., 2017). In addition to circ-CAMK2D and circ-LAMA2

which have statistical difference, circCACNA1D, circ-RYR2-1,
circ-SLC8A1, circ-TNNI3K, circ-TTN1, circ-TTN2, circ-TTN3,
circ-TTN4, and circ-TTN5 were found in the DCM patient heart
with no significant difference (Khan et al., 2016).

Lei et al. detected some circRNAs, including circSLC8A1,
circCACNA1D, circSPHKAP, and circALPK2, highlight their
expressions during cardiac differentiation by human-induced
pluripotent stem cells (hiPSCs) (Lei et al., 2018). The
expression level of these circRNAs increases during cardiac
differentiation and among them, circSLC8A1 is the highest
level expression during differentiation. According to their high
enrichment in hiPSC-derived cardiomyocytes, it led to infer that
they have potential to serve as biomarkers of CMs. A previous
study revealed differential expression levels of 226 circRNAs
during the differentiation of human umbilical cord–derived
mesenchymal stem cells into cardiomyocyte-like cells (Ruan
et al., 2019). Cardiomyocyte differentiation from hiPSCs is
accompanied by changes in gene expression. For example,
TnnT2, Mef2c, and Myl7 are clearly upregulated in this
differentiation process (Siede et al., 2017). Nkx2.5 and Isl1 are
known to be expressed in early stages of cardiac formation.
Furthermore, the pluripotent genes or cell type intermediate
genes such as TBrachyury, MESP1, POU5F1 (OCT4), Nanog,
and KLF4 are downregulated in the process toward
cardiomyocyte conversion (Siede et al., 2017). These findings
indicate that certain tissue- and stage-specific circRNAs can be
used as biomarkers in the process of cardiomyocyte
differentiation (Jakobi et al., 2020).

Use of hiPSCs for the Study of circRNAs
in DCM
The hiPSC-CM model with the p.S143P LMNA mutation
successfully elucidated the mechanisms linking the LMNA
alteration and its effect on DCM illness. Progressive arrhythmia
or even severe arrhythmia occurs, which is similar to the clinical
phenotype of DCM in patients with the p.S143P LMNAmutation,
and this often leads to heart failure or sudden deaths. In addition, in
the hiPSC-CM model, variability of pulsation rate, handling of
abnormal calcium, and augment of sensitivity about pressure are
the main causes of disease including atrioventricular conduction
defects and ventricular systolic and diastolic dysfunction. Under
the treatment of hypoxia stress, the disintegration of the sarcomere
structure in myofibrils of hiPSC-CM shows an increasing trend.
The construction of this model suggests that whether cells
expressing P.S143P LaminA/C or other DCM-related mutants
share some common DCM phenotypes and pathogenic
characteristics, which is very important for finding suitable
drugs for treatment (Shah et al., 2019).

Studies with the gene knock-in animal model and/or hiPSC-CM
model would get confidential evidences of the genotype–phenotype
correlation, and therefore they offer a powerful tool to interpret the
physiological functions of gene mutation–related heart diseases.
When establishing a preliminary model of DCM-related circRNA
disease, it is necessary to select a circRNA that has a weak effect on
the expression of the parental gene, which is helpful to eliminate the
interference if the parental gene has a function in the DCM disease
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progress. Also, it is a good choice to start with some circRNAs related
to RBM20 expression as mentioned before. Consequently, studies of
molecular mechanisms of circRNAs have just recently begun, so we
note that this research in pluripotent stem cell–derived
cardiomyocyte about heart diseases is still in its nascent stages,
and currently the studymostly focus on its expression situation; only
a few research studies exploremolecularmechanisms of circRNAs in
pluripotent stem cell–derived cardiomyocyte. Recently, Anke et al.
successfully constructed the hiPSC-CM model with circular RNA
TTN1 deletion (Tijsen et al., 2021). In this study, the most abundant
RMB20-dependent circRNA in the human heart was selected, of
which parental gene TTN variants are found in 20–30% patients
suffering from DCM. The cTTN1 was expressed highly in healthy
people but down-regulated in patients with DCM. Therefore, the
researcher decided to build a downregulation circRNA model
instead of an upregulation one. After inducing the selective loss
of cTTN1 in hiPSC-CMs, it was found that the loss of cTTN1 can
cause abnormal cardiac tissue structure, apoptosis, and reduced
contractility. The cTTN1 mechanisms of action are summarized
as follows: 1) The special motif AAAGAACC was found in the back
splice junction of cTTN, which has a role in binding the splice
regulator SRSF10. 2) The loss of cTTN1 would move most of
RBM20 from the nucleus to the cytoplasm, resulting in splicing
deletion of the RBM20 and SRSF10 targets. If we want to build the
model, we can refer to the figure (Figure 2).

Challenges of hiPSC Modeling and
Translational Aspects
It seems that hiPSC could provide an unlimited cell source for
regenerative medicine in heart transplant and card cytotoxicity
experiments. However, several weaknesses, include genomic
instability causing chromosomal aberrations, low frequency of

iPSCs, wide variation of the quality of iPSC colonies, and hinder
iPSC applications even for in vitro analysis (Mayshar et al., 2010;
Garber, 2015).

Cardiac muscles are composed of cardiomyocytes, extracellular
collagenous matrix, vasculature, and etc. In addition,
cardiomyocytes take only a small part in 25–35% of myocardial
tissue (Pinto et al., 2016). For example, iPSC-derived organoids lack
enough cell maturation and precise microvascular formation. The
procedures of culturing iPSC-CM similarity to ESCs are not
complex, but the composition of intrinsic properties of iPSC-
derived cardiomyocytes varies under pathological conditions.
Therefore, it is a difficult problem to use iPSC-derived
cardiomyocytes for modeling heart diseases in vitro, although
the survival of iPSC-derived cardiomyocytes and the complexity
of the model have been used to significantly improve accuracy
during the past few years (Breckwoldt et al., 2017; Lemoine et al.,
2017;Weinberger et al., 2017; Castro et al., 2019;Meyer et al., 2019).

Uncertainties in cytogenetics and epigenetics make it difficult
to directly correlate in vitro functional effects and specific genetic
variations if using patient-derived iPSCs (Dzilic et al., 2018). In
addition, gene variant mutations might be produced and even
accumulate during the long time of culturing patient-derived
iPSCs (Liu et al., 2014; Yoshihara et al., 2017). Short tandem
repeat (STR) analysis is always used for the genetic stability test,
and therefore using early passages is necessary.

In the early days, hiPSC-CM treatment was used to fill missing
tissue induced by MI. The induced pluripotent stem cells were
considered to be superior to human embryonic stem cells (ESCs)
for repairing damaged myocardium (Liao et al., 2019). But hESC-
VCs could alleviate a severely abnormal heterogeneity of
myocardial bioenergetics in hearts (Xiong et al., 2012). Due to
the low transplant survival rate and other reasons, trying for over-
expression of angiopoietin-1 (Ang-1) or add thymosinβ4 (Tb4)

FIGURE 2 | Human pluripotent stem cells as DCM models to study function and mechanism of circRNAs.
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could improve engraftment and reparative potency of
transplanted hiPSC-CMs in a porcine model (Tan et al., 2021;
Tao et al., 2021). Finally, pluripotent stem cell (PSC)–derived
cardiomyocytes (hiPSC-CMs) were proven to enhance cardiac
function by integrating into infarcted hearts in the porcine model
of myocardial infarction (Ye et al., 2014).

hiPSCs were believed to be more readily available for cellular
transplantation and personalized therapies (Su et al., 2021). The
stable CM graft formation in the rodent infarcted hearts after
transplanted hiPSC-CMs or hiPSC-CVPCs was an encouraging
progress in technology. Overall, the systematic development of
human cardiac organoids would accelerate cardiac drug discovery
and personalize cardiac treatment in the future. Therefore, iPSC-
derived cardiomyocytes should also be linked to animal models or
the study of complicated explanted human myocardial tissue in
order to obtain actual clinical benefit.

DISCUSSION

Although significant efforts have been made in genetic
variants–induced pathophysiological changes for human heart
diseases such as DCM, HCM, and various types of long QT
syndrome (LQTS), our understanding of circRNA function in
heart disease is still very limited. In recent years, high-throughput
sequencing detection technologies continue to surmount, which
further have improved our knowledge about epigenetic
contribution to pathogenesis of heart disease. Increasing
evidence supports circRNAs could regulate cardiac
hypertrophy, heart failure, and myocardial fibrosis via
regulation signaling pathways or sponging with some miRNAs.
CircRNA mm9_circ_012559, which downregulated, can target
with miR-223 to aggravate heart hypertrophy (Wang et al., 2016).
CircRNA (HRCR) contains a group of 36 circRNAs which were
all upregulated in the heart. HRCR decreases the level of ARC
expression and enhances myocardial hypertrophy produced by
isoproterenol (ISO) via sponging with downregulated MiR-223
(Wang et al., 2016). CircSlc8a1 can adsorb miR-133a which has
an important role in cardiac hypertrophy in cardiomyocytes.
Therefore, circSlc8a1 knockdown weakens cardiac hypertrophy
from excessive pressure (Lim et al., 2019). The overexpression of
circRNA_000203 enhances cell size by promoting atrial
natriuretic peptide and β-myosin heavy chain expression in
neonatal mouse ventricular cardiomyocytes. The upregulated
circRNA_000203 in Ang-II–infused mice enhances cardiac
hypertrophy and acts with its target siRNA to inhibit
hypertrophy in turn (Nishi et al., 2010). However, the exact
mechanisms of how these circRNAs affect the progression of
DCM remains largely unknown. Some circRNAs are differentially
expressed and detected easily in DCM diseases and could play an
important role in other heart diseases. For example, circSlc8a1
has also upregulated in myocardial infarction, and it was
confirmed as auxiliary diagnostic markers for SCD caused by
acute IHD (Tian et al., 2021). This poses a great challenge for
identification of DCM-related circRNAs as specific heart disease
molecular markers when facing complicated and combined heart
disease. More importantly, the ceRNA theory has been the main

hypothesis of how circRNAs function as miRNA sponges in heart
diseases. However, it is skeptical about whether the physiological
expression level of a single circRNA is sufficient to absorb its
target miRNAs because miRNA targets including lncRNAs,
cirRNAs, mRNAs, and pseudogenes and the efficient
regulation are finally determined by the number of common
miRNAs and the target binding sites (Le et al., 2017). It is essential
for the future study to investigate all the genes composed of the
ceRNA network for a better understanding of DCM, especially
mostly miRNAs-specific expression only in a certain disease. At
last, the detection method of the circRNA has been upgraded
from the first- and second-generation sequencing technologies to
nanopore third-generation sequencing technologies, but most of
the research studies about circRNAs on DCM disease are based
on the first- and second-generation sequencing technology. Many
circRNAs with full length> 500 nt and specific variable shear
excision events cannot be detected by the first- and next-
generation sequencing, which may lead to missed detection of
some circRNAs that play an important role in the occurrence and
development of DCM disease (Rahimi et al., 2021).

As mentioned previously, most of circRNA studies are
conducted in mouse models, failing to mimic the in vivo
patients. Therefore, hiPSC from patients with various heart
diseases should be used as a more relevant physiological
model. However, it is worthy of noting that using hiPSC as a
disease model faces some challenges as follows: In a hiPSC-CM
model, cLQTS2 and Kv11.1 activators could restore normal heart
signaling, but at the same time there may be a hazard of
overcorrection that reduces itself being pro-arrhythmic (Perry
et al., 2020). HiPSC-CM do not express other components that
make up the protein of cardiomyocytes, including key Ca2+
processing components and contractile elements, despite it
could remedy arrhythmic Ca2+ transients and alleviates
declined Ca2+ transport in a DCM model; this leads to
limited observations (Stroik et al., 2020). But the advantage is
always obvious too. The in vitro phenotype of hiPSC-CM of
asymptomatic and symptomatic individuals with LQT2 differs in
the level of CM aggregation; an increase in arrhythmia is observed
in symptomatic hiPSC-CM, which makes it convenient for us to
use hiPSC-CM to observe the different phenotypes of mutation
carriers with different clinical phenotypes (Shah et al., 2020).

The latest research about using hiPSCs for the study of
circRNAs in DCM declares that if there is no RBM20
mutation detected when the phenotype resembles the
phenotype of DCM with arrhythmias as observed in RBM20
mutation carriers, it is necessary to consider variants in the
I-band region (Tijsen et al., 2021) because hindering
formation or function of these TTN circular RNAs which
stem from the I-band region also may have the DCM clinical
phenotype. This will bring some new perspectives to gene-
targeted therapy, for example, some gene mutation or deletion
diseases that are only judged from clinical symptoms. When the
targeted gene therapy is ineffective according to clinical
symptoms which are reduced by DCM-related gene mutations
or deletion, factors caused by non-coding RNA disorders such as
circRNA could be considered. The current research has always
emphasized on downregulated circRNAs in DCM patients and
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hiPSCs-CM. However, whether the upregulated circRNAs in the
DCM patient’s heart and hiPSCs-CM have a similar mechanism
or a different mechanism could only be further studied.

The short hairpin RNA (shRNA) and antisense
oligonucleotide (ASO) have been considered to target mRNAs
in the hiPSC-CM model to ameliorate phenotypes of disease.
Importantly, Shah, D. gave an outstanding article about these two
methods of silencing as therapeutic treatment for MYH7 gene
mutation cardiomyopathy. In addition, they found shRNA
silencing way may prove to be more efficacious toward ASO
silencing in the treatment of the human HCM model (Dainis
et al., 2020).

To sum up, there are several examples of human DCM
diseases related to titin gene and LMNA gene which have
been successfully modeled by linking the homologous cells in
3D fabricated tissue culture models. circRNAs are potential
candidates as biomarkers for the diagnosis of DCM. Moreover,
most circRNAs have sequence conservation between mammals,
providing favorable conditions for the study in cells or animal
disease models. hiPSC provides a much facile and accessible way
to obtain human cells, while the new differentiation method can

cultivate a large number of different classes of cardiomyocytes.
Our review provides a new perspective of iPSC-derived atrial
cardiomyocytes for exploring the role of circRNAs in the
pathophysiology of DCM and offers a platform for evaluating
potential treatment methods.
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